
ABSTRACT

DESAI, NIRMIT V. Scalable Distributed Concurrency Protocol with Priority Support. (Under the

direction of Assistant Professor Frank Mueller).

Middleware components are becoming increasingly important as applications share com-

putational resources in large distributed environments, such as web services, high-end clusters with

ever larger number of processors, computational grids and an increasingly large server farms. One

of the main challenges in such environments is to achieve scalability of synchronization. Another

challenge is posed by requirement for shared resources with a need for QoS and real-time suppoprt.

In general, concurrency services arbitrate resource requests in distributed systems. But concurrency

protocols currently lack scalability and support for service differentiation based on QoS require-

ments. Adding such guarantees enables resource sharing and computing with distributed objects in

systems with a large number of nodes and supporting a wide range of QoS metrics.

The objective of this thesis is to enhance middleware services to provide scalability of

synchronization and to support service differentiation based on priorities. We have designed and

implemented middleware protocols in support of these objectives. Its essence is a novel, peer-

to-peer, fully decentralized protocol for multi-mode hierarchical locking, which is applicable to

transaction-style processing and distributed agreement.

We discuss the design and implementation details of the protocols and demonstrate high

scalability combined with low response times in high-performance cluster environments as well as

TCP/IP networks when compared to a prior protocol for distributed synchronization. The prioritized

version of the protocol is shown to offer differentiated response times to real-time applications

with support for protocols to bound priority inversion such as PCEP and PIP. Our approach was

originally motivated by CORBA concurrency services. Beyond CORBA, its principles are shown

to provide benefits to general distributed concurrency services and transaction models. Besides

its technical strengths, our approach is intriguing due to its simplicity and its wide applicability,

ranging from large-scale clusters to server-style computing and real-time applications. In general,

the results of this thesis impact applications sharing resources across large distributed environments

ranging from hierarchical locking in real-time databases and database transactions to distributed

object environments in large-scale embedded systems including real-time applications.
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Chapter 1

Introduction

1.1 Motivation

Resource arbitration is rapidly becoming a commodity in distributed computing where,

data, objects and devices are shared on a larger and larger scale. In the past, applications relied

on message passing, shared memory, remote procedure calls and their object counterparts, such as

remote method invocations, to exploit parallelism in distributed environments or invoke remote ser-

vices in a client-server paradigm. The problem with these approaches is their reliance on access to

a centralized facility. Centralized approaches are inherently unreliable and suffer from the classical

single point of failure problem. Also, more importantly, they have very limited scalability when

applied to large distributed system environments. This is mainly due to the number of server(s) in

the system remain constant while the population of requesters may be arbitrarily large and dynamic.

1.1.1 Middleware Concurrency Services

For the above-cited reasons, recent trends aim at peer-to-peer computing with location-

transparent distributed objects and services. This paradigm is generally supported by middleware

to provide distributed services. This middleware provides a software layer between the operat-

ing system and the application that supports cooperative problem solving and provides user trans-

parency. This middleware constitutes the enabling technology for distributed object services, such



2

as resource arbitration in distributed systems. The CORBA/IIOP and RT-CORBA specifications

by Object Management Group (OMG) [19] define one such middleware. The corresponding OMG

concurrency service specification [18] describes a hierarchical locking model coupled to the core

middleware to enable scalability of synchronization. However, existing implementations of such

middlewares do not fully implement the concurrency services as specified in [18]. They, either

have fairly thin and primitive implementations of the distributed locking mechanisms or they do

not support concurrency services at all. For example, TAO (The ACE ORB) described in [38], one

of the best known and supported implementations of CORBA/IIOP middleware, supports a thin

concurrency service without hierarchical locking support. For these reasons, current middleware

concurrency service implementations remain poorly scalable by in large and mostly non-applicable

to large scale distributed systems and services.

1.1.2 Clusters and Grid

Another relevant trend regarding our work relates to clusters and the Grid [13, 20]. High-

end clusters and the Grid have increased considerably in size over the past years. These clusters

profit not only from advances in processor design and interconnects but their main advantage is

their mere size, currently ranging up to 8,000 processors with future projections over 10,000,e.g.,

for IBM’s Blue Gene Light and potentially even larger systems in the Grid [1, 13]. We see a similar

trend in commercial computing areas, such as server-style computing. Servers are increasingly

organized in ever larger server farms. This trend is in response to requirements for high availability

and faster response times. Multiple server farms may exist in geographically distant locations so

that accesses can be quickly delegated to a server in the requester’s vicinity. In such environments,

the traditional approaches for fault-tolerance have to be enhanced or replaced due to the shrinking

mean-time-to-failure (MTTF) margins with growing sizes of clusters and Grids as described in [15].

Redundant computing is emerging as an alternative in such environments to cope with the failures

efficiently where multiple replicas of a computation exist in the system simultaneously.

1.1.3 Issues

One of the main challenges in the environments described above is to achieve scalability

of synchronization. Synchronization might be required for various purposes in each case,e.g., state

management, consistency management, replication consistency, resource arbitration, serializability,
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distributed agreement and distributed transactions. Another issue is service differentiation based on

the priorities to ensure predictable response times for real-time applications. This thesis is moti-

vated by these unique and emerging challenges in the area of large scale distributed systems and

middlewares.

1.2 Approach

We first investigate the issue of scalability and discuss the design and implementation of a

scalable protocol for synchronization supporting hierarchical locking. Next, we focus on providing

support for real-time applications by means of supporting priorities of lock requests. We also discuss

the problem of priority inversion and bound inversion duration by supporting priority inheritance

protocols. The results demonstrate that the additional support for hierarchical locking and priorities

does not affect the scalability of the protocol.

1.2.1 Scalability

We address the issues of scalability through novel middleware concurrency protocols.

Though our protocols are compatible with existing standards, such as CORBA, the model is appli-

cable to any distributed resource allocation scheme. For example, distributed agreement, originally

designed for distributed database systems, has recently been adopted for cluster computing [11, 12].

The use of transactions in such environments requires support for hierarchical locking services to

arbitrate between requests with different locking modes at multiple levels of data structures within

the shared or replicated data. Hierarchical locks have been studied in the context of database sys-

tems with a limited number of nodes [17, 26, 25, 23, 3]. However, hierarchical locking has not been

studied in the context of distributed synchronization. The sheer sizes of clusters, server farms and

the Grid lead us to consider hierarchical locking again, but this time under the aspect of scalability.

The problem of distributed mutual exclusion has been approached from different angles,

broadly classified as token-based [32, 16, 37] and non-token-based [24]. The distributed mutual

exclusion protocol by Naimi et al. [32] demonstrates one of the best known token-based, decen-

tralized, distributed synchronization approaches. However, none of these approaches considered

supporting hierarchical locking to accommodate large number of concurrent requests. The essence

of our contribution lies in leveraging hierarchical locking with one such distributed synchronization
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protocol. The resulting protocol supports a high degree of concurrency for a number of locking

modes. The protocol is aimed at global state replication in distributed systems. The underlying

protocol follows a peer-to-peer paradigm, which is applicable to transaction-style processing and

distributed agreement. The peer-to-peer paradigm ensures scalability by relying only on fully de-

centralized data structures and symmetric algorithms. As a result, our protocol is highly scalable

with O(log n) message complexity for n nodes. It accommodates a large number of concurrent re-

quests, provides progress guarantees to prevent starvation and delivers short response times, even in

large networks.

1.2.2 Priority support

We demonstrate how the middleware concurrency protocol for distributed objects and

services can be extended to support real-time requirements. The use of such protocols in real-time

systems requires support for priorities and should address the requirements imposed by real-time

schedulability theory, namely, guaranteed end-to-end response times and bounded priority inversion.

Priority support for distributed mutual exlusion has been studied in [30] without the support for

hierarchical locking scheme. Contemporary distributed real-time systems exploit locking schemes

in real-time database systems and transaction protocols, just to name a few [44, 39, 38]. The protocol

developed in this thesis not only fits these requirements but also provides a more efficient solution

to prioritized hierarchical locking in distributed systems than any of the previous protocols, to the

best of our knowledge.

Real-time scheduling provides the theory for uniprocessor allocation of tasks and pro-

vides guarantees to meet deadlines in the presence of resources [28, 2, 41, 4, 6, 45]. Even for

multi-processor environments with shared memory, certain guarantees can be provided if tasks with

shared resources are scheduled on the same processor. We focus on a protocol to acquire resources

in a distributed environment, bound the message overhead, and provide support to bound priority

inversion so that this protocol can be used in arbitrary distributed scheduling methods for real-time

systems. Thus, this work is applicable but not limited to rate-monotone priority assignments for

static priority preemptive scheduling where the highest priority task ready to run is being executed

on each processor. Our protocol is subject to static priorities associated with requests. In addi-

tion, extensions to this protocol to bound priority inversion are introduced to provide temporary

adjustments of the priorities in a dynamic manner.
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1.3 Outline

In this thesis, we first review a non-hierarchical locking protocol, which we compare

against during later experimentations. We then introduce our peer-to-peer hierarchical locking pro-

tocol, define its operations through a set of rules and tables, and we provide several examples to-

gether with pseudo-code. The next chapter focuses on the priority support for the base protocol.

We motivate and outline the set of new rules to support priorities. Protocol extensions for bounding

priority inversion are developed. Our experiments are comprised of the aforementioned comparison

with non-hierarchical locking on a Linux TCP/IP network on one hand and results for scalability

and latency evaluations on an IBM SP cluster on the other hand. Also, a performance study of

the prioritized version assesses the quantitative benefits of the novel approach. Finally, we discuss

related work and summarize our contributions.
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Chapter 2

The Unprioritized Protocols

In this chapter, we focus on the problem of achieving scalablity of synchronization and

support for hierarchical locking without taking priorities into account. Therefore, the protocol in-

troduced in this chapter is suitable for general distributed applications with a focus on the average

throughput of the entire system. After introducing a non-hierarchical protocol by Naimi [32], we

present our novel base protocol with a set of governing rules and tables. We provide examples

covering important aspects of the operational details.

2.1 Prior Work

Concurrent requests to access shared resources in a distributed environment have to be

arbitrated by means of mutual exclusion,e.g., to provide hierarchical locking and support transaction

processing. In the absence of shared memory, mutual exclusion is realized via a series of messages

passed between nodes that share a certain resource. Several algorithms have been developed to

provide mutual exclusion for distributed systems [8]. They can be distinguished by their approaches

as token-based and non-token-based. The former may rely on broadcast protocols or may use logical

structures with point-to-point communication. Broadcast and non-token-based protocols generally

suffer from limited scalability due to centralized control, due to their message overhead or because

of topological constraints. In contrast, token-based protocols exploiting point-to-point connectivity

may result in logarithmic message complexity with regard to the number of nodes. In the following,
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a fully decentralized token-based protocol is introduced.

Token-based algorithms for mutual exclusion employ a single token representing the lock

object, which is passed between nodes within the system [32]. Possession of the token represents

the right to enter the critical region of the lock object. Requests that cannot be served right away

are registered in a distributed linked list originating at the token owner. Once a token becomes

available, the owner passes it on to thenextrequester within the distributed list. In addition, nodes

form a logical tree pointing via probableownerlinks toward the root. Initially, the root is the token

owner. When requests are issued, they are guided by a chain of probable owners to the current root.

Each node on the propagation path sets its probable owner to the requester,i.e., the tree is modified

dynamically.

In Figure 2.1, the root� initially holds the token for mutual exclusion. A request by� is

sent to� following the probable owner (solid arcs). Node� forwards the request along the chain

of probable owners to� and sets its probable owner to� . When the request arrives at the root� ,

the probable owner and anextpointer (dotted arc) are set to the requester� . The next request from
�

is sent to� . � forwards the request to� following the probable owners and sets its probable

owner to
�

. Node� sets itsnextpointer and probable owner to
�

. When the token owner� returns

from its critical section, the token is sent to the target node thatnextpoints to. Hence,� passes the

token to� and deletes thenextpointer.

CA

T

DB

A C

T

DB

C

T

D

A

B

Request from A Request from C Token to A

CA

T

DB

Figure 2.1: Non-hierarchical Example

Consider the process of request forwarding again. When a request passes intermediate

nodes, the probable owner is set to the requesting node. This causes a transformation of the tree

to a forest. The traversed nodes form a tree rooted in the requesting node, which will be the token

owner of the future. Nodes that have not been traversed are still part of the original tree rooted in the

current token owner. For example, when� forwarded� ’s request to� , � sets the probable owner
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to � . At this point, one logical tree
� � � � � is rooted in� while another tree

� � � is still

rooted in� . Once the request reaches� , the separate trees are merged again (2nd tree of Figure

2.1).

Should� requests be in transit, then there may be up to� � �
separate trees in the forest.

Once all requests have arrived at current or future token owners, the forest collapses to a single tree

again rooted in the last requester. Thenextpointers form a distributed queue of pending requests

from the current token owner to the last requester. A new request would simply be appended at the

end as described above.

This algorithm has an average message overhead of� ���� 	 
 since requests are relayed

through a dynamically adjusted tree, which results in path compression with regard to future request

propagation. It is fully decentralized, which ensures scalability for large numbers of nodes. In the

worst case, requests can be forwarded via	 � �
messages and one additional message is needed to

send the token. The model assures that requests are ordered FIFO. Our contribution in prior work

was to alleviate shortcomings in priority support [29, 30]. In this work, we develop a novel protocol

for hierarchical locking building on our past results and demonstrate its suitability to deliver short

latencies and low message overhead in cluster environments.

2.2 Our Hierarchical Locking Protocol

This section introduces our novel locking protocol. This protocol strictly follows a peer-

to-peer paradigm in that all data structures are fully decentralized and each node runs a symmetric

instance of the protocol. These operational characteristics combined with an O(log n) message

complexity ensure scalability and are also demonstrated to yield low response times. The protocol

distinguishes a number of access modes in support of concurrency services for distributed com-

puting. In the following, we refer to the Concurrency Services of CORBA, which follows thede

factostandard hierarchical locking model widely used in database systems, as the underlying model

without restricting the generality of our proposed protocol [18].

2.2.1 Compatibility between Lock Modes

The main objective of our approach is to ensure an optimal degree of concurrency for

the distributed mutual exclusion protocol. We allow multiple nodes to share access to a resource if
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possible by supporting a set of five locking modes compatible with common access requirements of

database systems and distributed object systems.

As in Naimi’s protocol, nodes form a logical tree structure by maintaining their local

parent pointers. But our protocol does not require next pointers. The root node of the tree holds

the token and is referred to as thetokennode. All other nodes arenon-tokennodes. We support

the following access modes. First, we distinguish read (R) locks and write (W) locks with shared

and exclusive access, respectively. Second, we support upgrade (U) locks, which represent an

exclusive read lock that is followed by an upgrade request for a write lock. Upgrade locks ensure

data consistency between a read followed by an update value that was derived from the read value

as described in [18]. Third, we provide intent locks for reading (IR) and writing (IW).

Intent locks are motivated by hierarchical locking paradigms, which allow the distinction

between lock modes on the structural data representation,e.g. when a database, multiple tables

within the database, and entries within tables are associated with distinct locks [17, 26]. For ex-

ample, an entity may first acquire an intent write lock on a database and then disjoint write (or

upgrade) locks on the next lower granularity. Since the low-level locks are assumed to be disjoint,

hierarchical locks greatly enhance parallelism by allowing simultaneous access for such threads. In

general, lock requests may proceed in parallel if modes for a lock are compatible.

The compatibility between these basic lock modes defines which modes may be used in

parallel by different requesters. Conversely, incompatibility of lock modes indicate a need for seri-

alization of two requests. Let� be a resource and�� be the lock associated with it. Table 2.1 shows

the rules for granting�� in different modes according to the specification of concurrency services

[18]. Column one specifies the presently held lock modes for�� and the remaining columns repre-

sent the type of mode requests received for�� . To define our protocol, we derive several rules for

locking and specify if concurrent access modes are permissible through a set of tables. These tables

not only demonstrate the elegance of the protocol, but they also facilitate its implementation.

Rule 1:

Modes� � and�� are said to becompatiblewith each other if and only if they are not in conflict

according to Table 2.1.Definition 1:

Lock � is said to bestrongerthan lock� if the former constrains the degree of concurrency over

the latter. In other words,� is compatible with fewer other modes than� is. The order of lock

strengths is defined by the following inequations:

� � �� � � � 	 
 �� � �
(2.1)
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Mode� � Mode��
IR R U IW W

No lock –
�

Intent Read – IR X
Read – R X X

Upgrade – U X X X
Intent Write – IW X X X

Write – W X X X X X

Table 2.1: Incompatibility of Lock Modes

A higher degree of strength implies a potentially lower level of concurrency between mul-

tiple requests. For example, a write lock allows less concurrency than a read lock, so W is stronger

than R. Table 2.1 depicts lock modes in increasing order of lock strength – with the exception of

upgrade and intent writes that, conceptually, share the same degree of concurrency. In the following,

we distinguish cases when a nodeholdsa lockvs.when a nodeownsa lock.

Definition 2:

Node� is said tohold the lock�� in mode�� if � is inside a critical section protected by the

lock, i.e., after� has acquired the lock and before� releases it.

Definition 3:

Node� is said toown the lock�� in mode�� if � � is the strongest mode being held by any

node in the sub-tree rooted in node� .

2.2.2 Local Queues, Intent Locks and Copysets

In our protocol for hierarchical locking, we employ a token-based approach. A novel

aspect of our protocol is the handling of requests. While Naimi’s protocol constructs a single,

distributed FIFO queue, our protocol combines multiple local queues for logging incompatible re-

quests. These local queues are logically equivalent to a single distributed FIFO, as will be seen

later.

Another novelty is our handling of intent locks for token-based protocols. To distinguish

different levels of lock granularities (hierarchical locks) and, at the same time, to optimize the

degree of concurrency, we support intent lock modes. For example, a node wishing to read an

attribute of an object will request an intent read (IR) lock on the object itself and, once acquired,
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it will request a read (R) lock on the attribute it wants to read without releasing IR. Note that the

resources being requested in the above requests are at different levels of granularities – the object

contains the attribute. Each of these resource requests can only be granted in accordance with lock

compatibility requirements.

Compatible requests can be served concurrently by the first receiver of the request with a

sufficient access mode. Concurrent locks are recorded, together with their access level, as so-called

copysetsof child nodes whose requests have been granted. This is a generalization of Li/Hudak’s

more restrictive copysets [27].

Definition 4:

The Copysetof a node is a set of nodes holding a common lock at the same time with any parent

node owning the lock in a mode stronger than the mode granted to its children.

2.2.3 Request Granting

The next rule governs the dispatching of the lock requests.

Rule 2:

A node sends a request for the lock in mode�� to its parent if and only if the node owns the lock

in mode�� where��
� �� (and�� may be

�
), or�� and�� are incompatible. In all other

cases, only the local copyset is updated and critical section is entered without sending any messages.

Furthermore, lock requests are granted under the following conditions.

Rule 3:

1. A non-token node holding�� in mode�� can grant a request for�� in mode�� if � �

and�� are compatible and�� � �� .

2. The token node owning�� in mode�� can grant a request for�� in mode�� if � � and

�� are compatible.

The operational specification for our protocol further requires that

in case 1: the requester becomes a child of the granter

in case 2: if modes are compatible and if��
� �� , the token is transferred to the requester.

Thus, the requester becomes the new token node and parent of the original token node. If

� � � �� , the requester receives a granted copy from the token node and becomes a child

of the token node. (See Rule 4 for the case when�� and�� are incompatible.)
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Table 2.2 depicts legal modes for granting another mode according to this rule, indicated by the

absence of an� . For the token node, compatibility represents a necessary and sufficient condition.

Hence, access is subject to Rule 1 in conjunction with Table 2.1.

Non-token Owned Requested Mode��
Mode�� IR R U IW W

No lock –
�

X X X X X
Intention Read – IR X X X X

Read – R X X X
Upgrade – U X X X

Intention Write – IW X X X
Write – W X X X X X

Table 2.2: Granting New Lock Requests by Children

In the following, we denote the tuple (�� �� � �� � ) corresponding to the owned, held

and pending mode for each node, respectively. Shaded nodes are holding a lock and constitute the

copyset, which indicates the degree of concurrency achieved at that state. A dotted, directed arc

from � to � indicates that the parent/child relation is only known to the source� but not yet to the

sink� . Solid arcs indicate mutual awareness. The token is depicted as a solid circle inside a node.

B(0,0,0)

A(IR,IR,0)

C(0,0,0) D(0,0,0)

{E,IR}

D(0,0,0)C(0,0,0)

A(IR,IR,0)

E(0,0,IR) E(IR,IR,0)

{B,R}

B(0,0,R)

B(R,R,0)

C(0,0,0) D(0,0,0)

E(IR,IR,0)

A(IR,IR,0)

(a) E Requests IR (b) B Requests R (c) Final state

Figure 2.2: Request Granting Example
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Example: Consider the initial state as shown in Figure 2.2(a). When� requires the lock in
�� , it

checks Rule 2 to decide if sending a request is necessary. As�� 
 � � �� 
 �� , it sends the

request to its parent, node� . � receives the request, checks Rule 3.2 and responds to the request

by sending a grant message.� becomes a child of� according to the operational specification. In

(b) when� requires the lock in� , it checks Rule 2 and sends the request to its parent, node� . �
receives the request, checks Rule 3.2 and grants the request by transferring the token to� (for � ,

� �
� �� ). � becomes the new token node and� becomes a child of� . (c) shows the final state

of the nodes.

2.2.4 Request Queuing/Forwarding

When a node issues a request that cannot be granted right away due to mode incompatibility, the

following rule applies.

Rule 4:

1. If a non-token node cannot grant a request, it will either forward the request to its parent or

queue the request locally based on the present state of a pending request of the node according

to Table 2.3.

2. If the token node cannot grant a request, it will queue the request locally regardless of the

state of its pending request.

Rule 4 is supplemented by the following operational specification: Locally queued re-

quests are considered for granting when the pending request comes through or a release message is

received. In Table 2.3, local queuing and forwarding are indicated asQ andF, respectively. The

aim here is to queue as many requests as possible to suppress message passing overhead without

compromising FIFO ordering.

Example: In Figure 2.3(a),
�

sends a request for
�� to its parent� (after checking Rule 2). When

� receives the request (as it cannot grant it due to Rule 3.1), it derives from Table 2.3 that it can

queue the request locally or not (according to Rule 4.1). As� does not have any pending requests,

� �

 �

, so� has to forward the request to its parent node� , as shown in (b).� receives the

requests and sends a grant as discussed above. In (c),� and
�

concurrently make requests sent to

their respective parents, nodes� and� . When� receives
�

’s request (as it cannot grant it due to

Rule 3.1), it derives from Table 2.3 that it can queue the
�

’s request locally since� has a pending

request (Rule 4.1). On the other hand, when� receives� ’s request (as it cannot grant it due to Rule
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Non-token Pending Requested Mode��
Mode� � IR R U IW W

No pending –
�

F F F F F
Intention Read – IR Q F F F F

Read – R F Q F F F
Upgrade – U F F Q Q Q

Intention Write – IW F F F Q F
Write – W Q Q Q Q Q

Table 2.3: Queue / Forward Decision

D(0,0,0)C(0,0,IR)

{C,IR}

(a) C Requests IR

C(0,0,IR) D(0,0,0)

{C,IR}

B(0,0,0) B(0,0,0)

A(IW,IW,0) A(IW,IW,0)

(b) B Forwards {C,IR}

A(IW,IW,0)

{B,R}

{D,R}

D Requests R

B(0,0,R)

D(0,0,R)

C(IR,IR,0)

(c) B Requests R,

A(IW,IW,0)

C(IR,IR,0)

(d) Final state

B(0,0,R)

{D,R}

{B,R}

D(0,0,R)

Figure 2.3: Request Queuing/Forwarding Example

3.2), it locally queues the request (Rule 4.2), as shown in (d). These queued requests are eventually

granted when� releases
��

, as specified by Rule 5 (see below).

Figure 2.4 and 2.5 depict the pseudo-codes for the above described rules for lock request

handling.RequestLock()represents the user API whereas other operations are handlers invoked in

response to message reception. (Ignore the details regarding frozen modes for now).

The predicategrantable(�� , �� ) indicates whether�� and�� satisfy Rule 3.1.to-

kenable (�� , �� ) indicates whether�� and�� satisfy Rule 3.2 and the token needs to be trans-

ferred. Similarly,compatible(��, ��) is the inverse ofconflicts(��, ��) that indicates whether
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the compatibility matrix of Table 2.1 shows a conflict between�� and�� . The pseudo-procedure

Checkrequestson queue() in Figure 2.5 handles locally queued requests as described in Rules 4

and 5.

2.2.5 Lock Release

The following rule governs the handling of lock releases. As an implementation detail,

remember that the parent nodes keep track of the owned mode of their immediate children. (The

request granter records the granted modes while granting requests and the requester becomes the

child of granter).

Rule 5:

1. When the token node releases a lock or receives release from one of its children, it considers

the locally queued requests for granting under constraints of Rule 3.

2. When a non-token node� releases a lock or receives a release in some mode�� , it will send

a release message to its parent only if the owned mode of� is changed (weakened) due to

this release.

The first part of this rule is similar to Naimi’s protocol in that queued requests are served

upon a release. If a token node has received release notifications from its children and if the token

node is no longer engaged in a critical section, it will send the token to the first requester in its local

queue. In addition, the local queue is piggybacked to ensure that other requests will be considered

by the token recipient and so on.

The second part of the above rule ensures that release messages are only sent if necessary,

i.e., when owned modes change. Upon receipt of a release message, the parent may safely assume

that neither the child nor its children (or grandchildren) are holding the lock in the released mode.

Nonetheless, the child may still own the lock in some weaker mode, which is included in the mes-

sage to allow the parent to update the log of owned modes for its children. Overall, this protocol

reduces the number of messages compared to a more eager variant with immediate notification upon

lock releases. In our approach, one message suffices, irrespective of the number of grandchildren.

Example: Consider Figure 2.6(a) as the initial configuration. Here,
�

is waiting for the
� �

request

to be granted, which is queued locally by� . Suppose� releases the lock in� . According to Rule

5.2, it will not notify its parent about the release as theownedmode of� is still � due to
�

(one

of its children) stillowning the lock in mode� . However, theheld mode of� is changed to
�

.
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����������	 
�� 
��

Self �� TokenNode
����

�� �� � �� �
compatible(

�� ���
)
� ��� �

FrozenModes
����

[Rule 2]
Acquire Lock
Copyset� Copyset +

��
����

[Rule 2]�� � ��
Send Request to Parent
Wait for grant����

��
compatible(

�� ���
)
� ��� �

FrozenModes
����

[Rule 3.2]
Acquire Lock
Copyset� Copyset +

��
����

[Rule 4.2]
Queue� Queue +

��
�� � ��
Update FrozenModes [Table 2.4]
Send Freeze to Children if required (a)
Wait for grant� �!��������� 
� � 

��
Self �� Tokennode

����
��

grantable

� � � ��  ����

[Rule 3.1, Table 2.2]
Children� Children + Requester
Copyset� Copyset +

��
Send Grant with FrozenModes to Requester���� ��

canbe queued

� � � ��  ����

[Rule 4.1, Table 2.3]
Queue� Queue +

��
����

[Rule 4.1, Table 2.3]
Send Request to Parent����

��
tokenable


� � ���  ����
[Rule 3.2, Table 2.1]��

Requester
�

Children
����

Children� Children - Requester
Parent� Requester
Send Token with Queue to Requester���� ��

grantable

� � ���  ����

[Rule 3.2, Table 2.2]
Children� Children + Requester
Copyset� Copyset +

��
Send Grant with FrozenModes to Requester����
[Rule 4.2]
Queue� Queue +

��
Update FrozenModes [Table 2.4]
Send Freeze to Children if required (")

#
Freeze is sent to the child only if the child is potential granter of the mode to be frozen and the mode is

not already frozen

Figure 2.4: Pseudocode for Requesting and Granting Locks
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���������	�� 

�� ��

= � � �� �� � �
granter �� parent

����
Send release of

��
to parent

Parent� NIL
Copyset� Copyset +

��
�� � �� ��� � �
Children� Children + Sender if required [Rule 2] (b)
Merge Queues (c)
Calculate FrozenModes from Queue
Checkrequestson queue [Rule 4]
Signal grant��������� �� 

�� ��

= � � �� �� � �
granter �� parent

����
Send release of

��
to parent

Parent� Sender [Rule 3.1]
Copyset� Copyset +

��
�� � �� �� � � �
FrozenModes� FrozenModes + ParentFrozen
Checkrequestson queue [Rule 4]
Signal grant����	 �������� �� ����� 

�� � �

= � � ��
= 	 �

Copyset =
 �� ����
�� � � ,

�� � �
Copyset� Copyset +� - 	
Signal grant����

Queue�� EMPTY�� � Queue.head��
tokenable


� � ���  ����
[Rule 3.2, Table 2.1]��

Requester
�

Children
����

Children� Children - Requester
Parent� Requester
Send Token with Queue to Requester���� ��

grantable

� � ���  ����

[Rule 3.2, Table 2.2]
Children� Children + Requester
Copyset� Copyset +

��
Send Grant with FrozenModes to Requester����
Update FrozenModes [Table 2.4]
exit loop

�
The sender of the token might still be owning some mode; If so, the sender is added to the children set

of the new token node. Otherwise not.�
The queue at the old token node is passed to the new token node along with the token. The new token

node itself may have a local queue, too. These queues are merged preserving FIFO ordering as discussed in
[29].

Figure 2.5: Pseudocode for Entering Critical Section on Grant/Token
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B(R,R,0)

D(R,R,0)C(0,0,IW)

B(R,0,0)

C(0,0,IW)

RELEASE

D(0,0,0)

{C,IW} {C,IW} {C,IW}

C(0,0,IW)

B(0,0,0)

D(0,0,0)

RELEASE

B(0,0,0)

D(0,0,0)C(IW,IW,0)

(c) A Releases R(b) D Releases R(a) B Releases R (d) Final state

A(R,0,0)A(R,R,0)A(R,R,0) A(0,0,0)

Figure 2.6: Lock Release Example

As shown in (b), when
�

releases� , it sends a release message to its parent (� here) because the

ownedmode of
�

is changed to
�

from � (which is weakened). When� receives this release, none

of � ’s children nowown a mode stronger than
�

. Hence, theownedmode of� is changed to
�

.

� sends the release to its parent (� here) due to Rule 5.2. In (c),� also releases� and, because it

is not aware of the change inownedmode of� , its ownedmode is still� . Only when the release

arrives at� does� know about the changed mode of� , which triggers a change in� ’s owned

mode from� to
�

. As shown in (d), this in turn triggers the transfer of token to
�

(according to

Rule 5.1).

����������� �	 

Copyset� Copyset -

� �
�� � �
Update FrozenModes [Table 2.4]��

Changed Mode of Self
����

[Rule 5]
Send Release to Parent

Checkrequeston queue [Rule 5]

� �!������ �� 
�� ��� 
[Rule 5]

Update Children for change in
� �

of Child
Update Copyset for change in

� �
of Child��

Changed Mode of Self
����

Send Release to Parent
Checkrequestson queue

Figure 2.7: Pseudocode for Lock Release Handling
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Figure 2.7 depicts the pseudo-code of the lock release handling.RequestUnlock()is a user API.

2.2.6 Fairness and Absence of Starvation

The objective of providing a high degree of concurrency conflicts with common concur-

rency guarantees. For example, the reader-writing problem for databases is subject to starvation if

new readers are accepted as long as at least one reader is active. Queued write requests, which are

incompatible, would never be served if readers arrived fast enough. Consider the queuing of our

protocol. Grants in response to a request may be unfair in the sense that the FIFO policy of serving

requests could be violated. In essence, a newly issued request compatible with an existing lock

mode could bypass already queued requests, which were deemed incompatible. Such a behavior is

not only undesirable, it may lead to starvation due to the described race.

A(0,0,0)

D(W,W,0)

(c) A,B,C Release R,IR,IR

C(0,0,0) E(0,0,0)

B(0,0,0)

D(0,0,0)

B(IR,0,0)

C(IR,IR,0) E(0,0,0)

A(R,R,0)

(a) D requests W

B(IR,0,0)

A(R,R,0)

D(0,0,W)

FREEZE(IR)

IR

IR,R,U

FREEZE(IR)

(b) A sends Freeze

IR

C(IR,IR,0) E(0,0,0)

{D,W}

Figure 2.8: Frozen Modes Example

Consider a request by
�

for mode
�

in the state of Figure 2.8(a). (Ignore freeze messages

and frozen modes for now).�� �� �
will reach� according to the rules described above, and�

will queue it according to Rule 4, as shown in (b). Once� and
�

release their locks for� and
� � ,

respectively, the token will be forwarded to
�

due to Rule 3, as depicted in Figure 2.8(c). While
�

waits for �� �� �
to advance,� may grant other

�� �� requests from other nodes according to
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Rule 3. As mentioned before, accepting
�� �� requests potentially violates the FIFO policy since

�� �� �
arrived first. After

�
is received, we should be waiting for release of

�� �� modes since

they are not compatible with
�

. This prevents� from granting the pending�� �� �
request. If,

however, subsequent
�� �� requests are granted, the

�
request may starve.

We ensure fairness in terms of FIFO queuing and, thereby, avoid starvation by freezing

certain protocol states upon reception of incompatible requests. For example, the token node� ,

after receiving
�

, will not grant any other requests compatible with the waiting request (
�

in this

case). Other modes (
�� �� and

	
in this case) are said to be frozen when certain requests (

�
in this

case) are received, depending on the mode owned by the token node (� in this case). The rationale

behind the freezing mechanism can be formalized by the following invariant:

Let � � � be the set of modes to be frozen at token node when the token node owning lock�� in

mode� �� receives a request for�� in mode�� . Then,
� � � � � � � �

�� ��	 	�
�� �� �� �� � 
 � 	�� �	�
�� �� �� �� � 
 � ��	� ���	� �� � ��� 
 (2.2)

Token Node owning Requested Mode��
Mode��� IR R U IW W
No lock –

�
Intention Read – IR IR, R, U, IW

Read – R R, U IR, R, U
Upgrade – U R IR, R

Intention Write – IW IW IW IR, IW
Write – W

Table 2.4: Rules for Freezing Lock Modes at the Token Node

Table 2.4 depicts an enumeration of frozen modes for all combinations of��� and�� .

For instance, if the token node is owning a lock in� and a
�

request is received and queued

locally (as depicted in Figure 2.8(b)) then
� � , � and

	
are the modes to be frozen at the token node

according to invariant 2.2.

In order to extend fairness beyond the token node, mode freezing is transitively extended

to the copyset where required by modes. This ensures that potential granters of any mode incom-

patible with the requested mode will no longer grant such requests. For instance, in Figure 2.8(b),

had� not notified its child� about the frozen modes,� would potentially grant any future requests

for
�� . This will further delay the grant of the waiting�� �� �

and also violate FIFO queuing as
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�� �� �
was received first. To avoid this version of FIFO violation, the token node notifies children

about the frozen modes by sending afreezemessage. The propagation offreezemessages can be

formalized by the following invariant:

Let � � � be the set of modes to be sent with the freeze message to a child owning�� in ��� .

Then,
� � � � � � � �

� � � � � � � � ��	 	�
�� �� �� �� � 
 (2.3)

These invariants are effected by the following rule which supplements Rules 2 and 3:

Rule 6:

A node may grant a request only if the requested mode is not frozen.

� �!�������� 
� �!�� ����� �	

FrozenModes� FrozenModes + Modes
Send Freeze to Children if required (")

Figure 2.9: Pseudocode for Freezing Mechanism

The pseudo-code of this freezing mechanism is augmented to almost all the other routines where

requests are granted (Routines in Figure 2.4, 2.5 and Figure 2.11). Figure 2.9 depicts the pseudo-

code for the freeze message handler. Through this freezing mechanism, ultimately, all children and

grandchildren will release their modes, and a release message will arrive at the token node for each

of its immediate children. Thus, the FIFO policy is preserved.

2.2.7 Upgrade Request

Upgrade locks facilitate the prevention of potential deadlocks by very simple means if the

resulting reduction in the concurrency level is acceptable [18]. Upgrade locks conflict with each

other (and lower strength modes), which ensures exclusive access rights for reading. This policy

supports data consistency between a read in update (U) mode and a consecutive upgrade request for

write (W) mode, which is commonly used when the written data depends on the prior read.This is

reflected in the following rule.

Rule 7: Upon an attempt to upgrade to W, the token owner atomically changes its mode from U to

W (without releasing the lock in U).

Example: As depicted in Figure 2.10(a),� owns
	

and requests an upgrade to
�

. Note the

pending mode of� reflecting this situation. As this request�� �� �
is waiting, freeze messages are
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sent to the children according to Rule 6. During this period,� does not release
	

(atomic upgrade)

but waits for a release message to arrive from� . Ultimately when
�

releases
�� , release messages

are triggered.� , according to Rule 5, changes itsownedmode from
	

to
�

and can now perform

writes on the same data. Figure 2.11 is the pseudo-code of theRequestUpgrade()user API.

B(IR,0,0)

IR

FREEZE(IR)

(a) A requests Upgrade

A(U,U,W)

IR,R

FREEZE(IR)

IR

C(IR,IR,0) E(0,0,0)

B(0,0,0)

C(0,0,0) E(0,0,0)

A(W,W,0)

(b) Upgrade complete

Figure 2.10: Request Upgrade Example

����������� !� 

[Rule 7]��

Copyset� � ����
Release U
Acquire W����
�� � �
Update FrozenModes [Table 2.4]
Send Freeze to Children if required (")
Wait for grant

Figure 2.11: Pseudocode for Request Upgrade



23

2.3 Summary

In summary, lock, unlock and upgrade operations provide the user API. The remaining

operations are triggered by the protocol in response to messages,i.e., for receiving request, grant,

token release, freeze and update messages. In each case, the protocol actions are directly derived

from corresponding rules and tables, as indicated in the algorithm. This greatly facilitates the imple-

mentation since it reduces a seemingly complex protocol to a small set of rules defined over lookup

tables in practice.

Rules 2, 3 and 4 (the only rules governing the granting of requests) coupled with Rule 1

ensure correct mutual exclusion by enforcing compatibility. Rules 4 and 5 together ensure that each

request is eventually served in the FIFO order, thus avoiding deadlocks and starvation.

The rules above are designed to solve a fundamental problem in distributed systems,viz.

lack of global knowledge. A node has no knowledge about the modes in which other nodes are

holding the lock. By virtue of our protocol, any parent nodeownsthe strongest of all the modes

held/ownedin the tree rooted at that node (inequality test in Rule 3). The token nodeowns the

strongest lock mode of all otherheld/ownedmodes. As stronger modes have lesser compatibility,

while granting a request at node� , it is safe to test the compatibility with theownedmode of� only

(meaning A does not have to check with any of its children or parents about their owned modes) ,

i.e., local knowledge is sufficient to ensure correctness.
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Chapter 3

The Prioritized Protocol

In this chapter, we describe the prioritized version of our protocol. First, we motivate

priority support for the hierarchical locking protocol described in the previous chapter along with

a brief description of prior work to support priorities for distributed synchronization. Next, we

describe the design of the prioritized protocol derived from our basic protocol. We also address

the problem of bounding the priority inversion duration by employing inheritance protocols such as

PCEP and PIP.

3.1 Motivation

In this section, we motivate priority support for our basic hierarchical locking protocol

described in the previous chapter. We also describe in brief, a prior approach by Mueller [30] to

support priorities of requests for distributed mutual exclusion and motivate supporting hierarchical

locking along with request priorities.

3.1.1 Prior Work

The protocol by Mueller [30] descibed here is an enhancement over the protocol by Naimi

et al. [32] descibed briefly in Sectio 2.1 for supporting priorities. In a prioritized environment,

requests should be ordered first by priority and then (within each priority level) FIFO. Assume that

a request by node� is issued at priority� �� 
. The basic idea for priority support is to accumulate



25

priority information on intermediate nodes during request forwarding. Thus, if the request by�
passes along a node

�
, the probable owner for requests with priority� � �� 
 is set to� . (Higher

priorities denote more important requests.)

Thenextlist approach of Naimi’s protocol is replaced by aqueueof locally stored requests

to avoid race conditions. Each request seen by a node is stored in this localqueueordered first by

decreasing priority, and then in FIFO order. When the token arrives at a requesting node, the requests

are gradually removed from thequeueof other nodes.

The example in Figure 3.1 depicts a sequence of token requests of A, B, C and D with

priority 1, 2, 1 and 3, respectively. The token resides in node� while the requests arrive. For the

T

B

C

D

A

T  Q: (A,1)

B

C

D

A

T  Q: (B,2),(A,1)
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B
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Request Request
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D

A

<= 2

<= 3

<= 1<= 1

> 1 > 1

Figure 3.1: Non-hierarchical Priority Support Example

sake of simplicity, we assume that the initial logical structure is a tree whose edges (directly or

indirectly) point to the token owner for all priorities (labeled as top� ). Each request results in new

forwarding information for certain priority levels depicted by labeled edges. For example, request

�� � �
 results in edges� � � labeled� �
, which indicates that future requests received by� with
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priority � �
are handled by� . Other edges include� � � �� �
, � � � �� �
 and� � � �� �
.

Any request is locally logged, then the probable owner is determined as the last node

whose request was seen with greater or equal priority. The probable owners are updated so that

edges with less or equal priority than the current request are replaced by the new request. If the

token is not present locally, the request is added to the local queue and a message is sent to the

probable owner. When a node� issues a request at priority� �� 
, this request propagates along the

chain of probable owners until it reaches a node
�

with a pending request at priority� � �� 
. It is

then locally queued at
�
. The basic idea is that node

�
has to be served before our request. Thus,

� ’s request may be stored locally until the token arrives. Once the token arrives,� ’s request should

be served after
�
’s if no other requests have arrived since then. This is also depicted in Figure 3.1,

where local queues are associated with nodes� and� . Node� stores
�

’s request at priority one

since� has an outstanding request at priority two that will be served first.

While this protocol supports priorities of requests with a simple and elegant solution, it

does not differentiate between lock access modes. Also, it does not study the problem in the context

of hierarchical locking scheme specified in [18]. Since hierarchical locking schemes constitute a

solution to the problem of scalability, this protocol may not be suitable for large distributed environ-

ments with focus on scalability. Our prioritized protocol described below borrows some of the basic

mechanisms from this simple protocol and extends our basic hierarchical locking protocol described

in the previous chapter to support request priorities.

3.1.2 Basic Protocol

Let us revisit Figure 2.8 of our basic protocol from the viewpoint of real-time applications.

Possibly, timing requirements of node� can be more stringent than those of node
�

. In that case,

requests issued by� should have higher priority than those issued by
�

. We should have granted

�� � � � �
, overruling the frozen modes, thereby giving preference to� over

�
. Enforcing FIFO

vmay result in unbounded priority inversion, and the QoS of the upper layer applications will be

compromised significantly. While the base protocol works best for non-realtime applications and

ensures FIFO policy, it does not handle priorities adequately.

Let � �� 
 and � �� 
 be the base and effective priorities of node N, respectively. Each

request made by node� has priority � �� 
, the effective priority of� , at the time of request.

Without the support for a priority inheritance scheme,� �� 
 and� �� 
 would not be distinguished.

The basic approach of supporting prioritized requests is to redesign the
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1. Freezing Mechanism:Overrule the frozen modes if the received request has higher priority

than the request waiting in queue.

2. Queue Reordering: Order the local queue of requests first according to their priority� �� 

and then according to FIFO.

3. Queue/Forward Policy: Change the local queuing policy to take into account the priority of

received request Vs. the priority of pending self-requests in the case of Rule 4.1.

We describe each of these improvements and their motivations in the following subsections.

3.2 Freezing Mechanism

As illustrated in Figure 2.8, the current implementation of the freezing mechanism poten-

tially results in unbounded priority inversion. Here, we examine the freezing mechanism outlined

in the previous chapter and provide the extensions to overcome the shortcomings.

In the base protocol freezing mechanism, sets�� � and� � � calculated by invariants

2.2 and 2.3 were unified with a set� ��� �	 � ���� recording the state for each of the six modes

mentioned in inequation 2.1 at each node. The only values each of the elements in� ��� �	 � ����
could take were� ����� and� �� � ����� . Rule 6 used this information and approved a

grant/token for requested mode�� if the set� ��� �	 � ���� had� �� � ����� as the state

value of the element corresponding to�� . This meant that any request, regardless of its priority,

could cause a set of elements of� ��� �	 � ���� to assume� ����� state if it were queued

at the token node. Any request for any of those modes in the future, regardless of their priority,

would be disapproved by Rule 6. This violates the strict priority policy according to which, higher

priority requests should never block for lower priority requests. The solution to the problem is quite

intuitive and elegant. Letthresholdbe the priority of the highest priority request causing the freeze

of some modes in� ��� �	 � ����. The elements of the� ��� �	 � ���� set can be made to record

the thresholdof the requests that caused the freeze. Table 3.1, the prioritized version of Table 2.4

outlines the improved mechanism.

Hence, Rule 6 can be replaced by its prioritized version as:

Rule 6� � �� :

A request for mode�� can only be granted if� ��� 
 � � ��� �	 � ���� ��� 
 �	�� ������.
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Token Node owning Requested Mode��
Mode��� IR R U IW W
No lock –

�
Intention Read – IR IR, R, U, IW

Read – R R, U IR, R, U
Upgrade – U R IR, R

Intention Write – IW IW IW IR, IW
Write – W� � � � � ��� �	 � ���� � � ��� �	 � ���� �� � 
 �	�� ������ 

� �� �

� ��� �	 � ���� �� � 
 �	�� ������ � � ��� 


Table 3.1: Rules for Freezing Lock Modes at the Token Node (Prioritized)

3.3 Reordering Queue

The following rule gives preference to higher priority requests when requests are queued locally.

Rule 8:

1. While queuing a request with priority� �� 
 locally, it is queued first according to the non-

increasing order of priority and then according to non-increasing order ofusage timesand

finally increasing order of theirreceipt times(described in [29, 30]).

2. While receiving the token and merging the local queue with the queue received from the

original token node, the queue is sorted according to the order described in Rule 8.1.

3.4 Queue/Forward Policy

The essence of the policy to queue requests locally is to enable path compression for

requests, thereby reducing the message overhead without violating FIFO. Consider the initial state

shown in Figure 3.2(a) and request�� �� �
from� followed by a request�� �� �

from D. According

to Rule 2, both will be forwarded to their respective parents. When A receives�� �� �
, it cannot

grant it due to Rule 3.2 and queues it locally according to Rule 4.2. While� is waiting, it receives

the request�� �� �
and cannot grant it according to Rule 3.1 but queues it according to Rule 4.1 and

Table 2.3. The rationale behind this table is as follows: Had�� �� �
been forwarded to� instead

of queuing locally at� , � would not be able to grant it and�� �� �
would never precede�� �� �

in
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the queue at� due to FIFO policy. This means that�� �� �
will always be granted before�� �� �

.

By queuing�� �� �
at � , we reduce the amount of request propagation messages and promote the

distribution of queued requests to multiple sites instead of a single large queue at the token node.

Ultimately, when�� �� �
is granted,� is guaranteed to be able to grant the locally queued�� �� �

due to Rule 3.1.

A(IW,IW,0)

{B,R}

{D,R}

D Requests R

B(0,0,R)

D(0,0,R)

C(IR,IR,0)

A(IW,IW,0)

C(IR,IR,0)

B(0,0,R)

{D,R}

{B,R}

D(0,0,R)

(a) B Requests R,

IW

(b) {D,R} Queued by B

Figure 3.2: Request Queuing/Forwarding Example (Prioritized)

Consider real-time applications with� �� 
 � � �� 
. According to Rule 8.1,�� �� �
will

precede�� �� �
in the queue at� . This means that queuing�� �� �

locally at� results in (poten-

tially unbounded) priority inversion. This leads us to extend the Table 2.3 as shown in Table 3.2,

bold faces indicating extensions. Essentially, to queue the request locally,� �� �	��	� � �����	
 �
� �� ����� �� � �����	
 should be met in conjunction to the conditional of Table 2.3.

3.5 Example

We describe an example here that illustrates the prioritized protocol and its policies we

just described. To simplify the details (without restricting the generality), assume that� �� 
 
 �
,

� �� 
 
 �
, � �� 
 
 �

, � �� 
 
 �
and � �� 
 
 �

, with larger values denoting higher priorities.

Assume an initial state of the system as shown in Figure 3.3(a).� is waiting for its request�� � � � �

to be served while� has queued�� � � � �
due to incompatibility.� ��� �	 � ���� at� reflect the
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Non-token Pending Requested Mode��
Mode� � IR R U IW W

No pending –
�

F F F F F
Intention Read – IR CQ F F F F

Read – R F CQ F F F
Upgrade – U F F CQ CQ CQ

Intention Write – IW F F F CQ F
Write – W CQ CQ CQ CQ CQ

Conditional Queuing CQ =
IF( � �� � 
 � � ��� 
) THEN ’Q’ ELSE ’F’

Table 3.2: Queue / Forward Decision (Prioritized)

modes� and
	

frozen at thresholds� �� 
 according to invariant 2.2 and Table 3.1.� has also

sent a freeze message with�� � �
 according to invariant 2.3. Next, consider a request�� � � � �

from
�

as shown in (b).
�

forwards the request to its parent� . � cannot grant it due to Rule 3.1

and also cannot queue it locally as the conditional of Table 3.2. Hence, Rule 4.1 is not satisfied

(� �� 
 � � �� 
) and �� � �� �
is forwarded to� . � cannot grant it due to incompatibility and

locally queues�� � �� �
ahead of�� � �� �

as per Rule 8.1. Queuing of�� � � � �
at� causes the

thresholds of� ��� �	 � ���� � and
	

to be boosted to� �� 
 as per Table 3.1. Notice that we

have to notify
�

about this boost of thresholds to prevent
�

from granting requests with priority

� �� �����	
 � � �� 
. As a result,
�

has the threshold of� boosted to� �� 
.
Next, consider a request�� �� �

from � as depicted in (c).� forwards it to its parent

� , � cannot queue it or grant it and forwards it to� . � can grant a copy to the requester as Rule

3.2, and Rule 6� � �� permits this action since� �� 
 � � ��� �	 � ���� �� 
 �	�� ������ holds at

� . Since� is the higher priority node, it receives a grant immediately and becomes a child of�
(Rule 3, operational specification 2). Notice that� needs to be sent the� ��� �	 � ���� that satisfy

invariant 2.3, which is�	 � � 
 in this case.

3.6 Bounding Priority Inversion

The examples we have presented so far are in the context of a single lock��. However,

in realistic applications we always need a set of locks� to protect the data structures at same or at

different levels of the hierarchy. This means that there is a logical tree formation for each of such
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(c) Final state

D(0,0,0) E(0,0,0)

C(R,R,0)

{B,IW}

(a) D Requests IW

A(R,R,0)

B(0,0,IW)

D(0,0,IW) E(0,0,0)

B(0,0,IW)

A(R,R,0)

{D,IW}

{D,IW}
C(R,R,0)

FREEZE
(R,4)

(b) E Requests R

B(0,0,IW)

D(0,0,IW)

C(R,R,0) E(R,R,0)
(R,4) (R,4)

{D,IW}{B,IW} {D,IW}{B,IW}

(R,2) (R,4)

A(R,R,0)

(R,2)(U,2) (R,4)(U,4) (R,4)(U,4)

Figure 3.3: Prioritized Protocol Example

� � � � . The policies we described in the previous section allowed us to bound priority inversion

local to one lock, such as��. But considering the scenarios in the global context with all such��,
still poses a potential for unbounded priority inversion.

Consider Figure 3.3(a) again. Queuing of�� � �� �
by � may result in unbounded pri-

ority inversion as� �� 
 � � �� 
 and� is waiting for� . A similar situation arises when� queues

�� � �� �
as depicted in Figure 3.3(b).

Obviously, � cannot grant any of these requests straight away due to the conflict be-

tween its owned mode� and the requested modes
��

. To see how the current policies will lead

to unbounded priority inversion in such situations, consider the logical tree for some other lock

�� as shown in Figure 3.4(a).
�

is waiting for �� �� �
to be granted, while

�
and� are own-

ing/holding
��

and�� �� �
is queued due to incompatibility. As a result,

�
has� ��� �	 � ����

��� � �
 �� � � �
 as per Invariant 2.2 and Table 3.1.� has been notified about��� � �
 as per Invari-

ant 2.3. Let us assume�� enters the state described in Figure 3.3(b) prior to�� entering the state

described in Figure 3.4(b). As shown Figure 3.4(b),� sends its request�� � � � �
to

�
and

�
queues

it locally as the Rule 6� � �� disapproves the grant (even though Rule 3.1 allows it). Additionally,

�� � �� �
is queued after�� �� �

due to Rule 8.1. Once
�

and� release their locks, the token will

be transferred to
�

(according to Rule 5) and�� � � � �
will still be queued at

�
due to incompatibil-

ity, as shown in Figure 3.4(c). Figure 3.5 presents the time line perspective of the scenario, wherein
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(c) Final state

E(0,0,0)

D(IW,IW,0)

C(0,0,W) E(0,0,0)

{C,W}

(IR,3)(IW,3)

(IW,3)

A(0,0,0)

(a) Initial State

B(IW,IW,0)

C(0,0,W)

A(0,0,IR)

{C,W}{A,IR}

{A,IR}

(b) A Requests IR

D(IW,IW,0)

(IR,3)(IW,3)

B(IW,IW,0)
(IW,3)

D(0,0,0)

E(0,0,0)

B(0,0,0)

C(W,W,0)

{A,IR}

A(0,0,IR)

Figure 3.4: Priority Inversion Example

upper segments correspond to activity on�� while lower segments sorrespond to activity on�� for

each node.

A

B
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D

E

R

R

WI

WI

RI

W

WI

WI

R

W

RELEASE

RELEASE

ACQUIRE

WAIT

WAIT

WAIT

WAIT

TIME
3.3(a) 3.3(b)

3.4(b) 3.4(c)

Figure 3.5: Time Line Representation of Priority Inversion Scenario

If we construct a wait-for graph of the local and global contexts as shown in Figure 3.6,
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� and
�

are waiting for� in the context of�� (as shown in Figure 3.6(a)) while� is waiting

for
�

in the context of�� (as shown in (b)). Hence, in a global context� and
�

wait for
�

transitively, as shown in (c). In general, an unlimited number of future requests from nodes��
such that� �� 
 � � �� � 
 � � �� 
 can be queued at

�
in the state of Figure 3.4(a). In summary,

�
can potentially be waiting for an unbounded number of lower priority requests causing unbounded

priority inversion as shown in Figure 3.6(d).

B B B

A

D A

C C

A

D D

A

C N1

(d) Worst Case(a) Context of Li (b) Context of Lj (c) Global Context

Figure 3.6: Wait-for Graphs

In the following section, we discuss various priority inheritance protocols as a solution to

the problem of unbounded priority inversion. We also describe the implementation of two of the

most prominent inheritance schemes,viz. PCEP and PIP, for our protocol.

3.7 Priority Inheritance

Two basic methods for bounding priority inversion can be incorporated into the priori-

tized protocol. First, early priority boosting can be discussed in the context of the priority ceiling

emulation protocol (PCEP). Second, the protocol can be enhanced for dynamic priority changes due

to resource contention to support the priority inheritance protocol (PIP). For both cases, changes to

the prioritized protocol are identified.
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3.7.1 Priority Ceiling Emulation Protocol(PCEP)

Priority ceiling protocols in general require that a priority value, theceiling
��, be asso-

ciated with a resource�� and the corresponding lock��. � � is defined as the priority of the highest

priority node contending for��. The original priority ceiling protocol (PCP) determines the ceiling

off-line for static priority scheduling [40]. The dynamic priority ceiling protocol (DPCP) deter-

mines the ceiling online at the time of resource contention for dynamic priority scheduling [10].

Both PCP and DPCP only grant a resource to a requester if its priority is greater than the ceilings of

all resources in use by other tasks. Should a requester block due to this rule, its priority is inherited

by the node that holds the requested resource. While both protocols avoid chained blocking (such

as induced by the transitivity property of PIP), they still require the following properties:

DPCP only: The state of all resources must be inspected to determine the maximum ceiling value

of held resources.

PCP and DPCP:A node’s priority may be changed during execution of a critical section.

The first property cannot be realized efficiently in the absence of shared memory. In a dis-

tributed system a number of messages have to be exchanged to collect information about global state

while any other activities potentially modifying this state have to be suspended. Thus, DPCP is not

suitable for distributed environments. The second property may result in multiple priority changes

while holding a resource. This property can be realized by extending the prioritized protocol for re-

issuing requests, which will be discussed in the context of the priority inheritance protocol. Thus,

PCP is suitable for distributed environments and can be realized by extensions of the prioritized

protocol.

A third variant, the priority ceiling emulation protocol (PCEP), offers an even easier solu-

tion. This protocol combines the general idea of the original PCP [40] with early priority boosting

to the ceiling level immediately upon granting resource requests as proposed in the stack resource

protocol [4]. It also requires that the ceilings be computed statically (as for PCP). When granting a

resource� �, PCEP boosts the priority of a requester node� to � �� �� �� 
 � �� 
. When releasing

a resource� � by node� , which still holds a subset�� of � resources, PCEP lowers the effective

priority of � to � �� �� �� 
 � � �� ��� 

. The protocol avoids chained blocking, avoids priority

changes while holding a resource, and may reduce the number of context switches for a task on

node� . On the other hand, it may experiencefalse blockingin situations where the previous pro-

tocols would not have blocked. The most important advantage of PCEP is its simplicity in terms
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of implementation. As a result, PCEP has been adopted by industry standards such as POSIX and

Ada95 [21].

PCEP can be used with minimal changes to the prioritized protocol presented so far. It

can be extended as (bold face extensions in Figure 3.7):

1. Boost the requester’s priority upon acquiring the resource inReceiveTokenor ReceiveGrant

as described before.

2. Lower its priority upon releasing the resource inRequestUnlockas described before.

���������	�� 

� � �� 
����  � �  � 
� 
����  �� �� �� 
� � � //All the other operations��������� �� 

� � �� 
����  � �  � 
� 
����  �� �� �� 
� � � //All the other operations����������� �	 

� � �� 
����  � �  � 
� 
����  ��	
�� 
� � � //All the other operations

Figure 3.7: Extensions for Ceiling Emulation

Implementing PCEP in the example of Figure 3.3(a) will boost� �� 
 
 �� 
 � �� 
 as

soon as� acquires� on ��. Consequently, the request�� � � � �
is never queued in Figure 3.4(b).

Instead, it is granted immediately due to Rule 3.1 and Rule 6� � �� and, hence, priority inversion is

bounded.

These modifications do not require any additional message overhead. The resulting proto-

col provides the most efficient solution to bounding priority inversion in the protocols for real-time

distributed concurrency control to our knowledge.

3.7.2 Priority Inheritance Protocol (PIP)

The PIP protocol requires that the priority of a node holding a resource be boosted to some

value upon detection of a contention for this resource [40]. The protocol also requires transitive

boosting when node� requests resource�� held by node� and node� has issued a request for
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resource�� held by node
�

. This situation is commonly known as chained blocking. In this

case,
�

will inherit � ’s priority (if � �� 
 � � �� 
) since node
�

causes node� to be blocked

indirectly through node� . Transitive priority changes may cause a chain of priority boosts along

the contention dependencies of resources.

Also, considering the global context of locks� , a node� may have its effective priority

boosted due to a contention for multiple locks in� that� is holding. Hence, when� releases one

of its locks, its effective priority should be the highest of the effective priorities due to all the locks it

is still holding. To calculate this new effective priority, we keep track of the highest boosted priority

for each of the locks and call it the effective priority of a lock� ����� 
. We describe the extensions

as follows (see bold-face extensions in Figure 3.8):

HandleRequest:If the request for�� is being queued at the token node (a contention is detected)

then

1. Send the freeze messages with frozen thresholds to its children. (This notifies the children

holding conflicting modes for this lock for boosting their priority as stated in Lemma 1.)

2. If the request conflicts with token node’s (self) held mode, boost self’s effective priority to

� ����� 
 = max(� ����� 
, � ��� 

 and boost the effective priority of this lock to� ����� 
 =

max(� ����� 
, � ��� 

. If self’s effective priority is changed, re-issue all the pending requests

for all the locks�� � � . (This boosts self’s effective priority in case of a conflict.)

HandleFreeze: If a child receives a freeze message from its parent and if the child isholding the

lock in any mode, a conflict between a child’s held mode and a recently queued requested mode

at the token node is detected. The child boosts its effective priority to� ����� 
 = max(� ����� 
,
max(FrozenModes.threshold)). If self’s effective priority is changed, the child reissues all the

pending requests for all the locks�� � � . The child also boosts the effective priority for this lock

to � ����� 
 = max(� ����� 
,max(FrozenModes.threshold)).

RequestUnlock: When a lock is released, self’s effective priority is lowered to� ����� 
 = max(�
(self), max(� �� � � � � � IF(Held(� �)) THEN � �� � 
 ELSE NIL))). Once the lock is released, the

effective priority for this lock is lowered to the lowest priority� � �, i.e., � ����� 
 
 � � � .

HandleReissuedRequst:If a reissued request is received that is already present in our local queue,

the queued request’s effective priority is updated to the reissued request’s effective priority. This

may require reordering of the queue according to Rule 8.1. Also, if we are not the token node and

the reissued request has higher priority than our pending request, we can no longer queue the request
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� �!��������� 
� � 
IF Self �� Tokennode THEN

IF grantable(
��

,
��

)
� ���� ��� �� ����

[Rule 3.1]
� � �

ELIF queuable(
� �

,
��

) THEN [Rule 4.1,
� � ��� ��]

� � �
ELSE [Rule 4.1]

� � �
ELSE

IF tokenable

� � ��� 

THEN [Rule 3.2]
� � �

ELIF grantable

� � ��� 

THEN [Rule 3.2]
� � �

ELSE [Rule 4.2]
Queue� Queue +

��
	� ���
 ���� 
� � �� �  ����

� 
����  � �  � 
� 
����  � � 
� � 
� 
�� �	  � �  � 
� 
�� �	  � � 
� � 
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locally (Table 3.2). Hence, the request is dequeued and forwarded to the parent. Also, updating the

priority of the queued request may cause the frozen thresholds to be boosted and sent to the children

according to Table 3.1 and Invariant 2.3.

Notice that while sending freeze messages to children with necessary thresholds (as given

by Table 3.1 and Invariants 2.2 and 2.3), we assume that whenever there is a potential conflict

between the request being queued and the held mode of the children, a freeze message will always

be sent to those children. Lemma 1 explicitly states this requirement:

Lemma 1 If a child owns lock�� in mode��� and a request for mode�� is received by the

token node owning�� in � �� such that the modes are in conflict, then a freeze message will be

sent to the child.

Proof:

conflicts(��� , �� ) � conflicts(��� , �� ) [as ���
� � �� ].

Let � � � be a set of all modes to be frozen at the token node according to Invariant 2.2,
� �� �

� � � �

��	� ���	� �� � ��� 
 � �� ��	 	�
�� �� �� �� � 
 � 	�� �	�
�� �� �� �� � 
 (3.1)

Let� � � be a set of all modes that will be sent to the child according to Invariant 2.3,
��� � � � � �

� ��	 	�
�� �� �� �� � 
 � ��	� ���	� �� � ��� 
 � �� ��	 	�
�� �� �� �� � 
 � 	�� �	�
�� �� �� �� � 


(3.2)

If the� � � calculated in constraint 3.2 is non-empty, the token node will send a freeze to the child.

By substituting��

 � �� in constraint 3.2, the constraint is satisfied as

� ��� �

� ��	 	�
�� �� �� �� �� 
 [U and W mode owners cannot be children], conflicts(��� , �� ) is true

and grantable(��� , � �� ) is always true for a child of a token node.

� � � � is non-empty.
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� a freeze message will be sent to the child.
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Chapter 4

Experiments

Our experimental results not only serve the purpose of empirical evaluation and analysis,

but they also demonstrate the feasibility and applicability of the protocol for different application

areas. The performance and applicability of our protocol are elaborated in the respective contexts

in the discussion below. The experimental setup and the protocol parameters are designed to match

a unique set of applications in each case.

4.1 Environment Setup

In each of the following experiments, nodes in the system execute an instance of an ap-

plication (multi-airlines reservation) on top of the protocol. The data representing ticket prices are

stored in a distributed table and shared among all the nodes. In case of our protocol, each entry of

the data is associated with a lock. In addition, the entire table is associated with another lock (higher

level of granularity). Each application instance (each node) will request the locks iteratively. The

critical section time, the non-critical code time and the network latency experienced by messages (if

applicable) are randomized with different mean values, depending on the type of experiment. The

modes of lock requests are randomized so that the IR, R, U, IW and W requests are 80%, 10%, 4%,

5% and 1% of the total requests, respectively. This request distribution should reflect the typical

frequency of request types for such applications in practice where read requests to a hierarchical

database dominate writes. In addition, we subsequently show that changing the request distribution
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does not affect the asymptotic behavior of the protocol. To observe the scalability behavior, the

number of nodes participating in the system is increased from 3 to 120 in the unprioritized case,

and from 8 to 48 in the prioritized case, and the aforementioned experiment is repeated for each

configuration.

4.2 Unprioritized Experiments

Our unprioritized experiments are designed to assess the capabilities of the protocol in

multiple respects. First, we evaluate the performance of our protocol relative to the protocol by

Naimi et al. [32], which has the best known average case message complexity of� ���� 	 
.1 Second,

we analyze the effect of protocol overhead on response times,i.e., we detail the properties leading

to closed formulas for bounding the response time of requests. The objective of this analysis is to

determine the parameters that affect response time. Third, we investigate the message overhead in

detail by message types to provide an understanding of the dynamics of the protocol and reason

about the sources of overhead.

4.2.1 Comparison

The first set of experiments focuses on the comparison of our hierarchical protocol with

its non-hierarchical counterpart [32]. Experiments are conducted on Red Hat 7.3 Linux machines

with 16 AMD Athlon XP 1800+ processors connected by a full-duplex FastEther TCP/IP switched

LAN allowing disjoint point-to-point communications. Once the number of simulated nodes ex-

ceeds the number of physically available nodes, multiple processes share a physical node, where a

process represents a virtual node. (The second set of experiments on the IBM SP will remove this re-

striction.) The critical section time, the non-critical code time and the network latency experienced

by messages are randomized with mean values of 15 msec, 150 msec and 150 msec, respectively.

Randomization occurs with a uniform distribution within a range of�
�� ���� for these metrics.

Our protocol requests locks at both table and entry levels. In contrast, Naimi’s protocol

only acquires the lock at the entry level as it cannot distinguish different locking granularities. To

access the entire table, our protocol will acquire a single lock associated with the table in the mode
�
We could not find other protocols for distributed mutual exclusion with hierarchical locking models that follow a

peer-to-peer paradigm, and a comparison with centralized protocols did not seem fair due to the inefficiency of client-
server approaches when scalability is to be assessed.
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requested. We compare this overhead to two variants of Naimi’s protocol at the application level.

The first variant performs thesame workin terms of functionality but requires a larger number of

lock requests to do so. The second variant is Naimi’spure protocol with fewer number of lock

requests, which, on a functional level, is not equivalent since it provides access to fewer entries.

(Instead of sharing a table, only a single entry is shared here.) The second variant serves as the

reference for comparison. For example, when the entire table is accessed, our protocol utilizes a

single non-intention lock on the table while Naimi’ssame workversion acquires a lock on each

individual table entry. Naimi’spureversion, in contrast, acquires a single lock. When an individual

entry of the table is accessed, our protocol has to acquire an intention lock on the table and the

non-intention lock on the specific entry while both variants of Naimi acquire only a single lock.

Figure 4.1(a) assesses the scalability in terms of the average number of messages being

sent for each lock request.
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Figure 4.1: Comparison with Naimi’s Protocol

We make several interesting observations. First, the message overhead of our protocol

is lower than that of Naimi’s variants. The lower overhead compared withsame workis not sur-

prising since more locks are acquired in a sequential fashion leading to long next queues. If we

compare with thepure version, our protocol performs slightly more lock operations but incurs a

lower message overhead. This demonstrates the strengths of our approach: Not only do we provide

additional functionality for hierarchical locking, we also do so with approximately 20% fewer mes-

sages. Hence, protocol overhead for mode distinction is offset by savings due to local queuing and,
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most significantly, by allowing children to grant requests in their subtrees.

The second observation regards the asymptotic behavior of our protocol. After an initial

increase, our protocol results in roughly 3.25 messages per request, even if more and more nodes

are issuing requests. The depicted logarithmic behavior makes the protocol highly suitable for

large networked environments. In contrast, Naimi’ssame workis superlinear in terms of message

complexity,i.e., when providing the same functionality. The multi-granular nature of our protocol

combined with the message saving optimizations are the prime causes of this difference, which

represents a major contribution of our work.

Figure 4.1(b) compares the request latency behavior,i.e., the time elapsed between issuing

a request and entering the critical section in response to a grant message. As stated above, in this

family of applications, the network latency experienced by the messages might be higher than the

network latency on our LAN testbed. We overcome this limitation by resorting to network latency

simulation. In case of our protocol, the latency is averaged over all types of requests (viz. IR, R, U,

IW and W). The average request latency for the same functionality increases superlinearly in case

of Naimi’s protocol compared to the linear behavior of our protocol. To avoid deadlocks, Naimi’s

protocol has to acquire locks in a predefined order, which adds a significant amount of overhead

resulting in this behavior. The linearly increasing behavior of our protocol is the result of increasing

interference with other nodes’ requests as number of nodes increases. Hence, a request has to wait

for a linearly increasing number of interfering critical sections. (A more detailed analysis of these

trends will be discussed later.) Naimi’spure protocol has identical asymptotic behavior for the

same reason. Our protocol has a better constant factor than that of Naimi’s base protocol for a

single lock. This is due to savings in lock requests granted by children as well as lock acquisitions

that are resolved locally without sending messages when modes are changed in the presence of a

prior owned mode (as described in Rule 2), which is compatible.

Let us return to the issue of linear response time behavior of our protocol. As the message

overhead behavior is logarithmic and as each message being exchanged contributes to the response

time for the request, one would expect the response time behavior to be logarithmic as well. How-

ever, while the message overhead behavior can be used to study the behavior of the protocol, it may

not represent the request latency accurately. This is due to the fact that the request latency time

has two components: the network delay experienced by each of the messages sent, and the queuing

delay incurred due to the request being locally queued at other nodes. While the former can be ac-

curately estimated by the message overhead, the latter is not included in the message overhead. This

means that response time behavior can be identical (in ideal case) or worse than message overhead
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behavior. It is therefore crucial to study the second component of the response time. The following

experiments focus on assessing this behavior.

4.2.2 Effects of Concurrency Level

A second set of experiments focuses on the effect of concurrency levels on the response

time behavior, and at the same time, assesses scalability in high-performance clusters. Experiments

are conducted on an IBM SP with 180 nodes, each of them comprised of a 4-way SMP with 375

MHz Power3-II CPUs connectedvia a Colony SPSwitch, an IBM proprietary low-latency intercon-

nect utilized through user-level MPI. Results are obtained for nodes in single-CPU configuration

to eliminate noise from application mixes sharing nodes. This limited us to experiments of up to

120 nodes due to administrative constraints. (In the presence of node sharing, we observed large

perturbations of our results due to increased network latencies and memory contention.)

In the context of our protocol, theconcurrency levelrefers to the number of simultane-

ously active requests in the entire system. Quantitatively, the concurrency level can be defined as

� �	 � �� 
 
 � �

� � �	��� � � ��	��	 � �� �
� �	� � �	��� � � ��� � �� � (4.1)

where� is the number of nodes in the system. Below, we describe experiments under different

concurrency levels to study its impact on response time behavior.

Variable Concurrency Level

In these experiments, we kept the critical section time constant at a mean value of 15 msec

(safe from OS timer granularity limitations) and varied the length of non-critical code. Results are

reported for ratios of one, five, ten and 25 for non-critical code time relative to the critical section

time. Both metrics are randomized around these mean values to trigger different request orders and

tree configurations in consecutive phases. Randomization occurs with a uniform distribution within

a range of�
�� ���� for both the metrics. These experiments are designed to assess the protocol’s

properties for clusters with native network latencies,i.e., we did not resort to simulation of network

latency as in the previous experiments.

Figure 4.2(a) depicts the average number of messages incurred by requests for different

constant ratios as the number of nodes in the system is increased.

We observe an asymptotic overhead of 3.5, 5, 6.5 and approximately 9 messages for

ratios one, five, ten and 25, respectively. These results show that message overhead varies between
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Figure 4.2: Varying Non-Critical/Critical Ratios

architectures due to interconnect properties when compared with ratio ten results of 3.25 messages

for the Linux cluster (critical section time 15 msec, non-critical code time 150 msec). Higher

ratios result in lower concurrency level and longer propagation paths, which explains the increased

message overhead. Most significantly, the message overhead shows a logarithmic behavior with

a low asymptote, which confirms our claim for high scalability in the case of high-performance

clusters.

Figure 4.2(b) depicts the average request latency in msec for different ratios as the number

of nodes are varied for each ratio.

One purpose in this experiment is to demonstrate the effect of the varying ratio of non-

critical code time and critical section time, even though some critical sections cannot be parallelized

and are subsequently subject to Amdahl’s Law. Barring the initial curve, response time is clearly

linear as we increase the number of nodes for each ratio. Though lower ratios (higher concurrency)

result in much longer response times than that of higher ratios (lower concurrency), the asymptotic

behavior is linear for all ratios. While the ratios (concurrency levels) are highly dependent on the

type of applications, this result illustrates that, regardless of the application and concurrency level,

the response time will be linear. It is also important to understand that, though the ratio is kept

constant as we increase the number of nodes, the concurrency level changes due to the factor� in

Equation 4.1.

Another interesting observation is that the curves are initially superlinear with any given
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ratio. Each curve becomes linear after some point. Specifically, the number of nodes at which the

curves become linear is smaller for lower ratios (higher concurrency). To understand this behavior

and to answer the questions raised so far about the linear response time behavior, we model the

system as follows:

As the number of nodes in the system increases, the average number of simultaneous

requests also increases. This causes more conflicts between incompatible request types, thereby

increasing the queuing delay. However, the tree height increases logarithmically, and so does the

propagation path of requests making the message overhead logarithmic. Hence, with an increase in

the number of nodes, an increased queuing delay is added while message overhead increases log-

arithmically. Ultimately, the response time increases superlinearly and, consequently, the queuing

delay should increase superlinearly as well.

Without restricting generality, consider a point in time during the execution of the proto-

col. The probability of a request of mode� being active at such a point of time is� �� �� 
, where

� is the number of nodes in the system, and� �� 
 is the probability of an� request given by the

request distribution discussed before. This is due to the fact that request types are randomized, and

each node has an independent randomized stream. Hence, the probability of each of the modes of

the requests increases linearly with the number of nodes in the system. Let� �� 
 be the function

representing the number of conflicts present in the system at this point in time. By the compatibility

matrix of Table 2.1, we infer:
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The probabilities of each request type,i.e., � �� � 
, � �� 
, � �	 
, � �� � 
 and� �� 
 depend

on the application. For our experiments, these probabilities are 0.80, 0.10, 0.04, 0.05 and 0.01,

respectively, as stated before. Hence, the probabilities are constant while
� �	 � �� 
 � � . By

simplifying � �� 
, we derive
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� �� 
 
 � �� � � � �� � � � �� � � � �� � � ��� �
(4.2)

where
� � are constant factors. Equation 4.2 indicates that� �� 
 � � �� � 
. The queue

length at nodes will follow the� �� 
 trend adding a superlinear trend to the logarithmic message

overhead. However, the maximum queue length at any node is still limited by� , the number of

nodes, in the worst case. This means that, at values of� satisfying � �� 
 � ��, we see the

superlinear behavior, but after that it becomes linear, as� �� 
 is bounded by� and� is linearly

increasing. This is evident in the results above. Another important point is that the asymptotic

behavior of the response time is independent of the request distribution, as seen by the simplification

given by Equation 4.2.

Constant Concurrency Level

The previous section explained the linear behavior (in the asymptotic case) of the response

time dependent on the concurrency level
� �	 � �� 
. Hence, if

� �	 � �� 
 were kept constant,� �� 

would be constant as well and the response time behavior would scale logarithmically. To verify

this hypothesis, we designed our experiments to keep
� �	 � �� 
 constant. We modeled this effect

by increasing the non-critical code time from� �� to � � � � ��� as we increase the number of

nodes from� , to � � � . This allows us to maintain the concurrency at a predefined constant

level. Conceptually, the number of active requests at any point of time is constant regardless of the

number of nodes in the system.2

Figure 4.3(b) shows the response time behavior obtained for two different constant con-

currency levels, both of which result in linear latency factors.

This behavior can be explained by considering the message overhead behavior shown in

Figure 4.3(a). By maintaining the constant concurrency level, the logarithmic behavior of message

overhead ceases to persist. This behavior is due to the fact that, even though the conflicts between

requests are kept constant, the potential number of granters of the requests in the tree (copyset) also

remains constant regardless of the number of nodes in the tree. As a result, longer propagation paths

are traversed before requests reach the root and a grant message is sent. With linearly increasing

numbers of nodes, this overhead is observed resulting in (close to) linear message overhead. This

can be verified by the breakdown of the message overheads shown in Figure 4.4(a).
�
We realize that this is not a realistic scenario. However, the purpose of the experiment is to help us assess the response

time behavior.
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Figure 4.3: Constant Concurrency Level

While all other types of messages demonstrate logarithmic behavior, the request prop-

agation message increases linearly with an increase in the number of nodes. Since the message

overhead is one of the factors affecting response time, the response time behavior is also linear in

spite of constant queue length. In conclusion, the analysis of the response time allows us to predict

the worst-case response time for the requests and provides bounds that can be exploited to provide

QoS guarantees.

4.2.3 Message Overhead Breakups

Figures 4.4(b), 4.4(c), 4.4(d), 4.4(e) and 4.4(f) depict the change in message overhead

for the message types request, grant, transfer token, release and freeze, respectively. In each case,

changes are shown for varying number of nodes and different ratios. Explanations about each of

these figures illustrate the behavior of the protocol and its properties.

Request messages increase with the number of nodes and with higher ratios, as seen in

Figure 4.4(b). These increases are primarily due to longer propagation paths of requests. For a

larger number of nodes, propagation paths increase due to initial request forwarding. With higher

ratios, this effect becomes even more significant since propagation path length increases with longer

non-critical code fragments. This is the single largest contributor to message overhead (up to seven

messages).

A similar trend is shown for token grant messages in Figure 4.4(c). With more contention,
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more concurrent requests can be resolved by allowing children within a copyset to grant requests.

The overall contribution is below one message.

The token transfers in Figure 4.4(d) increase at high ratios when concurrency is low,i.e.,

during low contention, the token node is unlikely to be able to grant a copy. Hence, requests are

likely to be resolved by transferring the token. Similarly, contention increases with the number of

nodes, which increases the possibilities of copy grants, thereby lowering the transfer of tokens. The

total contribution of token transfers remains relatively low (below one message on the average).

Release messages in Figure 4.4(e) show the inverse behavior of token transfers. At low

contention (high ratios and few nodes), few release messages are generated since the copy set re-

mains small. This number increases with the number of nodes and even more dramatically with

lower ratios. Its total contribution is still below one message on the average.

Freeze messages in Figure 4.4(f) occur predominantly for low ratios implying high con-

tention. The trend is less pronounced for increases in the number of nodes. In general, the share of

freeze messages is insignificant (below 0.3 messages). This demonstrates that the price of avoiding

starvation is small compared to the overall functionality of the protocol.

Overall, we demonstrated the scalability of our hierarchical locking protocol through its

logarithmic message overhead. We observed low latencies in the order of single-digit milliseconds

to resolve requests with (realistically) high ratios. This makes our protocol highly suitable for its

usage in conjunction with transactions,e.g., in large server farms as well as in large-scale clusters

that require redundant computing.

4.3 Prioritized Experiments

Here, we experiment with the prioritized version of the protocol. First, we evaluate the

performance of our protocol relative to the unprioritized protocol described in chapter 2, which

is the best known scalable protocol for distributed concurrency services with hierarchical locking

support. Second, we analyze the effect of supporting PCEP and PIP on the response times relative to

the protocol version without any priority inheritance support. We also demonstrate clear separation

in response times among distinct priority levels in all three cases. We further show that the message

overhead introduced due to reissued requests in PIP is negligible. Third, we investigate the queuing

mechanism in detail and quantify and compare the degree of preference given to the higher priority

requests in the cases of no inheritance, PCEP and PIP.
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As with the previous comparison experiments, all the prioritized experiments are con-

ducted on Red Hat 7.3 Linux machines with 16 AMD Athlon XP 1800+ processors connected by

a full-duplex FastEther TCP/IP switched LAN allowing disjoint point-to-point communications.

Each node is assigned one of the 8 available priority levels equally divided amongst the number of

nodes. The priority of a request without support for inheritance is the base priority of the requesting

node while, in case of inheritance versions PCEP and PIP, priority of the request made by a node is

determined by its effective priority at that instant.

4.3.1 Comparison

In this subsection, we compare the message overhead scalability and response time be-

havior of the unprioritized protocol with the prioritized protocol as well as PCEP and PIP versions

of the prioritized protocol. In case of the unprioritized version we compute the response averaged

over all requests while in all other cases, we consider the response time averaged for the higher

priority requests. The objective is to demonstrate the scalability in terms of message overhead as

well as in terms of response time as experience by the higher priority requests.
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Figure 4.5: Comparison with Unprioritized Protocol

Figure 4.5(a) compares the message overheads of our protocols. Note the logarithmic

increase in the message overhead (number of messages exchanged for each request) as we increase

the number of nodes in the system stabilizing at around 5 messages for 48 nodes. Notably, the
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additional support for priorities comes without any penalties in terms of message overhead. Also,

the additional messages for reissued requests in case of PIP is negligible. This confirms our claim

for the scalability in terms of message overhead.

Figure 4.5(b) shows the comparison of response times. There are several interesting trends

to be studied here. First, as expected, the response time for the unprioritized version is always higher

(by about an order of magnitude) than that for the higher priority requests in all of the prioritized

versions.

Second, till 32 nodes, the prioritized version without inheritance support suffers from

severe inversion problems and has higher response times compared to the one with support for

PIP/PCEP. However, for more than 32 nodes in case of PCEP, the problem of false blocking becomes

more severe and response times grow faster. As all the nodes may access any of the shared resource,

the ceilings of all the resources are at the highest priority in the system (i.e., 7). And following the

hierarchical locking protocol, the effective priority of each node is boosted to the highest priority

on acquiring the outer lock on the table, regardless of the future possibilities of a potential conflict.

Hence, as requests from all nodes contend for the inner locks on the individual tuples, they have the

same priority level,i.e., the boosted highest priority. The lost differentiation amongst priority levels

inflicts higher response times for higher priority requests.

Third, PCEP minimizes the priority inversion and performs better than PIP till about 32

nodes for the same reason. Beyond 32 nodes, the problem of false blocking becomes more severe

and the inversion problem dominates the results.

4.3.2 Effects of Inheritance Protocols

In this subsection, we take a closer look at the response time behavior for individual

priority levels in the prioritized version of the protocol (with and without the support for inheritance

protocols). For all three cases, our experiments show that lower priority requests have response

times several magnitudes higher than that for higher priority requests, and they grow much faster.

On the other side, higher priority requests have almost better than linear response times growing

predictably and slowly as the number of nodes increase.

Figure 4.6(a) shows the response times for each priority level in case of the prioritized

version without inheritance support. Here, there are some occurrences of anomalies as the response

times are quite similar for some of the higher priority requests and they do cross each other. This is

caused by unbounded priority inversion that disregards the priority distinction.
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Figure 4.6: Pure Prioritized and PCEP

Figure 4.6(b) shows the response times for each priority level in case of the prioritized

version with PCEP support. Till 32 nodes, the individual levels are evenly separated and have quite

predictable behavior. This is due to the tight bound achieved by PCEP on the priority inversion. But

for more than 32 nodes, the problem of false blocking inflicts higher and faster growing response

times for each priority level as explained before. However, we still observe a degree of separation

among individual levels as the bound on inversion is still in effect.

Figure 4.7(a) shows the response times for each priority level in case of the prioritized

version with PIP support. Here, the response times for higher priority requests only increase in-

significantly (are almost constant) as we increase the number of nodes. Also, we do not see any

anomalies (intersecting curves) as inversion is bounded under PIP without false blocking. However,

as compared to PCEP, the separation among the levels is less pronounced. This can be expected

as PCEP offers bounded priority inversion while PIP does not. Since, PIP avoids false blocking, it

scales well with large numbers of nodes.

We draw several conclusions from the results above. First, the prioritized versions of

the protocol certainly offer response times several orders of magnitude lower for higher priority

requests. Second, PCEP and PIP support can control the priority inversion problem and make the

protocol more predictable. Third, PCEP has limited scalability when applied to hierarchical locking
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Figure 4.7: PIP and Queuing

schemes due to the problem of false blocking introduced due to uniform resource ceilings.

4.3.3 Queuing Preference Degree

In this subsection, we study the queuing behavior for the prioritized version of the proto-

col and comment on the suitability of prioritized protocols with respect to the concurrency levels.

Quantitatively, the concurrency level is defined in Section 4.1��	 � �� 
 defines the number of con-

current requests across the system at any time instant. As we increase the number of nodes in

the system, the degree of concurrency increases, and so does the potential for conflicts among the

requests. Let the degree of queuing preference denote the average number of nodes in the queue

bypassed by a higher priority request while getting queued. The queue is ordered according to Rule

8. The motivation for this experiment is as follows:

The prioritized scheme proposed here tries to give preference to higher priority requests

by queuing them in the order of their priorities and freezing a set of modes at a threshold as described

in Section 3. However, freezing of modes and queuing occur only if the requests conflict. In case

of low concurrency and fewer conflicts, a higher priority request and a lower priority request are

not differentiated and receive identical treatment from the protocol. However, it should be obvious

that in a system with a large number of nodes, concurrency is likely to be higher. Conversely,
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if the protocol is employed in a system with sparse requests and low concurrency, differentiation

of priority is not necessary,i.e., all the requests will have ideal response times regardless of their

priorities. This property of the protocol favors higher priority requests as the concurrency in the

system increases, as seen by the increasing preference in Figure 4.7(b).

4.4 Summary

Summarizing our experiments, First, the basic protocol with the support for hierarchical

locking, demonstrates very high scalability as compared to oen of the best prior protocols. protocols.

This gains represent the technical strength of our approach of hierarchical locking in the context of

distributed synchronization. Second, the scalability of the protocol is shown to be resilient to the

concurrency level of the system, maintaining logarithmic behavior of message overhead. Third, we

showed that neither the priority support nor the support for PCEP and PIP affect the scalability of

the protocol. Finally, we compared and contrasted the properties of PCEP and PIP.
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Chapter 5

Related Work

A number of algorithms exist to solve the problem of mutual exclusion in a distributed

environment. Chang [8] and Johnson [22] give an overview and compare the performance of such

algorithms. Goscinski [16] proposed a prioritized algorithm based on broadcast requests using a

token-passing approach. Chang [7] developed extensions to various algorithms for priority handling

that use broadcast messages [48, 42] or fixed logical structures with token passing [37].

Our protocol differs from Chang’s extensions of [48] and [37] by not requiring broadcasts

at all and lower average message complexity, respectively, as detailed below. Chang, Singhal and

Liu [9] use a dynamic tree similar to Naimiet al. [31, 32]. In fact, the only difference between

the algorithms seems to be that the root of the tree is piggybacked in the former approach while the

latter (and older one) does not use piggybacking. Due to the similarity, we simply refer to the older

algorithm in this thesis. Other mutual exclusion algorithms (without token passing) employ global

logical clocks and timestamps [24]. These algorithms can be readily extended to transmit priorities

together with timestamps. However, all of the above algorithms, except Raymond’s and Naimi’s,

have an average message complexity larger than� ���� 	 
 for a request. Finally, Raymond’s al-

gorithm uses a fixed logical structure while we use a dynamic one, which results in dynamic path

compression. Furthermore, Raymond needs an average of� ���� 	 
 messages to send the token to

a requester, where our algorithm only requires one message. The modified version of Raymond’s

algorithm by Fuet al. [14] is, in its essence, similar to our local queues but with just one entry. The

above algorithms use synchronous message passing with the exception of Raymond’s algorithm.

In contrast, our algorithm operates asynchronously. It has even been adapted to allow multiple re-
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quests per node to provide more concurrency within a multi-threaded environment [29]. None of

the above algorithms have been studied with regard to their applicability to concurrency services,

neither have they considered hierarchical locking models to achieve optimal concurrency to the best

of our knowledge.

Hierarchical locks and protocols for concurrency services have been studied in the context

of database system [17, 26, 25, 23, 3]. Most concurrency services rely on a centralized approach

with a coordinator to arbitrate resource requests or a combination of middle-tier and sink servers

[38, 5]. These approaches do not dynamically adapt to resource requests while our protocol does.

Our work is unique in this sense. Efforts on predictable ORB behavior have mostly focused on

priority support for CORBA’s interaction with message passing and thread-level concurrency [33]

applicable to real-time database systems [43, 46]. In contrast, we make priority support and scal-

ability a first-class property of protocols that implement CORBA-like services, such as hierarchi-

cal locking defined through the concurrency services. Our support to bound priority inversion is

compatible with POSIX/CORBA synchronization operations but goes beyond these standards in its

unprecedented support for hierarchical locks.

Another related prior work is our own algorithm on prioritized non-hierarchical locking

and its support for PCEP and PIP [30]. This prior work focused on distributed mutual exclusion

support equivalent to binary semaphores with a detailed operational base protocol and priority in-

heritance extensions. Our new approach not only supports the more sophisticated paradigm of

hierarchical locking, it also shows how rules and tables significantly simplify the protocol while

ensuring real-time properties.

The application area of our protocol lies in distributed real-time systems. A number of

approaches have been proposed to schedule real-time tasks on multi-processors and in distributed

systems. An optimal algorithm for non-preemptive scheduling with precedence constraints and ex-

clusion relations is quite powerful [49] based on segments (critical sections) combined with off-line

schedules to ensure mutual exclusive execution of these segments. Our approach differs through its

support for preemption and arbitrary ordering between critical sections, which results in a more flex-

ible schedule. Other approaches assume that tasks with shared resources be scheduled on the same

processor. Rajkumaret al. describe a method to schedule tasks statically assigned to processors

in a shared-memory system with proxy (remote) execution of critical sections for remote resources

[34]. Remote resources allocation schemes in multiprocessors under real-time scheduling often

utilize heuristic methods since the general problem of distributed scheduling is NP-complete [36].

Heuristic algorithms have also been proposed for distributed systems to select nodes for tasks when
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they become ready and consider the local availability of shared resources [35]. Another approach

assumes that tasks are independent but subtasks may be scheduled on different processors while

the communication between subtasks can be modeled as a task as well [47]. Our approach starts

with assumptions similar to Rajkumaret al. in that it requires static or dynamic priority preemp-

tive scheduling and strict priority scheduling applicable but not limited to rate-monotonic priority

assignments [28]. Our model differs in that the location of resources or task interdependencies is

arbitrary. We focus on a protocol to acquire hierarchically organized resources in a distributed envi-

ronment, bound the message overhead and provide support to prevent priority inversion so that this

protocol can be used in arbitrary distributed scheduling methods for real-time systems.
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Chapter 6

Conclusions

We presented a novel peer-to-peer protocol for multi-mode hierarchical locking, which

is applicable to transaction-style processing, real-time, distributed and middleware services. We

demonstrate high scalability combined with lower response times in high-performance cluster envi-

ronments. We also address the problem of priority inversion by supporting two of the most promi-

nent inheritance protocols: PCEP and PIP. A first set of experiments shows that our protocol over-

head is lower than that of a competitive non-hierarchical locking protocol. These benefits are due to

several enhancements leading to fewer messages while assuring a higher degree of concurrency. A

second set of experiments on an IBM SP shows that the number of messages approaches an asymp-

tote at 15 nodes for ratios up to 10, from which point on the message overhead is in the order of 3-6

messages per request. Higher ratios of 25,i.e., longer non-critical code fragments for constant size

critical sections, result in higher message overheads approaching an interpolated asymptote around

9 messages at a node sizes up to 120. At the same time, response times increase linearly at high

ratios and nearly linearly at lower ratios with a proportional increase in requests and, consequently,

higher concurrency levels. In practice, non-critical code fragments are substantially larger than crit-

ical sections,i.e., higher ratios are the rule. For higher ratios, our approach yields particularly low

response time,e.g., for a ratio of 25, response times below 10 msec are observed for critical sections

in the range of up to 120 nodes. Our results include detailed assessments of the overhead of the

protocol by message type, by concurrency level and ratios of non-critical and critical code sections.

Our prioritized experiments on up to 48 computing nodes indicate that adding support

for priorities does not affect the scalability of our protocol. It also shows that the higher priority
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requests have predictable response times. Support of PCEP bounds priority inversion but introduces

the problem of false blocking. While the PIP solution does not suffer from false blocking, it allows

slightly greater amount of priority inversion to happen.

Overall, the high degree of scalability and responsiveness of our protocol is due in large

to a high level of concurrency upon resolving requests combined with dynamic path compression

for request propagation paths. Besides its technical strengths, our approach is intriguing due to its

simplicity and its wide applicability, ranging from large-scale clusters to server-style computing.

Thus, the results of our work impact real-time applications sharing resources across large

distributed environments ranging from hierarchical locking in real-time databases and database

transactions to distributed object environments in large-scale embedded systems.
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Appendix A

Glossary of Terms

Base priority: A static priority assigned to each node

Basic protocol: Our hierarchical locking protocol without priority support

Compatible modes:Modes that do not conflict with each other according to Table 2.1

Concurrency level: Number of concurrent requests in the system at a time instant

Copy grant: Granting of lock access without transferring the token

Copy set: Set of all nodes holding a common lock simultaneously at a time instant

Effective priority: Current priority of the node; possibly higher than its base priority in case of

priority inheritance

Held mode: Mode in which the critical section is enetered

Hierarchical locking: Locks are associated to hierarchies of data structures a.k.a. multi-granularity

locking

Message overhead:Average number of messages sent in the system per lock request

Mode strength: Degree of incompatibility with other modes in Table 2.1

Naimi’s same work experiments:Experiments with Naimi’s protocol where entire data structure

is shared with fine grain locks association
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Naimi’s pure experiments: Experiments with Naimi’s protocol where single data item is shared

as in coarse grain locks association

Non-hierarchical protocol: Naimi’s token-based distributed mutual exclusion protocol

Owned mode:Strongest held mode in the subtree of the node

Pending mode:Mode for which the request is made and grant is awaited

Prioritized protocol: Our hierarchical locking protocol with priority support

Queuing preference:Average number of nodes bypassed by a higher priority request while being

queued

Ratio: Ratio of non critical code time to critical code time

Request latency:Response time for lock request

Token grant: Granting of lock access and transferring token to the requester

Token node: Root node of the tree having token

Unprioritized protocol: Our hierarchical locking protocol without priority support
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