
ABSTRACT

BALASUBRAMANIAN, NISHANTH. ScalaMemAnalysis: A Compositional Approach to Cache Analysis
of Compressed Memory Traces. (Under the direction of Dr. Frank Mueller.)

Cache simulators use lengthy traces files and maintain/update a complete cache state per trace.

Analyzing these trace files can be a time-consuming and cumbersome process.

In previous work, a tool (ScalaMemTrace) was developed that uses binary instrumentation to gener-

ate memory traces and to compress these traces. We exploit these compressed traces to accelerate cache

analysis in ScalaMemAnalysis (SMA) for a uni-processor system. Instead of a complete simulation, we

utilize a context-based reuse distance, which tracks the number of arrays that can fit within the cache.

This context information is kept at each loop level for cache analysis across all loop and changes with

the composition of additional context information at each loop nesting.

Experimentation results will indicate ScalaMemAnalysis significantly speeds up execution time, and

the accuracy of our methods closely matches a trace-driven simulator,yet ScalaMemAnalysis provides

in-depth loop level analysis information.
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Chapter 1

Introduction

Applications generally have millions of accesses to data in memory. Part of this data is stored in a cache

so as to provide fast access to memory references that take advantage of spatial and temporal locality.

However, this may not always be the case. Cache performance makes a huge impact on the runtime of

an application. Thus, taking advantage of the cache by trying to keep data frequently by the application

in cache would be the ideal situation. Identifying these data structures may be a difficult task for a user.

One approach would be to use memory traces and a cache simulator to determine the cache performance.

Cache simulators generally use full length traces, which contain information such as addresses ac-

cessed and the type of access, and maintain a complete cache state, which is updated per memory access

to obtain data on the hits and misses within the cache. Such trace files usually span Gigabytes of data

and the data obtained from the cache simulator can only predict the current performance of the cache for

the individual memory accesses. Analyzing these huge trace files along with the cache simulator data

can be a time-consuming and cumbersome process.

In previous work, a tool (ScalaMemTrace) was developed which uses binary instrumentation [19] to

generate memory traces and to compress these traces to near constant size by identifying and grouping

similar memory access patterns into single entities.

There has been some previous work on cache analysis [18] where compressed traces have been used.

But their approach does not consider the problem of identifying data structures causing cache misses.

Our work allows the user to identify arrays that miss often within the cache and provides cache statistics

at loop level granularity to better understand the reason behind the cache performance of an application.

There are some compression techniques which have reduced I/O when passed to a trace-driven sim-

ulator [17, 16]. However, the processing of theses traces before simulation does not provide a significant

speedup in execution time.

Our analysis is along the lines of CM equations [10] where the number of misses is calculated

through analysis rather than simulation. However, we are not bound by associativity or perfect loop

nests.
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1.1 Hypothesis

We hypothesize that with cache analysis of compressed traces, we can significantly reduce the cost of

determining cache behavior time while achieving close resemblance in accuracy of predicated cache

behavior compared to conventional trace-based cache simulation.

1.2 Contributions

ScalaMemAnalysis (SMA) focuses on using the compressed traces to predict the performance of the

cache for a uni-processor system by analysis instead of simulation. The memory accesses within a loop

have regular strides and each group of these accesses can be considered as an array as show in Figure 1.1.

Our cache analysis algorithm is based on the concept of reuse distance [8], a metric to denote the

number of distinct memory accesses between two identical memory accesses. We use a context-based

reuse distance and create a context to keep track of the number of arrays that can fit within the cache.

This context information is kept per loop and is used to predict the cache performance. Each loop is

analyzed at every loop nesting level to determine the cache performance per loop level and performance

changes with the composition of additional context information at each loop nesting. This information

also provides an insight to the user as to which arrays/loops at which level degrade the performance of

the cache.

There has been previous work on compressing traces and simulating cache performance [15, 17, 16],

but this is the first framework to support compositional analysis to determine cache performance, to the

best of our knowledge.

Our experimental results indicate that the accuracy of our method close to our reference trace-driven

simulator and results in a near constant execution time which is a significant speedup over Dinero IV

and allows unprecedented scalability of cache simulations/analysis.

This work is one step in the context of predicting application performance across architectures with

different levels of parallelism. With one uni-processor analysis model, a multi-threaded model can be

constructed next, where the cache behavior of each thread is analyzed. Such analysis for a small number

of threads can then be extended to a large number of threads, such as available on graphics processing

units (GPUs), by extrapolation of compressed traces. This analysis coupled with a latency simulator will

be designed to predict speedups of an application on GPUs before performing the GPU port. This would

provide significant benefits to the programmer since porting to and then optimizing for GPUs is a time

consuming task. Estimations for speedups prior to porting would allow programmers to decide early if

such a port if worth the effort.
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Figure 1.1: Regularly Strided Memory Access compressed to PRSD
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Chapter 2

ScalaMemTrace

ScalaMemTrace [4] is a novel technique for collecting memory traces in a scalable manner. It performs

a scalable trace compression on-the-fly. The tool generates near-constant size compressed trace files that

preserve the temporal order of accesses.

2.1 Overview

A RSD (Regular section descriptor) [11] describes the memory being accessed. It contains information

such as the address accessed. address stride and access type(read/write). A PRSD (Power RSD) contains

information about the loop enclosing the RSDs. It contains information such as the loop count and the

number of RSDs present in the loop and address pattern meta-data (strides). An example PRSD and

RSD can found in Section A.

The memory trace compression scheme is based on the PRSD abstraction [20] which preserves the

order of memory references and generalizes memory access patterns across threads. An example of a

PRSD generation is shown in Figure 1.1.

A binary instrumentation tool, Pin [19], is used to extract memory accesses (loads and stores) from

an application and the output is fed to a compressor module, which recognizes repetitive behavior of

memory access patterns on-the-fly and produces a compressed trace file.

Each new entry is added to the list of memory traces. Each memory access has a unique signature

attached to it, which is computed by using a stack-walk. The unique signature generation is a necessary

step since a single instruction can perform multiple memory operations. The stackwalk generates a series

of program counter values, which are XORed to produce a unique signature for each memory trace. This

is the criteria for recognizing memory access patterns and compressing them. The compressed memory

trace contains RSDs and PRSDs, which represent memory accesses and loop nests, respectively.

An example of the compression process is depicted in Figure 2.1.The memory references op1, op2

and op3 are added to a list and matching patterns are found dynamically. The newly added node becomes
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Figure 2.1: ScalaMemTrace compression

the right tail. A matching node is searched for and marked as left tail. The right tail and left tail are

traversed in reverse to find a matching sequence. On finding a matching sequence, the right portion is

merged with the left portion and the RSD count is incremented. This process repeats for subsequent

sequences of op1, op2 and op3 until the pattern disappears.

2.2 Redesign

The objective of ScalaMemTrace was to generate an accurate compression with respect to the count

of the number of memory references and their access pattern. Thus, when the compressed trace file

was replayed using the replay tool, it generated the same number of references as the original trace

file. In certain cases however, the right addresses were not generated since the main criteria used for

compression was to ensure matching of signatures. Data structures with different strides at different

loop levels, in case of a nested loop, was not accounted for.

ScalaMemTrace has been redesigned by expanding the data structures to support multi-level stride

information. The criteria for a pattern match now includes matching stride data between traces. Thus,

only traces with a match in sign and stride will be added to expand a PRSD. When the stride changes,

a new PRSD is created. The compression then occurs between these levels of PRSDs to create a nested

PRSD.

Figure 2.2 show the compression of a nested loop. The first four accesses to an 2D array is com-

pressed to a PRSD with loop length 4 and RSD with stride 0x4. The next four accesses to the array are

compressed into a separate PRSD with length 4 and RSD with stride 0x4. Since these two loops have
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matching PRSD lengths and RSD strides, they can be compressed to a nested PRSD with a second level

stride of 0x64 as shown in the figure. The new stride is calculated as the difference between the two start

addresses of the two RSDs before the nested PRSD compression.

Figure 2.2: Nested loop compression by ScalaMemTrace
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Chapter 3

ScalaMemAnalysis Design

Let us discuss the idea of cache performance analysis instead of simulation. It includes a description

of the context-based reuse distance along with algorithms to facilitate cache analysis. A more thorough

description will be given in Section 4.

Figure 3.1 shows a high-level overview of the blocks involved in the process. An application is first

executed inside a binary instrumentation tool, which captures all memory references, i.e., all loads and

stores to memory. The instrumentation is modified to also perform a stack walk for each memory ref-

erence to provide a unique signature per memory reference. The output of the tool is in a format that

contains information such as the address, type and signature of each memory reference . This infor-

mation is piped into the ScalaMemTrace tool, which compresses the memory references by identifying

patterns based on signature and calculated stride information to generate RSDs and PRSDs. The gen-

erated compressed trace is processed by our cache analyzer along with the specified cache parameters.

This allows us to perform a detailed analysis of the how the different data structures preform at different

loop levels in terms of their cache behavior.

3.1 Assumptions and Definitions

Three types of misses which are commonly distinguished in a uni-processor cache. They are compulsory,

capacity and conflict misses [23]. Compulsory misses are those misses caused by the first reference to a

location in memory. Capacity misses are those misses that occur regardless of associativity or block size,

solely due to the finite size of the cache. Conflict misses are those misses which occur due to mapping

of multiple cache lines to the same cache set and could have been avoided with a higher associativity or

better mapping.

In our analysis, we reference capacity and conflict misses. Compulsory misses are not recognized

since all compulsory misses can be considered as a capacity misses if the cache is assumed to be filled

with data completely different from any of the data being analyzed. Recognizing compulsory misses
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Figure 3.1: Data Flow of Cache Simulator

with our analysis would require an additional overhead in data structures and computation which is

undesirable.

Our analysis accepts in three cache configuration parameters, namely the cache size, the block size

and the cache associativity.

When we discuss ”arrays” present in the cache, arrays represent a strided RSD within a loop. The

loop length multiplied by the stride gives the total number of bytes within the array. The reference to a

way in cache refers to an entire column of blocks in the cache i.e. set 0 to set n where n = (total blocks /

associativity).

The context information can be defined as follows:

Context = {a,b,c..,x : SC ≤CC} (3.1)

where

a,b.. = arrays present in the cache context

SC = aggregate size of all array blocks in the cache context

CC = cache capacity

The cache replacement policy used by SMA is the Least Recently Used (LRU) policy. This can be

changed by adapting the data used to populate/update the context information. We do not consider cache

8



allocation policies as it is not necessary for our analysis since we do not maintain a complete cache state,

such as trace-driven simulator would.

3.2 PRSD Tree Structure

The compressed trace file contains PRSDs, which are transformed into a tree as shown in Figure 3.2.

The blocks marked PRSD are the loop heads indicating the accesses below denote a loop. They contain

information such as the number of memory accesses in the loop and the loop length. The blocks marked

RSD are the actual memory accesses. They contain information such as the address accessed and (for

a loop) stride information depending on the nesting level. Each RSD member also has containers to

hold cache performance data per loop nest level. Figure 3.2 contains one outer loop, three inner loops

with each of the inner loop having two RSDs each. The RSDs will contain strides to indicate the actual

memory location referenced between successive iterations.

Figure 3.2: PRSD Tree Structure

3.3 Context-Based Reuse Distance

As described before, each memory access under a loop has stride information, which indicates the

memory address and its stride between successive iterations. Thus, the total memory accessed within a

loop can be calculated in closed form and reflects the accesses to the entire array. With this information,

we maintain a context per loop head, which indicates the number of arrays that are present in the cache

within the loop and if all the accesses fit within the cache.
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Each loop head has a left and right context. The left context contains the first set of arrays in the loop

bounded by the cache capacity. The right context contains the last set of accesses in the loop bounded

by the cache capacity. The right context is ordered from Least Recently Used (LRU) to Most Recently

Used (MRU) which is done in order to emulate a Least Recently Used Replacement policy of the cache.

This can be modified if required to emulate other replacement policies.

Figure 3.3: Example for Population of Left and Right Context

Figure 3.3 shows an example of how the left context and right contexts are populated with the

addition of each loop to the root node. The first loop has four array accesses (a,b,c,d), which are added

to the left and right context of the loop. The context information is copied onto the root node since there

is no data to compose. When the second loop is added, the left context of the loop is set to the first set of

accesses while the right context text is set to the last set of accesses in decreasing order as shown. When

this data is composed with the root’s context information, the left and right contexts of the root exhibit

the same properties after composition.

3.4 Algorithms for Context Composition

Each PRSD is read sequentially from the compressed trace file and processed when it is read. The tree is

initialized with a root node, which is created as a placeholder (Root in Figure 3.2). It can be considered

as a loop head with one iteration.

If the PRSD is a loop head, a new node is created in the tree, and the following data is added as

children to this node. The end of the loop is derived from the information present in the loop head.

If the PRSD scanned is a memory access, a child node is added to the current loop head, which

contains information such as start address and stride per loop level.

The addition of a new node to the tree is shown in Algorithm 1. If the node added is a memory
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access, the array is compared with the right context to check if the array has already been accessed, i.e.,

if it is present in the right context. If so, the element is moved up in the list to the MRU position (lines

6-8). If the array has not been accessed previously and is not in the context information, the array is

added to the right context if there is no conflicting array and there is enough remaining cache capacity

(lines 12-15). If either of the conditions do not hold, the context is modified to make space for the new

array and is added to the context (lines 17-18). Classifiers are assigned to the arrays to indicate cache

performance at the current loop level.

Algorithm 1 AddNewNode (nodeIn f o)
1: Input: A PRSD read from the compressed trace file

2: if (nodeIn f o is a loop head) then
3: Add node as child to current loop head
4: Move pointer to new loop head
5: else . nodeIn f o is a memory access
6: for (i = rightContextCount to 0) do
7: if (nodeIn f o == rc→ node[i]) then
8: Reorder right context to move node to MRU
9: break

10: end if
11: end for
12: if (nodeIn f o not found in right context) then
13: if (Enough space left in cache) then
14: Add node to right context at MRU
15: Add node to left context
16: else
17: Remove LRU/conflicting array from right context
18: Add node to right context at MRU
19: end if
20: end if
21: end if
22: if (All addresses have been added to loop) then
23: call EndOfLoopComp(currLoopHead,parentLoopHead)
24: end if

This can be defined as follows:

SC + |X | ≤CC→Context =Context ∪{X} (3.2)

SC + |X |>CC→Context = 〈Context−{L}〉∪{X} (3.3)
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Figure 3.4: Internal Composition Between Left and Right Context

where

X = New array

|X | = Size of array

L = LRU array in context

When all children have been added to the current loop, the loop composition occurs. Before the

actual composition, initial pre-processing occurs where the right and left contexts of the current loop

are composed to adjust for the effects of conflicting arrays as show in Figure 3.4. This is an essential

step to recognize if there are any conflicting arrays in the right context which can affect the arrays in

the left context. This composition is done with the same procedure Algorithm 1. In the example, array c

conflicts with a as per LRU scheme. When the internal composition occurs, it can be seen that array b,

too, conflicts, indicating that all 3 arrays have conflict misses.

At the loop composition stage, the current loop has been evaluated as an individual loop and its

cache performance is predicted. The right and left context of this loop have been populated to indicate

the arrays accessed that are still present in cache.

Now the loop will be evaluated in the context of the next higher loop, i.e., the parent loop (if any), to

predict how the parent loop’s memory accesses will affect the cache. Thus, the idea here is to compose
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the right context of the parent, which contains the latest accesses seen in the parent loop with the left

context of the current loop, which contains the first accesses seen by the loop in order to predict how

the current loop affects the cache data in the context of its parent loop. This composition is described in

Algorithm 2.

If the parent loop context data has not been initialized, it indicates that the first access under the

parent loop is the current loop. Thus, the context data from the current loop are passed onto the parent

loop since the parent loop has no context data for composition to occur (lines 3-5).

If the parent loop already has context information, each element of the current loop’s left context

is compared to the parent loop’s right context to check if the array has been accessed previously. If the

array has any conflicting data in the right context occupying the same cache sets, this array is removed

from the right context of the parent loop to make space for the new array in the current loop and the

new array is appended to the right context at the end (lines 7-9). If the array did have a previous access,

the array is moved to up the right context to maintain ordering (lines 11-12). In both cases, the cache

performance counters at the current loop level are suitably adjusted to reflect the new changes. A match

in the context indicates the array is already present in cache and the counters for the array will have hits

assigned to them. If the array is not present, misses are assigned equal to the number of blocks being

accessed in that loop.

A sample composition is shown in Figure 3.5. The first array (array b) of the inner loop is found in

the outer loop context and is marked as a hit. Then the outer loop is reordered to move array b to the

MRU location. The next array (array e) is not found in the context. This it is marked as a miss and will

be added to the outer loop context.

Figure 3.5: Composition between Outer Loop and Inner Loop Context
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At the end of the composition, the parent loop’s left context parses more arrays if there is space left

in the context (lines 17-18). The right context of the parent and the current loop are composed to ensure

that the parent loop retains any older arrays in addition to the new arrays from the current loop within

the space constraint by the cache capacity to reflect the latest state of the cache (line 20). This is used

for subsequent loops or array accesses.

Algorithm 2 EndOfLoopComp(currLoopHead,parentLoopHead)
1: Input: Current loop head being processed and its parent

2: Recompose the left context and right context of the current loop
3: if (parentLoopHead left/right context uninitialized) then
4: parentLoopHead→ LC = currLoopHead→ LC
5: parentLoopHead→ RC = currLoopHead→ RC
6: else . Compose CurrentLoopHead→ LC and parentLoopHead→ RC
7: for (i = 0 to currLoopHead→ LCCount) do
8: for ( j = parentLoopHead→ RCCount to 0) do
9: Find the conflicting array (if any) and remove it.

10: end for
11: if (Match found) then
12: Reorder parentLoopHead→ RC to move array to MRU
13: else . Match not found
14: Add the new element to parentLoopHead→ RC
15: end if
16: end for
17: if (parentLoopHead→ le f tContext has enough space) then
18: Add any new elements to parentLoopHead→ LC
19: end if
20: Recompose parentLoopHead→ RC and currLoopHead→ RC
21: end if

This procedure is recursively invoked at the end of every loop at each level, thus producing cache

performance results for all deeper nested loops in the context of the higher loop levels. Thus, at the root

node, the data assimilated will provide a cumulative picture of cache performance, which can also be

broken down by each loop level.
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Chapter 4

ScalaMemAnalysis Implementation

This section describes the techniques used to implement the algorithms described in the previous section.

4.1 Assumptions

One of our main assumptions is that SMA only considers arrays that are entirely (not partially) present

in the cache. But sometimes, only part of an array may be present in cache. In this case, the array is

assumed to be not present in the cache. The time and code complexity would increase prohibitively to

process and maintain partial arrays in our analysis.

4.2 Array Classifiers

Each array in the context has a category [22] or classifier assigned to it. These classifiers describe the

behavior of that array with respect to the current loop being analyzed. These classifiers are modified

as we move up the nesting levels and as long as the array remains in context. The contribution to the

total misses of the loop under which the array is accessed is based on the classifier it has been assigned

during analysis. A list of classifiers and its description are as follows:

• ALWAYS HIT: The array is present in cache resulting in all hits for the current loop.

• FIRST MISS: The array only misses on the first blocks being brought into the cache. The misses

do not multiply for outer loops.

• CAP MISS: The capacity misses multiply as the array accesses are repeated by outer loos.

• FIRST HIT: The array only hits on the first blocks and the rest of the accesses are conflict misses.

• CONF MISS: The conflict misses multiply as the array accesses are repeated by outer loops.
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• ALWAYS MISS: All elements accessed in the array are misses.

Each classifier helps to describe the array behavior, which is helpful during loop composition be-

tween inner and outer loop. ALWAYS HIT provides an indication that the array has been brought into

the cache previously and will remain in cache. FIRST MISS usually indicates a cold misses when the

array is brought into the cache for the first time. Also, this indicates there is enough space in the cache

for the array to remain in cache. CAP MISS and CONF MISS occurs when the array cannot remain

in cache due to exceeding cache capacity or excessive number of ways in cache, respectively. These

misses multiply when traversing up the loop nest. FIRST HIT occurs when an array is present in cache,

but for a certain loop the array has pure conflict misses with another array within the same loop. Thus,

only each first access of each block of the array result in hit. ALWAYS MISS is assigned to arrays with

pure conflict misses. There can be certain other cases, such as an outer loop array is constantly being

removed by an inner loop array. This case is covered in section 4.7.

4.3 Pure Conflicts

There are two possible cases of conflicts that can arise between two arrays. The first case is a pure

conflict, where the arrays being examined map to the exact same blocks in the cache. The next case is a

partial conflict, where only parts of the array overlap. This is discussed in the next subsection.

To detect pure conflicts, i.e. when two arrays completely overlap with each other and constantly

replace each other with every iteration, we scan through the right context to match the incoming array

for a pure conflict with the arrays present in the context information. When a pure conflict is detected,

it indicates that the way in cache is used by the array in the context information. In the next step, the

cache associativity is checked to see if there is another way available for the incoming array to occupy.

If so, we proceed scanning the context for anymore conflicts and handle them in the same manner.

In case no more ways are left, the current array scanned in the context is removed in order to create

space for the new array. This array is removed from the context and the new array is placed at the

beginning of the context (at the MRU location). The context is always scanned from MRU to LRU in

order to detect the LRU array that is conflicting and thus needs to be removed from the context. Since

these two arrays are constantly conflicting with each other, they are both considered an ALWAYS MISS.

This is defined as:

Wused +Wneeded ≤CA→Context =Context ∪{X} (4.1)

Wused +Wneeded >CA→Context = 〈Context−{A}〉∪{X} (4.2)

X ← ALWAY S MISS ; A← ALWAY S MISS (4.3)

where
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X = New array

A = Old array

Wused = Number of ways used in cache

Wneeded = Number of ways required by X

CA = Cache associativity

Figure 4.1: Pure Conflict Case

Now, it is possible for an array to occupy more than one way, i.e., more than one way of associativity

in the cache. But what should be understood here is when there is memory access under a loop it is

interleaved with other memory accesses within the same loop. Thus each access inside a loop references

only one block of the cache in one loop iteration. If all first blocks of each memory access can fit into

the available cahce blocks, then there will no be pure conflict misses even if each array requires more

than one column. However, at the end of the loop, only part of each array is left in the cache. If this is

the case, then the array is removed from the context as per our assumptions.

4.4 Partial Conflicts

The next case considers partial conflicts, i.e., two arrays overlap partially and overlap in the cache when

there is not enough space in terms of cache capacity or the number of ways to hold both arrays.

The four possible cases of overlap are show in the Figure 4.2. The first task is to detect the overlap

between two arrays. This is achieved by calculating the difference between the starting cache set of
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Figure 4.2: Four Partial Conflict Cases

the incoming array and the starting cache set of the array present in cache. A similar calculation is

performed for the end sets of the two arrays. Then, based on the sign of the two differences calculated,

four cases are distinguished. Next, the number of blocks actually overlapping is calculated. This is easy

to calculate once we determine which case we are dealing with.

Yet again, there is a possibility of an array crossing ways. The overlap detection algorithm is robust

enough to handle all possible cases of detection. The main objective is to calculate how many blocks are

overlapping and the location of overlap relative to the incoming array. Based on the absolute start cache

set of both arrays and the number of blocks each array occupies, the sets are adjusted to ensure overlap

detection is possible even across cache associativity boundaries. Overlap is detected using the inequation

check x1 <= y2 && y1 <= x2, where [x1,y1] and [x2,y2] are the starting and ending cache sets of the

two arrays being examined.

Once the overlapping region has been calculated, the incoming array is split into non-overlapping

and overlapping regions. The overlapping region then has its ways incremented since there already

exists a block in that region. This step ensures the incoming array can fit in the cache. If the new ways

is greater than the cache associativity, then the overlapping region is marked as a conflict miss and

the conflicting array is marked to be deleted from the context. Again, partial array information is not

maintained as per our assumptions. Thus, if there is a partial conflict, the conflicting array is marked

to be completely removed from the context. However, the array is not immediately removed from the

context as it is possible for the conflicting array to conflict with other arrays. If it were removed from

context immediately, there would be a loss of information. Thus, the array is marked to be deleted, which

happens when all the arrays for the current loop have been processed. This process is repeated over all

arrays with overlapping regions in the right context to analyze all conflicting arrays and the regions of

conflict. The conflicting arrays are each considered a CONF MISS since both only partially conflict.

This can be defined as follows:

Context =Context ∪{X} (4.4)
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Wused +Wneeded >CA→ContextDel =ContextDel∪{A,X} (4.5)

X ←CONF MISS ; A←CONF MISS (4.6)

where

ContextDel = Set of arrays that need to be removed from the context at the end of loop.

An example of the partial conflict analysis is show in Figure 4.3. We can see that there are three

partially conflicting arrays (a,b,e) with the incoming array (x). Composing these conflicts together, the

final state of the incoming array is as follows: sets (0-3, 9, 11-16) occupy the second way in the cache.

Sets (4-8, 10-12) occupy the third way in the cache. Sets (17-32) occupy the first way in cache. Thus, if

the cache is configured for only 2 ways of associativity, this array will partially miss in cache.

Figure 4.3: Partial Conflict Analysis Example

4.5 Handling Varying Strides

When the arrays being analyzed have varying strides, the process of analysis and assigning classifiers

changes. It becomes more complex to compensate for two arrays having different strides since one array

will be accessing more blocks than the other for the same number of loop iterations.

When two arrays are identified to result in a pure conflict miss, i.e. their starting cache sets are equal,

they do not necessarily have to replace each other constantly. This is the case when the stride of one

array is different from the other. In such a case, the number of conflict misses between the two arrays

can be analytically determined. If any of the arrays have non-conflicting blocks, they are considered to

19



have capacity misses. This is a better case than a conflict miss as not all accesses to the array will result

in a miss. Also, both of theses arrays are marked to be deleted since only part of each array will be left

in the cache at the end of the loop. This is only the case when the conflicting arrays have the same loop

depth, i.e., they both belong to the same loop. Arrays with different loop depths are covered in the next

sub-section.

However, if the incoming array accesses more blocks than the conflicting array and there are enough

ways in the cache, the array is treated as one of the four partial conflict cases, and the appropriate as-

sociativities of each chunk of the array are calculated before the analysis proceeds. Both arrays are

considered a CONF MISS since they conflict. However, with varying strides there can be some cold/-

capacity misses, which will be assigned to the array with the larger stride, i.e., the array which accesses

more cache blocks.

This can be generalized as follows:

Context =Context ∪{X} (4.7)

ContextDel =ContextDel∪{A,X} (4.8)

X ←CONF MISS ; A←CONF MISS (4.9)

where

A,X = Arrays with varying strides

4.6 Forward Stride Analysis

Recognizing conflicting arrays at a certain loop level as pure conflicts does not necessarily mean they

will conflict in outer loops since the strides associated with the arrays for outer loops may vary. Thus,

any conflict misses assigned may not necessarily be multiplied by a loop trip count when going from an

inner to an outer loop. This situation is difficult to identify and rectify by inspecting the conflict misses in

the outer loops given the compostional nature of our analysis. Thus, we perform a forward stride analysis

at the loop level when these conflicts have been identified. As the name suggests, the conflicting arrays

are analyzed by looking ahead in their stride information and trying to identify potential non-misses.

This is done by calculating the number of blocks accessed at each loop level for each array, which can

be easily calculated using the stride information per loop level. With this information, it is possible to

identify the reduction in the number of conflict misses if any and to then assign a factor for reduction of

the misses when the appropriate loop level is reached.

With this method, we can successfully control the number of conflict misses. However, there may

be many more conflict misses due to other conflicting arrays. Thus, we need to be careful in assigning

our reduction factor so as to only reduce the conflict misses assigned by the current conflict case being
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examined. We handle this case by having separate streams for each set of conflicting misses. The reduc-

tion factor assigned per stream only modifies the conflict misses predicted for that stream at the time

the outer loop level is reached. Thus, controlling conflict misses per stream does not interfere with other

streams.

4.7 Handling Varying Loop Depth

Handling conflicting arrays at varying loop depths, i.e., when arrays present in the context information

are accessed at either an outer loop nest or an inner loop nest relative to the conflicting array, requires

special consideration.

Similar to the previous case, when two arrays are classified to conflict, they do not necessarily

experience misses for all accesses to the arrays as misses. A difference in loop depth indicates whether

to consider the entire array for conflict analysis or just a single block. The array on the outer loop, i.e.,

with a lower loop depth, is considered to have conflict misses on all accesses since, for every iteration

of the outer loop, the inner loop executes multiple times. And since there is a conflict between an array

in the outer loop with an array in the inner loop, the conflicting array in the outer loop will be constantly

replaced for each iteration of the outer loop, resulting in a conflict miss for every access of that array.

Thus, if any of the conflicting arrays are present in the context and have a lesser loop depth than the

incoming array, they need to be removed from the context and have their array classifier updated. Here,

the array with the higher loop nesting level is a CONF MISS whereas the array at the lower loop nesting

level becomes an ALWAYS MISS since the outer loop array always misses as explained.

This can be defined as:

NX < NA→Context = 〈Context−{X}〉∪{A} (4.10)

NX > NA→Context = 〈Context−{A}〉∪{X} (4.11)

X ,A←CONF MISS | ALWAY S MISS (4.12)

where

NX = Loop nesting depth of X

NA = Loop nesting depth of A

4.8 Classifier Modifiers

As discussed, there can be various factors that modify the classifiers assigned to an array. These modi-

fications happen during the internal composition phase or the loop composition phase.
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When an array exceeds cache capacity, all arrays classified as FIRST MISS will change to CAP -

MISS, i.e., the capacity misses multiply by the loop length as we move one level from an inner to an

outer loop.

4.9 Tracking Cache Capacity and Associativity

With each array addition to the context, the number of ways of the cache and the capacity used by the

cache needs to be tracked. This can be done by tracking the maximum number of ways used in both the

pure conflict and partial conflict case.

While tracking the number of ways used in the cache, if an array in the context conflicts with the

incoming array and if the array in the context has a deeper loop depth, then the number of ways used

will be incremented by the number of ways occupied by the new array. However, if both conflicting

arrays are inside the same loop, then the number of ways used is only increased by one since we need

to keep in mind that the accesses to these arrays are interleaved. Thus, only one block of each array is

being accessed per iteration.

Keeping track of used cache capacity is accomplished by aggregating the number of blocks brought

into cache per array. This only holds true if the arrays are not conflicting. When arrays conflict, only the

blocks that do not conflict needs to be added.

It is also important to keep in mind that the arrays within the loop analysis are considered to be

brought into cache block-wise. When calculating the number of ways used or the cache capacity used,

the arrays are considered as a whole. Our objective is to analyze the number of ways that will be used

by the cache at the end of the loop. Thus, for the intra-loop analysis, each array will be considered block

wise for ensuring all arrays can fit within the cache. However, for loop composition, each array has to be

considered in its entirety since the entire array should be present in the cache at the end of the loop. The

calculation for the number of ways may yield a different result indicating that not all arrays fit within

the cache. An example is show in Figure 4.4.

Consider four arrays (a,b,c,d) to fit within a 4-way cache with 4 sets. Each array requires 7 sets and

all arrays start at set 0 (a1...a7,b1..b7,c1...c7,d1...d7). Consider one block is accessed per iteration. Thus,

during intra-loop analysis, the accesses pattern of the blocks is as follows: a1,b1,c1,d1, ...,a7,b7,c7,d7.

With a four way cache, there will not be any conflicts between arrays, which gives the illusion of a

FIRST MISS case. However, at the end of the loop, we can see that each array is only partially cached

as show in Figure 4.4.

4.10 Special Cases

Apart from all described methodologies, there are a few special cases to be handled.
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Figure 4.4: Example of Intra-Loop Analysis

Under certain conditions, the overlap detection algorithms may return false positives. Such a case

occurs when the last elements of an array and the first elements of an array share the same block. This is

possible since the compiler allocates memory in a contiguous manner and only ensures the data is word

aligned, but not block aligned. Such a case should not cause any conflict misses. This can be handled

by examining the data returned from the overlap detection and by then continuing analysis ignoring the

overlap function.

From the loop depth analysis, we can observe that if an array from the outer loop conflicts with an

array of the inner loop, both arrays are marked to be removed from the context. However, for a better

analysis model, it would be wiser to keep the inner loop array in context, i.e., only one block of the inner

loop array will need to be brought in per outer loop iteration as only one block will conflict between

both arrays per outer loop iteration. This can be recorded as an extra conflict miss for the inner loop

array.

But this potentially results in an array to be present in the context although it was replaced. This is

possible when arrays cross over to many ways. A boundary case exists when an array brought into cache

at an inner loop conflicts with more than one array of the outer loop. Thus, this may create a false hits,

i.e., the context is checked for an array when it actually is not present. This can be handled by keeping

count of the number of ways used and verifying if the all the arrays present in the context (arrays from

both the inner and outer loops) can fit into the cache. If the hit is recognized as false hit, conflict misses

are assigned instead of hits to the examined array.

Another issue arises when an array stride within a loop exceeds the block size, i.e., every loop

iteration of the array skips blocks. This becomes a problem for our analysis since we consider entire

chunks of memory and do not allow for ”holes” to be present in the access pattern. A way to compensate

is for to check the number of blocks accessed against the loop length. If the loop length exceeds the

number of blocks occupied by the array, this is an indication of blocks being skipped. Thus, assigning

misses only up to the loop length corrects the number of misses being reported for the loop. However,

this only partially compensates for this issue as will be seen in the results. This does not help during our
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conflict analysis as we cannot be certain which ones the conflicting blocks exactly are and this would

increases the complexity of the problem to determine the conflicting blocks.

24



Chapter 5

Experimentation Results

This section describes our results in comparison to a cache simulator with respect to execution time and

accuracy.

5.1 Test Framework

SMA is compiled using gcc v4.1.2 running on an AMD Opteron machine. The testcases are all in

the form of compressed traces as output from ScalaMemTrace. The output from our SMA provides a

breakdown of the loops and the number of hits and misses at each loop level.

We also maintain the uncompressed trace file as output by the binary instrumentation tool (PIN).

All traces generated were from programs compiled with -O2 optimization to ensure a realistic number

of memory accesses performed. The uncompressed trace is fed into a cache simulator to provide output

of the same cache statistics as SMA. We use DineroIV [7], a trace-driven uni-processor cache simulator

from the University of Wisconsin, as our reference to measure the accuracy and time taken for SMA

over a simulation.

5.2 Timing

We assessed a number of test cases for a specific cache configuration and compared the execution times

for SMA and DineroIV.

All the experiments utilize a constant cache configuration of 16KB cache size, 64 bytes blocksize

and a direct mapped cache.

The first set of the test cases have a constant stride with increasing loop nesting levels. Figure 5.1

shows the timing results for these cases. The y-axis denotes the time in seconds and the x-axis denotes

the loop nesting levels. It should be noted that the y-axis has a logarithmic scale.
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Figure 5.1: Execution Time for Varying Loop Nest Levels

We observe that SMA has a constant execution time whereas the DineroIV execution time rises

exponentially with increasing number of loops.

Figure 5.2 depicts the timing results for increasing matrix sizes in matrix multiplication.

Figure 5.2: Execution Time for Matrix Multiplication

Again, the time scale is logarithmic. SMA has a constant execution time where as the DineroIV
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execution time increases exponentially. This is due to the fact that the trace-driven simulator needs to

maintain a complete cache state and has to read the traces from an uncompressed file such that I/O

becomes a bottle-neck with increasing trace sizes.

Figure 5.3: Execution Time for Matrix Multiplication with Blocking

Figure 5.3 depicts the timing results on a log scale for blocked matrix multiplication with varying

block sizes. The timing results here show that the execution is constant for SMA and almost constant

for Dinero IV. However, the execution time is much higher for the simulator.

Figure 5.4: Execution Time for SPEC Test Cases
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Figure 5.5: Execution Time for NAS Test Cases

Figure 5.4 shows the execution time between SMA and DineroIV on a log scale for test cases

from the SPEC CPU 2006 [12] benchmark suite. Figure 5.5 shows the execution time between SMA

and DineroIV on a log scale for test cases from the serial version of the NAS [1] benchmark suite

v3.3. In most cases tracing with compression of our analysis incurs less overhead on the execution cost

then tracing without compression for DineroIV since the latter results in significantly lesser I/O costs.

The execution time of our analysis is dependent on the level of compression achieved and the number

of arrays present. For EP, our execution is worse than the reference due to insufficient compression

achieved resulting in a large number of RSDs present, which requires more time to process. EP, has a

conditional statement which generates irregular access patterns and breaks compression.

These timing results have shown that SMA exhibits significantly less execution time compared to a

trace driven simulator for a variety of scenarios.

5.3 Accuracy

We ran several micro-benchmarks and exposed the traces to SMA. The first of these benchmarks are

loops with varying number of loop nests. Figure 5.6 shows the accuracy difference between SMA and

DineroIV for nested loops with a constant stride. The x-axis has an exhaustive combination of cache

sizes and associativities. The cache sizes range from 4KB to 64 KB and the associativities considered

are from 1 to 8 way associative caches. The block size of the cache is kept at a constant of 64 bytes. The

metric displayed on the y-axis is the percent difference between the average access times or memory

latency calculated for SMA and Dinero IV. The average access time calculations use 12 cycles for an

L1 miss and 3 cycles for an L1 hit for AMD Opteron systems [5]. The nest level indicates the number
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of nested loops for a given test case.

Figure 5.6: Memory Latency for Nested Loops

The latency is very close to that of DineroIV (under 2%) . It is easier for SMA to handle arrays with

constant stride since the complexities of varying strides are not present in these test cases.

We move on to test cases with varying loop depths and array strides and first consider Matrix mul-

tiplication. Figure 5.7 shows the memory latency for various matrix multiplication runs for different

matrix sizes. We observe that the accuracy remains close to our reference in the most part (within 8%).

Figure 5.7: Memory Latency for Matrix Multiplication
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However, there are certain spikes in the figure when the data cannot fit in the cache. Thus, more misses

are reported with SMA since we do not consider partial arrays to be present within the cache. An other

contribution to these extra misses are the array strides exceeding the blocks sizes as mentioned in our

special cases (Section:4.10).

Figure 5.8 shows the percent difference in misses between SMA and Dinero IV for the matrix

multiply cases. The percent difference in misses in general stays within the 20% range. However, we

Figure 5.8: Percent Miss Difference for Matrix Multiplication

do observe certain small spikes up to around 45%. This can be attributed to small cache sizes, which

make analysis harder, when data does not fit within the cache. We also see two big spikes for the 64K

cache. These are corner cases where a lot more misses are predicted since we do not track partial data

remaining within the cache on conflicts when the arrays exceed cache size.

Figure 5.9 shows the percent difference in miss rate between SMA and Dinero IV. Miss rate here

is defined as the difference in the misses divided by the total number of memory references. The miss

rate stays within 4% for all the matrix multiply cases. Trends of the percent miss rate mirror the percent

difference in misses for the most part. We do not see the spikes here since the total number of references

in the two cases are dominant as compared to the misses from SMA or DineroIV.

Figure 5.10 shows the memory latency results for Matrix multiplication with blocking. The accuracy

here is lower than in the previous cases as more loops are involved and strides change more often but

remains below 8% except for the two outliers. For those outliers, the loops in the inner most levels may

result additional misses, which are multiplied as we move to higher loop nests. Since we do not consider

partial arrays in our context, there may be fewer misses for inner loops for every outer loop iteration,

which will be recorded by a trace-driven simulator but not considered by SMA. This is also coupled
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Figure 5.9: Percent Miss Rate Difference for Matrix Multiplication

with the case when an array stride exceeds the block size as discussed in Section 4.10, which makes it

harder to analyze such cases. However, this can be an indicator that no spatial locality is present in the

application.

Figure 5.11 shows the percent difference in misses between SMA and Dinero IV for matrix multiply

with blocking cases. The percent differences in misses stays within the 40% range in many cases. There

are a few spikes which lie between 60-80%. Theses are usually due to the smaller cache sizes that retain

partial data not considered by our analysis. There is one dominant spike, which again due to a small

cache size, where we report more conflict misses than there actually may be since the arrays analyzed

exceed cache capacity so that conflict analysis is not performed.

Figure 5.12 shows the percent difference in miss rate between SMA and Dinero IV for matrix

multiply with blocking cases. The percent miss rate is similar to the percent difference in misses for

the most part. We do see similar spikes as before. However, the miss rate stays within 8% for all the test

cases.

Figure 5.13 shows the memory latency results for test cases from the SPEC CPU 2006 [12] bench-

mark suite. Most test cases are within a 6% difference in latency. There are a few spikes at the beginning,

again attributed to the small cache size and data accessed exceeding the cache size.

Figure 5.14 shows the percent difference in misses between SMA and Dinero IV for the SPEC

benchmark test cases. We observe a slightly different trend in this case. Most of the differences are

within a 40% range. There are few spikes above this region for lower cache sizes for the same reason as

seen in the figure 5.13.

Figure 5.15 shows the percent difference in miss rate between SMA and Dinero IV for the SPEC

benchmark test cases. The trend in this figure is similar to the percent difference in memory latency. The
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Figure 5.10: Memory Latency for Matrix Multiplication with Blocking

spikes from the percent difference in misses is not seen here since the number of memory references far

exceeds the difference in misses. We stay within a 3% difference except for two outliers for small cache

sizes for the same reasons as the previous figure.

Figure 5.16 shows the memory latency results for the serial version of test cases from the NAS [1]

benchmark suite v3.3. The accuracy of the cases varies with different cache configurations. We observe

3 of the 5 cases do very well and stay within a 1-2% difference in latency. FT spikes in low cache sizes.

MG performs consistently worse than the others due to varying strides and partial data overlap that is

not accounted for in our analysis. However, we still stay within a 9% difference from our reference.

Figure 5.17 shows the percent difference in misses between SMA and Dinero IV for the NAS bench-

mark test cases. Here, most of the test cases differs by less than 40%. There are a few outliers for small

cache sizes. There is one spike for MG, which is due to partial data overlap not accounted for in our

analysis.

Figure 5.18 shows the percent difference in miss rate between SMA and Dinero IV for the NAS

benchmark test cases. The figure again follows the trends of the percent difference in memory latency.

Most case lie within a 2% difference and overall a 4% difference since the number of memory references

far exceeds the number of misses in most cases by 1-2 orders of magnitude.

5.4 Case Study

We constructed five large matrix multiplication tests with blocking to compare SMA with hardware

performance counters. The programs were instrumented using PAPI [21] to obtain the number of L1

cache misses for the AMD Opteron machines we are using. The system has a 64KB L1 cache size, a
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Figure 5.11: Percent Miss Difference for Matrix Multiplication with Blocking

64B blocksize and is 2-way associative. We expose the compressed trace for the same execution to our

analysis and compare the results.

For timing purposes, we recorded the uncompressed trace for the first three cases and compared the

execution time on a logarithmic scale between SMA and DineroIV as shown in Figure 5.19. Our SMA

has a near constant execution time due to perfect compression properties of matrix multiply. However,

DineroIV follows an exponential trend and does not scale well. The figure only shows the first three

points for DineroIV since the simulation time had exceeded 30 minutes, which made it unfeasible to

continue time larger test cases.

In Figure 5.20, we represent the three metrics we have introduced for accuracy, i.e., the percent

difference in misses, the percent difference in miss rate and the percent difference in memory latency

between SMA and the hardware counters. Our results stay well within a 5% difference for all cases

which indicates that our method can scale easily to large problems. There is a single spike in the graph

which is due to the way the data strides in the memory. More partial data is retained in this case in the

outer loops resulting in fewer misses, which is not accounted for by our analysis.

Overall, our analysis performs well for inner loops but misses start to multiply as we move to outer

loops since the data accessed eventually exceeds cache capacity. Thus, we conclude that SMA is a

technique ideally suited to study the cache performance of core kernels of applications where 90% of

the application execution is spent. Besides, any references exceeding cache capacity cannot easily be

reduced without significant program and/or data transformation.
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Figure 5.12: Percent Miss Rate Difference Matrix Multiplication with Blocking

Figure 5.13: Memory Latency for SPEC Benchmark Suite
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Figure 5.14: Percent Miss Difference for SPEC Benchmark Suite

Figure 5.15: Percent Miss Rate Difference for SPEC Benchmark Suite
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Figure 5.16: Memory Latency for NAS Benchmark Suite

Figure 5.17: Percent Miss Difference for NAS Benchmark Suite
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Figure 5.18: Percent Miss Rate Difference for NAS Benchmark Suite

Figure 5.19: Timing results for Matrix Multiplication with Blocking

37



Figure 5.20: Accuracy results for Matrix Multiplication with Blocking
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Chapter 6

Related Work

Previous work on cache analysis [18] utilizes compressed traces have been used. But their approach

does not consider the problem of identifying data structures causing cache misses. Janapsatya et al. [15]

talk about compressing program traces and perform a partial decompression for cache simulation.

The idea of reuse distance to predict reuse patterns of the whole program [9] and to use the reuse

distances to estimate capacity miss rates of a fully associative cache [24] have been explored. StatCache

[2] is a sampling-based data-locality technique analysis for fully associative caches. Reuse distance has

also been used to provide cache hints [3] to specify at which cache level the data is likely to be found.

Dinero IV [7], is one of many toold to support exact cache simulation for an uni-processor archi-

tecture given a cache configuration. The also exists work on trace-driven multi-processor simulation

[14, 13, 6]. Some compression techniques which have reduced I/O when passed to a trace-driven simu-

lator [17, 16]. However, the processing of theses traces before simulation does not provide a significant

speedup in execution time.

Our analysis is along the lines of CM equations [10], where the number of misses is calculated

through analysis rather than simulation. However, we are not bound by associativity or perfect loop

nests. The CM equations can be used to identify the block-size for matrix multiplication, in the absence

self-interference which is orthogonal to our analysis.
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Chapter 7

Future Work

Our attempt at a compositional approach towards cache analysis is only the beginning. The first im-

provement would be to improve the accuracy in the case of handling strides that exceed the block size

(Section 4.10). Another improvement can be to provide suggestions to users by identifying and reporting

highly conflicting data structures.

SMA is currently only targeted for uni-processor systems. This can be generalized to instantiating

the tool per thread basis. Thus, one may analyze cache performance of multi-threaded programs and

eventually make it possible to extrapolate the memory behavior of multi-threaded applications to larger

number of threads.

This is a promising start for a whole new avenue of research such as prediction for multi-threaded

applications and also to extrapolate the memory behavior of numerous threads, as available on GPUs,

and to provide theoretical performance predictions for porting an application to a GPU.
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Chapter 8

Conclusion

Uncompressed trace-driven simulation requires excessively large trace files and maintains complete

cache states which, increases computation time and may not scale as trace sizes increase. The simula-

tion output may be hard to analyze to pin-point performance bottle-necks of an application. We utilize

ScalaMemTrace [4] to obtain trace files from applications running under PIN, a binary instrumenta-

tion tool. Such traces contain the memory addresses referenced, a unique signature associated with the

memory access and the type of access (load/store). We then perform on-the-fly compression and produce

compressed trace file in the form RSD/PRSDs.

We have developed ScalaMemAnalyis, a novel approach towards compostional cache analysis from

compressed traces that uses an extended version of the reuse distance theory. We use a context-based

reuse distance analysis to maintain information of arrays (i.e., a strided RSD) that can fit within a cache,

given the cache configuration, i.e., the cache size, block size and associativity. The key criteria to ensure

data structures can fit within the cache and remain within the cache are cache capacity and associativity.

We discuss conflict cases and we develop a method to handle varying loop nesting depths and strides

within the analysis and special cases which need to be considered.

The results of our analysis indicate that cache analysis results in a near constant execution time with

increasing trace sizes as compared to a trace-driven simulator for cases of matrix multiplication. SMA

accuracy closely resembles the output of the trace-driven simulation. We observe variances in accuracy

with changing strides and loop nesting levels but SMA provides a more in-depth loop level analysis of

data structures with this approach.
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Appendix A

Code Samples

A.1 Sample RSD/PRSD

A.1.1 Loop Frame

The following frame indicates the beginning of a loop. The loopsize indicates number of frames follow-

ing this frame that are present in the loop. The loopcount indicates the number of iterations of the loop.

The sign field in this case is a dummy sign since it is a dummy frame to indicate the beginning of the

loop.

attr:3 loopsize:6 loopcount:4 sign:0xc0ffeefeedc0ffee

gap: 0

start_value: (nil)

length: 4

stride: (nil)

tid_start_value: (nil)

tid_length: 1

tid_stride: (nil)

tid_bit_pattern: 0x1

tid_addr_stride: (nil)

node_id_start_value: (nil)

node_id_length: 1

node_id_stride: (nil)

node_id_bit_pattern: 0x1

Sign_len = 1

Sign:0xc0ffeefeedc0ffee

ref_id = 0xc0ffeefeedc0ffee

type = 0x68
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A.1.2 Standard Frame

This frame is similar to the loop frame. The first sign field contains an XOR of the different signatures

obtained from a stackwalk. All the original signatures are indicated in the second sign field.

The type field indicates if the frame represents a load or store instruction

• Type 0x6c = ascii ”l” = Load frame

• Type 0x73 = ascii ”s” = Store frame

attr:5 loopsize:0 loopcount:1 sign:0x400437

gap: 0

start_value: 0x7fffe5cc7c7c

length: 1

stride: 0x4

tid_start_value: (nil)

tid_length: 1

tid_stride: (nil)

tid_bit_pattern: 0x1

tid_addr_stride: (nil)

node_id_start_value: (nil)

node_id_length: 1

node_id_stride: (nil)

node_id_bit_pattern: 0x1

Sign_len = 3

Sign:0x4004e1 0x4004bb 0x40046d

ref_id = 0x400437

type = 0x6c
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