
ABSTRACT

AHMED, SHARMINA. A Benchmark Suite to Assess Software Routing Capabilities of Advanced
Architectures. (Under the direction of Dr. Frank Mueller.)

Advanced architectures provide novel opportunities to replace costly hardware routers for
network packet processing. Such commodity architectures allow routing to be performed in
software. Advanced parallel architectures, such as GPUs and tiled multi-cores with mesh inter-
connects, provide a tremendous opportunity for software routing due to their massive parallelism
capabilities. However, different platforms present developers with divergent choices for their
implementations of software routers. The objective of this work is to identify standard metrics
and create a benchmark test suite that automatically derives quantitative measurements to
allow these different architectures to be compared as to their suitability for software routing.

In this thesis, we define a generic test suite of micro-benchmarks for the assessment of simple
and complex atomic operations on different architectures. We define a set of atomic operations
that can be used to assess the performance of an architecture. They include both native and
synthesized atomic operations. We implement the synthesized operations with different locking
mechanisms and measure their relative performance.

In the future, this work is to be extended by supporting multiple architectures and extend-
ing the benchmark suite to include tests on several stand-alone routing operations handling
different types of network traffic. Of course, one could perform architecture-specific tuning
while implementing software routers on a specific architecture. But our benchmark will pro-
vide a preliminary assessment that supports the selection of a target hardware platform before
significant effort is invested in an actual implementation.
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Chapter 1

Introduction

1.1 Introduction

Software routers are a promising alternative to hardware routers for network traffic processing.
The implementation of router functionality in software rather than hardware increases both
flexibility and programmability. It also reduces cost since it does not require specialized hard-
ware components. However, software routers implemented on traditional general purpose PCs
have not been able to compete with specialized carrier grade routers. The advent of advanced
parallel architectures, such as GPUs and tiled multi-cores with mesh interconnects, creates a
novel potential for software router implementations. These architectures provide a tremendous
opportunity for software routing due to their massive parallelism capabilities.

Multi-core processor technology refers to a single computing component with more than
one independent processors. Each processor is referred to as a core. Multi-core processors,
coupled with advances in memory, I/O and storage, hold the promise to aid in matching in-
creasing performance requirements and scalability demands. Multi-core processors are widely
used across many application domains including general-purpose, embedded, digital signal pro-
cessing (DSP), graphics and especially networking. Since the last decade, many companies have
released a variety of high-performance multicore technologies, for example, Nvidia’s GT200 live
[8], Tilera’s TilePro processors [12], Intel’s Xeon [7], FreeScale’s QorIQ Processor [6]. These
technologies expand from Intel’s dual core chip to hundred cores of TILE-GX family [11].
These advances in multi-core technologies allow developers to implement software routers on
these commodity PCs without the need for costly ASICs and still achieve the performance of
off-the-shelf routers.

In recent years, a number of software router implementations have emerged. RouteBricks
[15], an experimental software router prototype, achieves speeds of 35 Gbps exploiting paral-
lelism across multiple servers as well as multi-cores. PacketShader [18], a Graphics Processing
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Unit (GPU) based software router framework, outperforms existing software routers by more
than a factor of four, forwarding 64B IPv4 packets at 39 Gbps on a single commodity PC. There
has also been implementations of stand-alone router functionalities on these architectures that
leverage parallelism. With Storm [19], a single 8-core Xeon processor desktop platform, it is
possible to sustain packet classification rates of more than 15 Gbps for representative rule sets
without packet losses. A GPU-based solution [20] of router table look ups and prefix matching
operations achieve a speedup of 6.6 times than that of a CPU-based solution. However, differ-
ent platforms present developers with divergent choices for their implementations of software
routers. One technology can be more efficient in terms of implementing a particular function-
ality than other. Such a scenario requires a defined metrics and standard methodologies by
which we can compare these architectures head to head.

The objective of this work is to identify these standard metrics and create a benchmark test
suite that automatically derives quantitative measurements to allow these different architectures
to be compared as to their suitability for software routing. The long term goals of this work
are to be achieved in two levels: (1) A micro-benchmarking effort will evaluate the performance
of simple and complex atomic operations. (2) A generic benchmarking test suite for common
routing functionalities to distribute and co-ordinate flow-centric operations. For the latter task
both stateless and stateful network traffic flows need to be considered. This thesis focuses on
the first task. We define a generic test suite for assessing both simple and complex atomic
operations on different architectures. Each of these metrics are further considered in scalability
assessments to determine parallelization capabilities and identify potential limitations.

We define a set of atomic operations that can be used to assess the performance of an archi-
tecture. They include both native and synthesized atomic operations. We implement the syn-
thesized operations with different locking mechanisms and measure their relative performances.
We define these operations as part of a user library supporting a number of architectures with
a generic API. This hides the underlying complexities and makes it readily usable. As of now,
we provide support for the Tilera Pro 64. In the future, we intend to support a number of
other architectures as well. We also define a set of benchmark tests that assess these atomic
operations of a particular architecture. We also use the Tilera Pro 64 processor as a target
architecture for executing these benchmark tests.

1.1.1 Thesis Statement

By defining a generic API for atomic operations, both native and synthesized, we can create
a benchmark suite to assess an architecture’s capabilities in terms of the performance of these
atomic operations and thereby assess the suitability of the architecture for software routing
with respect to shared memory performance.
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1.2 Related Work

The objective of benchmarking by executing a test program is to assess the performance of
a system or a specific component of a system that can be compared to a similar system or
components. Micro-benchmarks are designed to measure the performance of a very small and
specific piece of code. This work assesses the performance of atomic operations, through micro-
benchmarks.

A number of commercial benchmarks are available today to assess the processor perfor-
mance. The most popular benchmark today for evaluating commodity processors is the SPEC
suite (Standard Performance Evaluation Corporation) [10]. These benchmarks are designed to
provide performance measurements that can be used to compare compute-intensive workloads
on different computer systems. SPEC CPU2006 contains two benchmark suites: CINT2006
and CFP2006 for measuring and comparing the performance of compute-intensive integer and
floating point operations. SPEC OMP2001 and SPEC MPI2007 are used to evaluate the per-
formance of parallel systems using OpenMP and MPI, respectively. However, these benchmark
suites do not include any tests for measuring network performance.

The NAS parallel benchmarks (NPB), developed by NASA Ames research center, provide a
small set of programs to evaluate the performance of highly parallel supercomputers. They are
derived from computational fluid mechanics applications and are widely used. However, they
assess the performance of supercomputers and do not cover routing.

CommBench [21] presents a set of benchmarks for evaluating and designing network proces-
sors. The benchmark focuses on small computationally intense program kernels representative
for network processing. MediaBench [16] consists of programs implementing various compres-
sion and coding algorithms for streaming video and audio. Commbench includes these streaming
dataflow-based applications but also features packet processing tasks such as routing and data
forwarding.

EEMBC Networking 2.0 [5] is a suite of benchmarks that approximates the performance
of processors for moving packets in networking applications. This includes a test suite for IP
packet checksum, Network Address Translation(NAT), route lookup and many other networking
functionality tests. This industry standard benchmark suite is not available as open source. In
the future, we plan to explore these areas in more detail. However, the EEMBC suite does not
assess the performance of atomics as presented in this thesis.

MiBench [17] provides a benchmark suite following the EEMBC model. MiBench is available
as open source to researchers. It provides a networking test suite with functions like- dijkstra’s
algorithm [4] to calculate all pair shortest path between nodes, patricia trie data structure [9]
to represent routing table lookup and CRC32 [3] for checksumming. This may provide partial
support for our benchmarking effort in the second phase. However, MiBench also does not
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include atomics measurements described in this work.
We are not aware of any benchmarks that include both atomics performance measurement

and routing. Our benchmark methodology is agnostic of different multi-core architectures. It
can be used as a tool to assess the suitability of an architecture in terms of different routing
functions. Of course one could perform architecture specific tuning while implementing software
routers on a specific architecture. But our benchmark will provide a preliminary assessment
that supports the selection of a target hardware platform before significant effort is invested in
an actual implementation.
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Chapter 2

Atomic operations and

Benchmarking

2.1 Assessment of Simple and Complex Atomic Operations

The goal of this phase is to develop a generic test suite of micro-benchmark for the assessment
of simple and complex atomic operations on different architectures. The challenge arising in
this scenario is the differences in hardware support for atomics by a variety of different archi-
tectures. We develop a user library called atomic_ext that transparently handles architectural
differences. We define a consistent generic API for the library that hides implementation de-
tails. Depending on the underlying architecture, this API either makes direct call to the native
hardware supported atomics or uses synthesized atomics as library functions. This enables
the user to make generic function calls from the API without taking into consideration the
underlying complexities. This promotes ease of use. Figure 2.1 presents a block diagram of the
atomic_ext library.

Different architectures have different ISA support. From the set of atomics supported by
these architectures, we select a set of native atomics that are used frequently in Software router
implementations. We define a set of synthesized atomic operations based on these native atom-
ics. The synthesized operations are implemented using different locking mechanisms. These
native and synthesized atomics are described in sections 2.1.1 and 2.1.2. The performance
metric for an architecture is evaluated by assessing the performance of these atomics using
benchmark tests. We develop a set of benchmark tests described in section 2.2. These bench-
marks call the atomics using the defined API and performs measurements to assess scalability,
memory latency and task placement on a multi-core architecture that include tiles . The bench-
mark tests are implemented using the POSIX Thread (Pthread) library and are thus portable
across different platforms.
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Figure 2.1: Block Diagram for atomic ext Library

2.1.1 Native atomics

Most architectures support a set of native atomic operations defined in atomic.h. From the
set of atomic operations, we chose three atomic operations that are frequently used in software
router implementations. For atomic operations supported by a particular architecture, the
library makes a direct call to the natively supported version of the atomic operation.
The selected atomic operations for evaluation are given below:

int atomic_compare_and_exchange_val_acq(int* ptr, int oldval, int newval);

/* Atomically compare and exchange an old value with a new one, returning the

previous value in memory*/

void atomic_bit_set(int* mem, int bitpos);

/* Atomically set a single bit in a bitmask stored at MEM */

void atomic_increment(int* mem);

/*Atomically increment a location in memory.*/

For experimentation, we run the benchmarks on a 64 core TilePro64 processor (TILE64core
family PCIe card). The Tilera Multi core Components library (TMC) also provides the
above 32 bit native atomic operations defined in atomic.h. The Tilera architecture supports
test_and_set as the only in-silicon atomic operation. The three operations are implemented
as fast calls to Linux emulation routines.
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2.1.2 Synthesized Atomics

For atomic operations not supported by a particular architecture, we implement a set of atomics
in software as part of the atomic_ext library. These are called synthesized atomics. Synthe-
sized atomics are divided into three categories: (1) atomics supporting longer bit versions not
supported by native operations; (2) atomics supporting strict and non-strict order of execution;
and (3) atomics relevant to specific architectures. These synthesized atomic operations use
different types of locking mechanisms.

Longer bit support

We also assess support for longer bit versions (64 bits and 128 bits) of the native atomics if they
are not supported by underlying hardware. We also implement a 32 bit synthesized version of
the atomics to compare against native ones. These atomics are implemented using standardized
mutex_locks defined in Pthread library. They are implemented as inline function calls to avoid
function call overhead. For architectures that support these longer bit versions natively, we
make a direct call to the corresponding native operations. Otherwise, we call the synthesized
versions.

The Tilera architecture supports 32 bit atomic operations natively. We implement synthe-
sized atomics for 32, 64 and 128 bit operations. The API for these synthesized atomics is as
follows:

int compare_and_exchange_32(int * ptr, int oldval, int newval,

pthread_mutext_t *mutex);

void atomic_bit_set_32(int * mem, int bitpos, pthread_mutext_t *mutex);

void atomic_increment_32(int * mem, pthread_mutext_t *mutex);

uint64_tt compare_and_exchange_64(uint64_tt * ptr, uint64_tt oldval,

uint64_tt newval, pthread_mutext_t *mutex);

void atomic_bit_set_64(uint64_tt * mem, int bitpos, pthread_mutext_t *mutex);

void atomic_increment_64(uint64_tt * mem, pthread_mutext_t *mutex);

uint128_tt compare_and_exchange_128(uint128_tt * ptr, uint128_tt *oldval,

uint128_tt newval, pthread_mutext_t *mutex);

void atomic_bit_set_128(uint128_tt * mem, int bitpos, pthread_mutext_t *mutex);

void atomic_increment_128(uint128_tt * mem, pthread_mutext_t *mutex);

uint64_tt and uint128_tt are user defined data types for 64 bit and 128 bit operands,
respectively. We implemented these synthesized atomics in the library using locks. A 64 bit
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uint64_tt is considered as two 32 bit integers with high order and low order address bit ranges
63-32 and 0-31, respectively. Since more than one thread is operating on each data location, we
need to maintain consistency of data between each operation. For this, we use pthread_mutex_t
locks for each data location to be operated on. This is to ensure the atomicity of the operations
so that no threads enter the critical region when one thread is already accessing parts of the
operand. The implementation of atomic bit set 64 using pthread mutex locks is as follows:

inline void atomic_bit_set_64 (uint64_t *mem, int pos, pthread_mutex_t *mutex){

register int word = pos >> 5;

if (mutex!=NULL) pthread_mutex_lock(mutex);

mem->word[word] |= 1 << (pos-(word<<5));

if (mutex!=NULL) pthread_mutex_unlock(mutex);

}

Similarly, uint128_tt is considered an array of four 32 bit integers. The implementation
of atomic increment 128 using mutex locks is as follows:

inline void atomic_increment_128 (uint128_t *mem,pthread_mutex_t *mutex){

register int word=0;

if (mutex!=NULL) pthread_mutex_lock(mutex);

do {

mem->word[word]++;

if (mem->word[word]!=0)

break;

word++;

} while (word<4);

if (mutex!=NULL) pthread_mutex_unlock(mutex);

}

Execution order support

In a software router implementation, we have to support both flow-based and stateless network
traffic. So, serialization of atomic operation requests may be necessary or not depending on the
nature of traffic. For this reason, we implement both serialized and non-serialized versions of
the atomic operations.

Atomic operations that employ strict serialization are called tightly coupled atomic opera-
tions while non-serialized ones are called loosely coupled atomic operations. Both tightly cou-
pled and loosely coupled atomic operations are defined in the library API, namely atomic_ext.h.
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Tight coupling refers to the scenario where the operations need to be performed in order of
their requesting, i.e., First In First Out (FIFO) ordering. In loosely coupled operations this
ordering needs not be imposed.

Tightly coupled atomic operations are defined as atomic operation x strict() format, where
x=32, 64, 128 bits (for example, atomic increment 32() strict). Tightly coupled operations use
global locking. We use a shared queue to implement all the operations. This avoids any kind
of parallelism in the operations and makes sure the operations gets executed only in the order
they were inserted in the queue. At any point of time there is only one head of the queue so
only one thread is allowed to execute its pending operation at any point of time. This ensures
single execution of operations. For example, consider two operations, update() and delete(), on
the same data structure by different threads need global serialization between the operations
between these threads.

The implementation of tightly coupled operations maintains a shared queue. This queue is
a shared data structure and is protected by a lock, in this case mutex lock. Threads queue their
operation requests at the end of the queue. If the queue is empty, a request is immediately
executed. If not, then the request waits on a condition variable. This is better than busy waiting
since it does not waste computational resources. Once an operation is executed, it signals the
thread on the head to wake, execute and dequeue itself from the queue. This implementation
enforces strict global serialization among the operations based on their queuing order. The
sample implementation of the atomic_bit_set_32_strict() is as follows:

void atomic_bit_set_32_strict(int *p, int pos, pthread_cond_t *c){

pthread_mutex_lock(&atomic_queue_mutex);

enqueue(pthread_self(), c);

while (atomic_head != NULL && atomic_head->thread_id != pthread_self())

pthread_cond_wait(c, &atomic_queue_mutex );

pthread_mutex_unlock(&atomic_queue_mutex);

atomic_bit_set_32(p, pos, NULL);

pthread_mutex_lock(&atomic_queue_mutex);

dqueue();

if (atomic_head != NULL)

pthread_cond_signal(atomic_head->c);
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pthread_mutex_unlock(&atomic_queue_mutex);

}

Architecture-specific support:

The API includes selected architecture specific atomic operations which tries specific capabili-
ties of a particular architecture. As Tilera is our target platform for testing the benchmarks,
we implemented several Tilera-specific synthesized atomic operations: atomic bit set X core(),
atomic increment X core() and atomic cmpxchng X core(), where X=32, 64, 128. These ar-
chitecture specific atomic operations do not use any locking or FIFO ordering to implement
atomicity. Instead we dedicate a number of cores to provide mutual exclusion of operations
using a token-based server approach.

We implement these operations using Tilera-specific message passing mechanism. Tilera
supports two types of message passing abstractions: iLib and UDN. In this particular imple-
mentation, we use UDN due to the extra overhead associated with iLib functions. The User
Dynamic Network (UDN) provides hardware for routing data packets between tiles. Each
packet starts with two header words specifying the tile to which the packet should be routed
and which ’demux queue’ should receive the packet when it arrives using tmc udn send 1(),
tmc udn send 2() etc . When packets arrive at the destination CPU, they are sorted into one
of four possible demux queues, and the receiving CPU issues tmc udn0 receive(), tmc udn1 re-
ceive(), or similar calls to pull data words from a particular queue.

In our implementation of atomic operation X core(), we use 4 types of messages:

1. REQUEST

2. POSITIVE REPLY

3. NEGATIVE REPLY

4. RELEASE

5. EXIT

In our setup, four dedicated server cores constantly run processes that wait for requests.
The other cores operating on atomic operations generate requests to the dedicated cores based
on the address of the operands. The address is hashed to select a server core. Since same
address generates the same hash value, two operations on the same address are always sent to
the same server core, which grants only one operation at a time and thus ensures atomicity. bf
To generate an equal distribution of operations across cores, we use the following hash function
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using Knuth’s Multiplicative Method [1] in our benchmarks. As described in Section 2.2.4, in
our benchmarks, each different memory location is separated by a cache factor. Thus, we shift
the lower order equal bits to the right to ensure that all the memory locations are mapped in
a distributed manner across different server cores. For example, for Tilera the cache factor is
16, i.e., the memory locations are 16 ∗ sizeof(int) = 64 bytes apart. Thus, we shift right the
address by 6 bits. 2654435761 is the ’golden ratio’ of 232 [1]. This hashed value modulo the
number of server cores defines the map function to a particular server core.

uint32_t address_hash(int* addr){

int key;

key = (int)addr;

return (key >> CACHE_FACTOR_BITS) * 2654435761;

}

Each server has a token. If a core requests a token the server grants the request and sends
a POSITIVE reply. Otherwise, the server sends a NEGATIVE reply. If requesting core fails
to attain its token, it keeps on requesting until it is successful. If the core was successful in
attaining the token, it may perform the atomic operation. It subsequently releases the token
by sending a RELEASE message to the server. At program termination, the main thread sends
a EXIT message to all the server cores to exit their processes. Below is a sketch of the imple-
mentation for both the server and client core functionalities:

void core_function(int rank){ \\server

while (1) {

uint32_t token = tmc_udn0_receive();

if (token==0 && core_state==0) { //if request

int address= tmc_udn0_receive();

DynamicHeader header = tmc_udn_header_from_cpu(address);

core_state=1;

tmc_udn_send_1(header, UDN0_DEMUX_TAG, 1);// token present so positive reply

}

else if (token==0 && core_state==1) {

int address= tmc_udn0_receive();

DynamicHeader header = tmc_udn_header_from_cpu(address);

tmc_udn_send_1(header, UDN0_DEMUX_TAG, 0);//token not present so negative reply
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}

else if (token==1 && core_state==1) { //if release

core_state=0;

}

else if (token==2) { //if exit

return;

}

}

}

void atomic_bitset_32_core (int *address, int pos, int cpu, int dest) {//client

int i=0;

DynamicHeader header = tmc_udn_header_from_cpu(dest);

while (i < NUMBER_OF_OPERATIONS) {

tmc_udn_send_2(header, UDN0_DEMUX_TAG, 0, cpu);//request

int token= tmc_udn0_receive();

if (token==0) {//rejected

/* do nothing */

}

else { //attain token

atomic_bit_set_32(address, pos, NULL);

tmc_udn_send_1(header, UDN0_DEMUX_TAG, 1);//release

i++;

}

}

}

For 64 or 128 bit operations we call the 64 and 128 bit synthesized atomics (e.g. atomic -
bit set 64 (address, pos, NULL) ) without specifying a lock parameter as mutual exclusion is
guaranteed by the token protocol.

2.1.3 Application Programming Interface (API)

The include file atomic_ext.h contains the generic API for the implemented user library func-
tions. The natively supported functions for a particular architecture are called directly from
the functions. If not supported natively, the synthesized operations are used. The architecture
specific information are defined in a config file and are sent as parameters to the tests. The
finalized API for the atomic ext user library for synthesized atomics is shown in Figure 2.2.
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atomic_increment_32_strict(int* mem, pthread_mutex_t *mutex, pthread_cond_t *c);

atomic_increment_32(int* mem, pthread_mutex_t *mutex);

atomic_increment_64_strict(uint64_tt * mem, pthread_mutex_t *mutex, pthread_cond_t *c);

atomic_increment_64(uint64_tt * mem, pthread_mutex_t *mutex);

atomic_increment_128_strict(uint128_tt * mem, pthread_mutex_t *mutex, pthread_cond_t *c);

atomic_increment_128(uint128_tt * mem, pthread_mutex_t *mutex);

atomic_bit_set_32_strict(int* mem, int pos, pthread_mutex_t *mutex, pthread_cond_t *c);

atomic_bit_set_32(int* mem, int pos, pthread_mutex_t *mutex);

atomic_bit_set_64_strict(uint64_tt * mem, int pos, pthread_mutex_t *mutex, pthread_cond_t *c);

atomic_bit_set_64(uint64_tt * mem, int pos, pthread_mutex_t *mutex);

atomic_bit_set_128_strict(uint128_tt * mem, int pos, pthread_mutex_t *mutex, pthread_cond_t *c);

atomic_bit_set_128(uint128_tt * mem, int pos, pthread_mutex_t *mutex);

atomic_compare_and_exchange_32_strict(int* mem, int oldvalue, int newvalue, pthread_mutex_t *mutex, pthread_cond_t *c);

atomic_compare_and_exchange_32(int* mem, int oldvalue, int newvalue, pthread_mutex_t *mutex);

atomic_compare_and_exchange_64_strict(uint64_tt * mem, uint64_tt oldvalue, uint64_tt newvalue, pthread_mutex_t *mutex, pthread_cond_t *c);

atomic_compare_and_exchange_64(uint64_tt * mem, uint64_tt oldvalue, uint64_tt newvalue, pthread_mutex_t *mutex);

atomic_compare_and_exchange_128_strict(uint128_tt * mem, uint128_tt oldvalue, uint128_tt newvalue, pthread_mutex_t *mutex, pthread_cond_t *c);

atomic_compare_and_exchange_128(uint128_tt * mem, uint128_tt oldvalue, uint128_tt oldvalue, pthread_mutex_t *mutex);

uint64_tt compare_and_exchange_64(uint64_tt * ptr, uint64_tt oldval, uint64_tt newval, pthread_mutext_t *mutex);

void atomic_bit_set_64(uint64_tt * mem, int bitpos, pthread_mutext_t *mutex);

void atomic_increment_64(uint64_tt * mem, pthread_mutext_t *mutex);

int compare_and_exchange_128(uint128_tt * ptr, uint128_tt *oldval, uint128_tt newval, pthread_mutext_t *mutex);

void atomic_bit_set_128(uint128_tt * mem, int bitpos, pthread_mutext_t *mutex);

void atomic_increment_128(uint128_tt * mem, pthread_mutext_t *mutex);

int atomic_compare_and_exchange_32_core(int cpu, int dest, int * ptr, int oldval, int newval, pthread_mutext_t *mutex);

void atomic_bit_set_32_core(int cpu, int dest, int * mem, int bitpos, pthread_mutext_t *mutex);

void atomic_increment_32_core(int cpu, int dest, int * mem, pthread_mutext_t *mutex);

uint64_tt compare_and_exchange_64_core(int cpu, int dest, uint64_tt * ptr, uint64_tt oldval, uint64_tt newval, pthread_mutext_t *mutex);

void atomic_bit_set_64_core(int cpu, int dest, uint64_t * mem, int bitpos, pthread_mutext_t *mutex);

void atomic_increment_64_core(int cpu, int dest, uint64_t * mem, pthread_mutext_t *mutex);

uint128_tt compare_and_exchange_128_core(int cpu, int dest, uint128_tt * ptr, uint128_tt *oldval, uint128_tt newval, pthread_mutext_t *mutex);

void atomic_bit_set_128_core(int cpu, int dest, uint128_tt * mem, int bitpos, pthread_mutext_t *mutex);

void atomic_increment_128_core(int cpu, int dest, uint128_tt * mem, pthread_mutext_t *mutex);

Figure 2.2: atomic ext.h
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atomic_operations_X_strict() and atomic_operation_X() refers to the tightly coupled
and loosely coupled operations, respectively (where x=32, 64, 128). To decrease the function
call overhead, we define them as inline functions. If supported by architecture, we will use native
64 and 128 bit atomic operations. atomic_operation_X_core() refers to the Tilera-specific
atomic operations.

2.2 Benchmarks

For the quantitative assessment of simple and complex atomic operations, we develop several
performance benchmarks generic to multi-core architectures. This section provides a detailed
description and evaluation algorithms of these benchmarks.

2.2.1 Benchmark 1.1: Single Core

This benchmark provides quantitative time measurement of a single atomic operation in a single
core of a multi-core architecture. To this end, we utilize a Dual Loop Timing design [14]. The
algorithm is as follows:

Function atomic_measurement() {

/* To get the instruction in cache

* to avoid latency for initial loading

*/

atomic_operation;

t1 = gettimeofday();

/* This loop measures the looping overhead time */

for (i=1 to n)

nop;

t2 = gettimeofday();

/* This loop measure the total of looping overhead

* and instruction execution time

*/

for (i=1 to n)

atomic_operation;

t3 = gettimeofday();

}

This dual loop approach is more accurate in timing than a single loop approach since it
accounts for the looping overhead by executing the first loop and deducts it from the time mea-
sured to get a more accurate timing. It also warms up caches by first executing the instruction
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once (outside the timed section) to ensure uniform memory latency.
Time calculation:

∆1 = t2− t1
∆2 = t3− t2
∆ = ∆2−∆1
T = ∆/n

2.2.2 Multiple cores

The following benchmark provides quantitative time measurement of same atomic operations
running on different numbers of adjacent cores simultaneously in a multi-core architecture. We
use the POSIX thread library to run multiple atomic operations synchronously in different
cores. The algorithm is as follows:

Function pthread_atomic_measurement() {

/* To get the instruction in cache to avoid latency

* for initial loading

*/

atomic_operation;

t1= gettimeofday();

/* This loop measures the looping overhead time */

for (i= 1 to n)

nop;

t2 = gettimeofday();

/* The threads waits on this instruction util all the threads

* come to this point and the executes synchronously

*/

pthread_barrier_wait()

t3 = gettimeofday();

/* This loop measure the total of looping overhead

* and instruction execution time

*/

for (i=1 to n)

atomic_operation;

t4= gettimeofday();

}
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...

for (i=1 to N)

pthread_create(thread, NULL, (void*)pthread_atomic_measure);

Time measurement:
∆1 = t2− t1
∆2 = t4− t3
∆ = ∆2−∆1

Section 2.2.2 adds an extra dimensionality to Benchmark 1.2 considering the distribution of
memory locations. It measures the behavior of threads in different contention levels competing
for the same memory resources to operate on.

Benchmark 2.1: Single Memory Location

In this benchmark, we perform atomic operations on a single variable in a single memory
location in multi-core environment.

Function atomic_measurement() {

/* To get the instruction in cache to avoid latency

* for initial loading

*/

atomic_operation(&a);

t1 = gettimeofday();

/* This loop measures the looping overhead time*/

for (i=1 to n)

nop;

t2 = gettimeofday();

/* This loop measure the total of looping overhead

* and instruction execution time

*/

for (i=1 to n)

atomic_operation(&a);

t3 = gettimeofday();

}

This particular benchmark represents the boundary condition representing 100% contention
among threads. That is, all threads are contending for the same resource (i,e, the same memory
location).
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2.2.3 Benchmark 2.2: Different Memory Locations

In this benchmark, we perform atomic operations on different variables in different memory
locations in multi-core environment.

We define an array of variables and each thread operate of different indexes of the array.
The algorithm is as follows:

Function pthread_atomic_measurement(int *arg) {

k=(int)(*arg)

/* To get the instruction in cache to avoid latency

* for initial loading */

atomic_operation(&a[k]);

t1 = gettimeofday();

/* This loop measures the looping overhead time */

for (i=1 to n)

nop;

t2 = gettimeofday();

/* The threads waits on this instruction util all the threads

* come to this point and the executes synchronously

*/

pthread_barrier_wait()

t3 = gettimeofday();

/* This loop measure the total of looping overhead

* and instruction execution time

*/

for (i=1 to n)

atomic_operation(&a[k]);

t4= gettimeofday();

}

}

...

for (i=1 to N )

pthread_create(thread, NULL, (void*)pthread_atomic_measure, (void*)i);

2.2.4 Considering Cache factor

While operating on different memory locations, we need to make sure that different memory
locations are allocated in different cache lines. Otherwise, Updating a memory location in-
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validates the cache line resulting in an unaccounted for cache-miss for the next invocation of a
different memory location in the same cache line. This results unwanted variability in timing.
To ensure validity of our benchmark, we needed to make sure that the used memory locations
are separated enough not to interfere with each other. So, we add an offset to each different
memory locations. We refer to this offset as cache factor. We experimentally determine the
cache factor by using different offsets such as 2, 4, 6 . . . and choose a factor that nullifies this
unwanted cache-miss effect. Figure 2.3 represents the experimental results.

Figure 2.3: Determination of Cache factor

Figure 2.3 explains the cache factor for the Tilera processor. As indicated in the figure, the
cumulative times for 10000 instructions operating on different memory locations for different
number of threads become consistent when cache factor reaches 16* sizeof(int). That is 64
bytes, which is the size of cache block in Tilera Architecture. So the results are consistent with
the architecture.

Considering the effect of cache factor algorithm for benchmark 2.2 is modified as follows:

Function pthread_atomic_measurement(int *arg) {

k= (int)(*arg);

/* To get the instruction in cache to avoid latency

* for initial loading */

atomic_operation(&a[k*cache_factor]);

t1 = gettimeofday();

/* This loop measures the looping overhead time */

for (i=1 to n)

nop;
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t2 = gettimeofday();

/* The threads waits on this instruction util all the threads

* come to this point and the executes synchronously

*/

pthread_barrier_wait()

t3 = gettimeofday();

/* This loop measure the total of looping overhead

* and instruction execution time

*/

for (i=1 to n)

atomic_operation(&a[k*cache_factor]);

t4= gettimeofday();

}

...

for (i=1 to N)

pthread_create(thread, NULL, (void*)pthread_atomic_measure, (void*)i);

2.2.5 Benchmark 2.3: Different Contention Level

In this benchmark, we perform atomic operations on an array of variables, a[1 . . . m] where
m << n; n being the number of threads. m defines the contention level for this algorithm

We define a mapping function that maps different threads to perform atomic operations on
different locations. Some of the threads, m, contend for the same memory location. We control
the level of contention by varying m. This algorithm also takes into consideration the cache
factor described 2.2.4. The algorithm is as follows:

Function pthread_atomic_measurement(int *arg) {

k= map_function(*arg, m);

/* To get the instruction in cache to avoid latency

* for initial loading */

atomic_operation(&a[k*cache_factor]);

t1 = gettimeofday();

/* This loop measures the looping overhead time */

for (i=1 to n)

nop;

t2 = gettimeofday();

/* The threads waits on this instruction util all the threads

* come to this point and the executes synchronously
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*/

pthread_barrier_wait()

t3 = gettimeofday();

/* This loop measure the total of looping overhead

* and instruction execution time

*/

for (i=1 to n)

atomic_operation(&a[k*cache_factor]);

t4= gettimeofday();

}

...

for (i=1 to N )

pthread_create(thread, NULL, (void*)pthread_atomic_measure, (void*)i);

2.2.6 Benchmark 3.1: Different Tile Distribution

In this benchmark we will repeat benchmark 2.1 and 2.2 for different placement of threads
across the tiles. Previous experiments are conducted placing the threads in adjacent tiles.
Here, we place the threads in non-adjacent tiles at a distance of multiple hops (such as 2, 3,
4 etc.). We run multiple groups of such threads simultaneously. Each member thread of a
group performs atomic operations on a single memory location while different groups operate
on different memory locations. This benchmark tests the effects of communication overhead
due to multi hop distance between threads across tiles. To ensure the maximum congestion
across a dimension we test with combinations up to the state when all the tiles are occupied by
threads across a certain dimension(horizontal, vertical and diagonal).

Figure 2.4, 2.5 and 2.6 shows the testing combinations for this benchmark in 8X8 Tilera
board for a maximum distance of 3 hops in horizontal, diagonal and vertical dimensions, re-
spectively. Threads of the same group are represented by the same color.
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Figure 2.4: Horizontal placement of threads across tiles. (a) 4 threads 1 group, (b) 8 threads
2 groups, (c) 12 threads 3 groups, (d) 16 threads 4 groups

Figure 2.5: Diagonal placement of threads across tiles. (a) 4 threads 1 group, (b) 8 threads 2
groups, (c) 12 threads 3 groups, (d) 16 threads 4 groups
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Figure 2.6: Vertical placement of threads across tiles. (a) 4 threads 1 group, (b) 8 threads 2
groups, (c) 12 threads 3 groups, (d) 16 threads 4 groups
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Chapter 3

Experimental Evaluation

We ran the benchmarks described in Section 2.2 on a 64 core TilePro64 processor (TILE64core
family PCIe card) [12] with 700 MHz clock frequency. This generation of processors feature 64
cores identical processors interconnected with Tilera iMesh TM on chip network. Each core has
a L1 and L2 cache and a non-blocking switch that connects it to the mesh. Each core has the
capabilities to run an Operating System by its own. This section presents the results obtained
by running the benchmarks on the Tilera processor.

3.1 Benchmark 1.1

Running benchmark 1.1 on the Tilera gives the results shown in Table 3.2 and 3.1. Section
2.2.1 describes this benchmark. Figure 3.1 presents a comparative assessment of the timings
for atomic operations running on a single core based on the operand bit length for both syn-
thesized and native operations. For a single core without mutex overhead, 32 bit synthesized
operations perform better than native ones. The lower overhead for native operations is due to
hardware locking and a write through to memory. We also notice timing discrepancies among
the operations atomic_bit_set, atomic_increment and atomic_compare_and_exchange for
different bit lengths. Timings for atomic_bit_set operations show less variation for higher
bit lengths since for each operation the benchmark updates in a single word for the bit ranges
containing that particular bit position. In contrast, atomic_compare_and_exchange updates
multiple words. For example, for atomic bit set 64 with bit position 20, the operation only
performs an update in the bit ranges 0 to 31. In contrast, atomic_compare_and_exchange_64
always performs two compare and exchange operations on both bit ranges 0 to 31 and 32 to
63. Thus, there is a stepwise increase of 2x times for atomic_compare_and_exchange_64.

atomic_increment performs a single update on the word containing bit ranges 0 to 31 and
occasionally two updates when an overflow occurs. Figure 3.2 presents a comparative assess-
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ment of the timings for atomic operations running on a multi-threaded environment based on
the operand bit length for both synthesized and native operations. We can observe an almost
constant locking overhead of about 0.5 usecs for synthesized operations. This figure also shows
the step-wise increase of timing for higher bit-length operations similar to Figure 3.1. Figure
3.3 presents a comparative timing of tightly coupled, loosely coupled and server core atomic
operations. As shown in the figure, tightly coupled operations impose a 10-fold performance
penalty due to reduced parallelism and the queuing/dequeuing of operation requests. atomic -
operation X core operations add almost a constant amount of base overhead for single core
operations due to the cost of message passing.

Table 3.1: Time Measurement for Single Core for Native Atomics
operations Avg. time (usec) per op
cmpxchng 32 0.1427
bitset 32 0.1499
increment 32 0.1398

Table 3.2: Time Measurement for Single Core for Synthesized Atomics
Avg time (usec) per op

operations loosely coupled tightly coupled server core
32 bit 64 bit 128 bit 32 bit 64 bit 32 bit 64 bit 128 bit

cmpxchng 0.1371 0.1915 0.2829 2.4325 2.2515 4.12 4.05 4.56
bit set 0.1156 0.1327 0.1414 2.2760 2.2924 4.30 4.13 4.29
increment 0.1101 0.1256 0.1308 2.2480 2.2827 4.04 4.08 4.09

Benchmark 2.1 and 2.2, described in sections 2.2.2 and 2.2.3 assesses the same atomic
operations simultaneously on multiple cores and measures the average time per operation.

The Tilera Multicore Components library (TMC) provides functions to assign a particular
thread to a particular tile to ensure isolation of execution. We first find a chunk of available
tiles for the process using tmc_cpus_get_my_affinity() and then bind each thread to a dif-
ferent tile using tmc_cpus_set_my_cpu(). This prevents automatic load balancing and task
migration otherwise triggered by the default Linux task scheduler and ensures accurate time
measurements.
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Figure 3.1: Time Comparisons for Atomic Operations of Different Bit Length for Single Core

Figure 3.2: Time Comparisons for Atomic Operations of Different Bit Length for Multicore
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Figure 3.3: Time Comparisons for Tightly Coupled, Loosely Coupled Native and Core Atomic
Operations

3.2 Benchmark 2.1

Benchmark 2.1 described in Section 2.2.2 covers the scenario where all threads are competing
for the same memory location. We ran this benchmark on 2, 4, 8, 16 and 32 threads bound to
different tiles and executing cmpxchng(), atomic_bit_set() and atomic_increment() on the
same memory location. The results are shown in Table 3.3 for native operations, Table 3.4 for
loosely coupled synthesized operations, Table 3.5 for tightly coupled operations and Table 3.6
for server core operations. We observed that the timing increases proportion to the number of
threads for all cases.

Table 3.3: Time Measurement for Single Memory Location in Multi-core for Native Atomics
Avg time(usec) per op

# of threads cmpxchng 32 bitset 32 increment 32
2 0.3445 0.3817 0.3632
4 0.5306 0.8071 0.6534
8 1.0167 1.7044 1.6204
16 2.0966 3.7895 3.5220
32 3.9446 7.8567 7.3744
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Table 3.4: Time Measurement for Single Memory Location in Multi-core for Loosely Coupled
Synthesized Operations

Avg time(usec) per op
# of compxchng atomic bit set atomic increment
threads 32 bit 64 bit 128 bit 32 bit 64 bit 128 bit 32 bit 64 bit 128 bit
2 1.4567 1.1550 1.5140 1.2741 1.2738 1.2096 1.3143 1.3201 1.2148
4 3.4550 3.2115 3.6338 3.4411 3.0089 3.3495 2.8586 3.0020 3.3824
8 8.8575 7.9259 7.5157 8.1196 7.6592 8.0598 7.5697 7.7018 8.1866
16 19.0061 17.5738 18.9647 18.292 16.7388 17.5854 16.1940 16.9601 17.4167
32 35.0454 32.3309 35.6842 34.1907 33.8188 34.0024 31.0483 31.5016 34.077

Table 3.5: Time Measurement for Same Memory Location in Multi-core for Tightly Coupled
Operations

Avg time(usec) per op
compxchng atomic bit set atomic increment

# of threads 32 bit 64 bit 32 bit 64 bit 32 bit 64 bit
2 77.9950 80.0672 81.3020 80.3518 81.3020 80.3518
4 182.1676 181.9834 178.8712 181.6736 178.8712 181.6736
8 383.6141 390.9512 383.7348 387.7440 383.7348 387.7440
16 813.3354 801.5907 818.9792 809.2042 818.9792 809.2042
32 1727.3017 1711.0979 1721.6187 1729.9849 1721.6187 1729.9849

3.3 Benchmark 2.2

We ran benchmark 2.2 on 2, 4, 8, 16 and 32 threads bound to different tiles and executing the
atomic operations on different memory locations on Tilera. This particular scenario represents
the lower boundary condition of 0% contention among threads, that is, no threads are competing
for resources. The results are shown in Table 3.7 for native operations, Table 3.8 for loosely
coupled synthesized operations and Table 3.9 for tightly coupled operations.

Comparing the results from Tables 3.5 and 3.9 we observe that the numbers are almost
consistent. This is because tightly coupled operations impose strict global serialization among
the operations under mutual exclusion. This implies that whether they operate on the same or
different memory locations does not affect the timing. Figure 3.4 shows the average timing per
operation for different number of threads operating in 0% and 100% contention. In this graph,
we observe that benchmark 2.1 and benchmark 2.2 gives consistantly matching results.

Figure 3.5 shows the timings for atomic_bit_set_32_strict() for different number of
threads. We can observe that the amount of time depends on the number of threads operating
in the environment. The figure shows the average time per operation and there is a very slight
variations for the number of operations per thread ( between 10 and 10000 operations).
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Figure 3.4: Time Measurements for atomic bit set 32 strict(): Same memory vs Different
memory

Figure 3.5: Time Measurements for atomic bit set 32 strict(): 10 ops per Thread vs 10000 ops
per Thread
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Table 3.6: Time Measurement for Same Memory Location in Tilera Specific Core Operations
Avg time(usec) per op

compxchng atomic bit set atomic increment
# of threads 32 bit 64 bit 128 bit 32 bit 64 bit 128 bit 32 bit 64 bit 128 bit
2 4.61 4.55 4.63 4.58 4.67 4.79 4.63 4.60 4.62
4 7.60 7.42 7.65 9.53 9.27 7.72 7.59 7.43 8.71
8 21.89 17.92 17.77 18.94 21.87 18.36 17.74 18.61 18.20
16 61.37 57.87 60.70 65.42 64.17 65.79 66.65 55.92 60.08
32 230.72 241.25 243.19 243.54 219.36 234.31 232.06 216.74 206.37

Table 3.7: Time Measurement for Different Memory Locations in Multi-core for Native Atomics
Avg time(usec) per op

# of threads cmpxchng 32 bitset 32 increment 32
2 0.1797 0.1680 0.1736
4 0.1677 0.1612 0.1480
8 0.1614 0.1721 0.1561
16 0.1577 0.1865 0.1759
32 0.1819 0.1837 0.2034

3.4 Benchmark 2.3

Benchmark 2.3 described in Section 2.2.5 covers the scenario of different levels of contention
among threads. Some of the threads operate on same memory location and some work on
different memory locations. Figure 3.4 and Figure 3.4 shows the comparative experimental
evaluation of benchmark 2.3 using different levels of contentions among threads (0%, 50%, 75%
. . . etc.) for 32, 64 and 128 bit atomics for loosely coupled synthesized and native operations,
respectively. In this experiment, we observe that timing increases with the level of contention
in all cases. However, the rate of increase is higher for higher contention level than lower.

Figure 3.4 shows the comparative experimental evaluation of the Tilera-specific server core
operations for 32, 64 and 128 bits. As we can observe, the timing is not dependent on the levels
of contentions. Using a hash function to map addresses ensures that same addresses will map
to same server core but does not guarantee that different addresses will always map to different
server cores. In fact, the mapping of addresses to cores depends on the hash function used and
the number of server cores. Thus, these results are not solely determined by the contention
levels only.

Since tightly coupled operations are strictly serialized, the contention level does not affect
the timing of the operations. The timing is only affected by the number of operations to perform
as explained in Section 3.3. The timing is consistent across different levels of contentions. Hence,
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Table 3.8: Time Measurement for Different Memory Location in Multi-core for Synthesized
Atomic Operations

Avg time(usec) per op
compxchng atomic bit set atomic increment

# of threads 32 bit 64 bit 128 bit 32 bit 64 bit 128 bit 32 bit 64 bit 128 bit
2 0.8433 0.9537 0.8349 0.6987 0.9458 0.8778 0.7523 0.8181 0.8848
4 0.7588 0.8254 0.9715 0.7434 0.7947 0.7708 0.7459 0.7777 0.6300
8 1.0101 1.0058 1.0844 0.9449 0.9470 0.9497 0.9637 1.0139 0.9453
16 0.9819 1.1727 1.2108 0.9930 1.0320 1.0833 1.0653 0.9770 0.9956
32 1.0826 1.1207 1.2056 1.0119 1.0487 1.0573 1.0361 1.0454 1.0453

Table 3.9: Time Measurement for Different Memory Locations in Multi-core for Tightly Cou-
pled Operations

Avg time(usec) per op
compxchng atomic bit set atomic increment

# of threads 32 bit 64 bit 32 bit 64 bit 32 bit 64 bit
2 80.9807 75.8616 78.8875 80.6186 76.7538 81.5652
4 179.5299 177.8852 181.4333 179.9620 178.6868 179.8961
8 382.9954 387.9492 384.2290 386.7123 387.0867 383.2531
16 803.9558 816.8051 806.2456 809.0078 812.4230 804.8057
32 1702.1941 1711.5885 1718.2403 1745.9219 1732.0744 1721.9385

we do not present the results for tightly coupled operations of Benchmark 2.3 here.

3.5 Benchmark 3.1

Benchmark 3.1 is described in section 2.2.6. We run this benchmark for multi hop (0, 1, 2, 3
hops) distance with 4, 8, 12, 16 threads operating in different groups on Tilera. Figures 3.9 , 3.11
and 3.12 show the resulting timing measurements for atomic_bitset(), atomic_increment()

and compxchng(), respectively. Figures 3.13 , 3.14 and 3.15 shows the resulting timing measure-
ments for atomic_bitset_64(), atomic_increment_64() and compxchng_64(), respectively.
Figures 3.16 , 3.17 and 3.18 shows the resulting timing measurements for atomic_bitset_128(),
atomic_increment_128() and compxchng_128(), respectively. We did not observe any con-
sistent relation between the timing and placement of threads across cores. Hence, these results
remain inconclusive.

From the experimental results, we can conclude that native atomic operations have the
best performance with respect to timing. Since synthesized operations are implemented in
user space, they are always associated with extra overhead. Comparing the different locking
mechanisms for synthesized operations, we can conclude that locking using mutex locks for
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Table 3.10: Time Measurement for Different Memory Locations in Tilera-specific Core Oper-
ations

Avg time(usec) per op
compxchng atomic bit set atomic increment

# of threads 32 bit 64 bit 128 bit 32 bit 64 bit 128 bit 32 bit 64 bit 128 bit
2 4.24 4.32 4.74 4.22 4.04 4.73 4.23 4.21 4.82
4 4.67 4.85 7.65 4.55 4.70 7.42 4.53 4.82 8.34
8 5.24 7.48 18.13 54.97 8.02 18.34 5.25 8.27 18.28
16 7.79 17.08 65.32 7.72 19.45 58.00 7.88 17.45 64.61
32 17.47 71.72 203.61 17.72 69.73 211.76 18.27 63.63 205.96

higher bit-length operands is a good choice for Benchmark 2.1. For Benchmark 2.2, the server
core locking mechanism may perform better provided it uses a good hashing algorithm and a
sufficient number of server cores. In this case, the message passing overhead can be compensated
for by uniform distribution of operations across cores. Tightly coupled operations have the
lowest performance. However, a strict FIFO ordering among the operations may be desirable
in specific scenarios which may justify the overhead.
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Figure 3.6: Time Measurement at Different Contention Level for Loosely coupled Native
Atomic Operations
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Figure 3.7: Time Measurement at Different Contention Level for Loosely coupled Synthesized
Atomic Operations
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Figure 3.8: Time Measurement at Different Contention Level for Tilera-specific Atomic Oper-
ations
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Figure 3.9: Time Measurements for Native atomic bit set. (a) Horizontal, (b) Vertical, (c)
Diagonal

Figure 3.10: Time Measurements for Synthesized atomic bit set 32. (a) Horizontal, (b) Verti-
cal, (c) Diagonal
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Figure 3.11: Time Measurements for Native atomic incremet. (a) Horizontal, (b) Vertical, (c)
Diagonal

Figure 3.12: Time Measurements for compxchng. (a) Horizontal, (b) Vertical, (c) Diagonal
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Figure 3.13: Time Measurements for atomic bit set 64. (a) Horizontal, (b) Vertical, (c) Diag-
onal

Figure 3.14: Time Measurements for atomic increment 64. (a) Horizontal, (b) Vertical, (c)
Diagonal
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Figure 3.15: Time Measurements for atomic compare exchange 64. (a) Horizontal, (b) Verti-
cal, (c) Diagonal

Figure 3.16: Time Measurements for atomic bit set 128. (a) Horizontal, (b) Vertical, (c)
Diagonal
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Figure 3.17: Time Measurements for atomic increment 128. (a) Horizontal, (b) Vertical, (c)
Diagonal

Figure 3.18: Time Measurements for atomic compare exchange 128. (a) Horizontal, (b) Ver-
tical, (c) Diagonal
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Chapter 4

Summary

4.1 Conclusion

In this thesis, we define a generic test suite of micro-benchmarks for the assessment of simple
and complex atomic operations on different architectures. We also define a set of atomic
operations, both native and synthesized, that can be used to assess the performance of an
architecture. We implement the synthesized operations with different locking mechanisms and
measure their relative performance. We use the Tilera architecture as our testing platform for
this benchmark suite.

Our results give an indication of the performance of the Tilera architecture with respect
to shared memory updates using native and synthesized atomics. These results can be com-
pared with other architectures subjected to the same benchmarks to compare the suitability
of different platforms for software routing with respect to shared memory performance, which
reinforces the thesis statement.

In the future, we plan to extend support to a number of architectures. We also plan to
extend the benchmark suite to include tests on several stand-alone routing operations handling
different types of network traffic. Ultimately, we want to create a complete, easily installable
and portable benchmark suite that will assess the performance of different architectures head
to head and provide a preliminary assessment of that architecture in terms of suitability for
implementing software routing. This will help vendors to assess their architectural platforms
in comparison with others and improve particular aspects of it. This will also help developers
to select an architectural platforms for the implementation of a full-fledged software router or
for partial software router functionalities.
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4.2 Future Work

In the future, this work is to be extended by (1) Supporting multiple architectures and (2)
Extending the benchmarks suite to include tests on several stand-alone routing operations
handling different types of network traffic.
Our benchmark test suite at present only assesses the performance of atomic operations in
the Tilera platform. We plan to extend support to other architectures. We already tried to
minimize architecture-specific features of library functions. One could further incorporate these
architecture-specific functions in different dynamically linked libraries (DLL) and load them
as needed per architecture. In the future, we plan to extend support for different vendors-
Freescale, Intel, NVIDIA and so on. Ultimately, this benchmark suite should be compatible
with many architectures and should provide a realistic comparative assessment on a standard
code base.

In the second phase, this micro-benchmark should be extended to full-fledged router func-
tionality kernels. We plan to implement tests for important features, e. g., router table lookup,
checksum computation, encryption/decryption and forwarding. These kernels may use our
atomic ext library for performing atomic operations. These functions need to be tested with
flow-based (video or audio data stream) and stateless (Independent control and data packets)
network traffic. In short, the future work’s objective is to create a complete benchmark suite
that will assess different architectures head to head. This suite should be easily installable and
portable across the supported architectures.
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Appendix A

Appendix

A.1 Installation and Download

With the TILExpress card already installed, follow the steps below to run a sample program.
To install the hardware, follow the instructions in [13] (access permission required).

• Define the TILERA ROOT environment variable to point at the resulting file hierarchy:
$ export TILERA ROOT=/opt/tilera/TileraMDE-2.1.0-rc.94454/tilepro/

• Add $TILERA ROOT/bin to your PATH.

• Once the above steps are done, verify that your software has been installed properly by
running:
$ tile-monitor −−image 2x2 −− cat /proc/version

• mkdir -p /̃tilera/TileraMDE-2.1.0-rc.94454/tilepro/

• cp -R /opt/tilera/TileraMDE-2.1.0-rc.94454/tilepro/examples .

• cd examples/getting started/hello world

• make run (to run simulator) or make run pci (to run in the actual hardware).

You can download the entire benchmark suite from [2]. Download and copy it into your
.tilera/workspace directory. Extract using: tar xvzf benchmark.tgz

A.2 Execution and results

The entire code base is comprised of the components described in Table A.1.
Each component includes the benchmark tests described in Table A.2.

45



Table A.1: Main Components
Component Functions
atomic bitset Consists of benchmark tests for 32 bit loosely coupled atomic

operation atomic_bit_set_32()
atomic bitset 64 Consists of benchmark tests for 64 bit loosely coupled atomic

operation atomic_bit_set_64()
atomic bitset 128 Consists of benchmark tests for 128 bit loosely coupled atomic

operation atomic_bit_set_128()
bitset core 32 Consists of benchmark tests for 32 bit Tilera specific server core

atomic operation atomic_bit_set_32_core()
bitset core 64 Consists of benchmark tests for 64 bit Tilera specific server core

atomic operation atomic_bit_set_64_core()
bitset core 128 Consists of benchmark tests for 128 bit Tilera specific server core

atomic operation atomic_bit_set_128_core()
tight atomic bitset 32 Consists of benchmark tests for 32 bit tightly coupled atomic

operation atomic_bit_set_32_strict()
tight atomic bitset 64 Consists of benchmark tests for 64 bit tightly coupled atomic

operation atomic_bit_set_64_strict()
cmpxchng Consists of benchmark tests for 32 bit loosely coupled atomic

operation atomic_compare_and_exchange_32()
cmpxchng 64 Consists of benchmark tests for 64 bit loosely coupled atomic

operation atomic_compare_and_exchange_64()
cmpxchng 128 Consists of benchmark tests for 128 bit loosely coupled atomic

operation atomic_compare_and_exchange_128()
cmpxchng core 32 Consists of benchmark tests for 32 bit Tilera specific server core

atomic operation atomic_compare_and_exchange_32_core()
cmpxchng core 64 Consists of benchmark tests for 64 bit Tilera specific server core

atomic operation atomic_compare_and_exchange_64_core()
cmpxchng core 128 Consists of benchmark tests for 128 bit Tilera specific server core

atomic operation atomic_compare_and_exchange_128_core()
tight atomic cmpxchng 32 Consists of benchmark tests for 32 bit tightly coupled atomic

operation atomic_compare_and_exchange_32_strict()
tight atomic cmpxchng 64 Consists of benchmark tests for 64 bit tightly coupled atomic

operation atomic_compare_and_exchange_64_strict()
atomic increment Consists of benchmark tests for 32 bit loosely coupled atomic

operation atomic_increment_32()
atomic increment 64 Consists of benchmark tests for 64 bit loosely coupled atomic

operationatomic_increment_64()
atomic increment 128 Consists of benchmark tests for 128 bit loosely coupled atomic

operation atomic_increment_128()
increment core 32 Consists of benchmark tests for 32 bit Tilera specific server core

atomic operation atomic_increment_core()
increment core 64 Consists of benchmark tests for 64 bit Tilera specific server core

atomic operation atomic_increment_core()
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increment core 128 Consists of benchmark tests for 128 bit Tilera specific server core
atomic operation atomic_increment_128_core()

tight atomic inc 32 Consists of benchmark tests for 32 bit tightly coupled atomic
operation atomic_increment_32_strict()

tight atomic inc 64 Consists of benchmark tests for 64 bit tightly coupled atomic
operation atomic_increment_65_strict()

Table A.2: Benchmark tests
Filename Description parameters
atomic singlecore.c Implementation of benchmark 1.1 none
atomic multicore singlemem.c Implementation of benchmark 2.1 number of threads
atomic multicore diffmem.c Implementation of benchmark 2.2 number of threads
atomic multicore contention.c Implementation of benchmark 2.3 number of threads,

memory locations
atomic multicore placement.c implementation of benchmark 3.1 number of threads,

number of groups,
placement, hop count

atomic ext.h Header file for atomic ext none
atomic ext.c implementation of synthesized none

atomic operations

By default, we can use up to 57 cores in a TileraPro 64. Through reconfiguration of the
virtualization setup, we can use up to 63 cores. To run the benchmarks, we need to use more
than the default 57 cores, which is accomplished as follows:

• Copy vmlinux-63.hvc to home-directory/lib/boot.
mkdir lib/boot
cd lib/boot
cp $TILERA ROOT/lib/boot/vmlinux-63.hvc vmlinux-63.hvc

• Modify vmlinux-63.hvc to disable all devices except pci0.

• Execute the script using the following command:
$tile-monitor −−pci −−hvc vmlinux-63.hvc
$quit

To run an individual test (for example, atomic_singlecore) in the benchmark suite fol-
lowing the steps below:

• To compile:
tile-cc -pthread -ltmc atomic singlecore.c atomic ext.c -o atomic singlecore
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• To execute:
tile-monitor −−resume −−pci −−upload atomic singlecore atomic singlecore −−run −+
− atomic singlecore −+− −−quit

To run an entire test suite, use the following command:

• make run pci > out.txt

Figure A.1 shows a sample output file. For each benchmark test, it prints out the benchmark
name, description, the individual timing for each thread in different tiles and the average timing
for 10,000 operations, respectively.

Figure A.1: Sample Output File
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