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This paper addresses the question of how to handle irreducible regions during optimization, which
has become even more relevant for contemporary processors since recent VLIW-like architectures
highly rely on instruction scheduling. The contributions of this paper are twofold.

First, a method of optimized node splitting to transform irreducible regions of control ow into
reducible regions is formally de�ned and its correctness is shown. This method is superior to
approaches previously published since it reduces the number of replicated nodes by comparison.

Second, three methods that handle regions of irreducible control ow are evaluated with respect
to their impact on compiler optimizations. First, traditional node splitting is evaluated. Second,
optimized node splitting is implemented. Third, DJ Graphs are utilized to recognize nesting of
irreducible (and reducible) loops and apply common loop optimizations extended for irreducible
loops.

Experiments compare the performance of these approaches with unrecognized irreducible loops
that cannot be subject to loop optimizations, which is typical for contemporary compilers. Mea-
surements show improvements of 1-40% for these methods of handling irreducible loop over the
unoptimized case.
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that it only requires few changes to an optimizing compiler while limiting the code growth of
compiled programs compared to traditional node splitting. Recognizing loops via DJ Graphs
should be chosen for new compiler developments since it requires more changes to the optimizer
but does not signi�cantly change the code size of compiled programs while yielding comparable
improvements.

Handling irreducible loops should even yield more bene�ts for exploiting instruction-level par-
allelism of modern architectures in the context of global instruction scheduling and optimization
techniques that may introduce irreducible loops, such as enhanced modulo scheduling.
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1. INTRODUCTION

Compilers rely on the assumptions that loops are identi�ed to perform a number of
code optimizations. Most loop optimizations have only been formulated for natural
loops with a single entry point, the header, i.e., the sink of the backedge(s) of
such a loop. Multiple entry loops cause irreducible regions of control ow that
are typically not recognized as loops by traditional algorithms. These regions may
result from goto statements in the source code but they may also be introduced by
optimizations that modify the control ow, including global software pipelining and
code replication techniques. As a result, loop transformations and optimizations
to exploit instruction-level parallelism cannot be applied to such regions so that
opportunities for code improvements may be missed.

Modern architectures that support instruction-level parallelism often rely on
global instruction scheduling and software pipelining by the compiler to fully
exploit its capabilities. In particular, very long instruction word (VLIW) ar-
chitectures are beginning to emerge in modern architectures, such as in the
Phillips TriMedia and the IA-64, which require aggressive instruction schedul-
ing to exploit their performance [Hoogerbrugge and Augusteijn 1999]. On one
side, software pipelining demands knowledge about the structure of a program,
which contemporary compilers generally do not support for irreducible regions
of code. On the other side, aggressive global instruction scheduling may re-
sult in branch reordering and code replication, which itself may introduce irre-
ducible regions. Enhanced modulo scheduling may also introduce irreducible loops
[Warter et al. 1992]. Other code optimization techniques, such as trace scheduling
and pro�le-guided code positioning for optimizing compilers [Colwell et al. 1988;
Fischer and LeBlanc 1991; Pettis and Hansen 1990], may be combined with code
replication [Mueller and Whalley 1992; Mueller and Whalley 1995] or applied dur-
ing binary translation [Bala et al. 2000], which can result in irreducible loops.

Common algorithms to detect loops only cover natural loops [Aho et al. 1986].
As a result, irreducible loops are generally missed and will be ignored during loop
optimizations, which results in performance penalties for each loop iteration. An
alternative to ignoring loops is given by node splitting [Aho et al. 1986]. In this
approach, interval graphs are reduced step-by-step. If the resulting graph is non-
trivial (of more than one node), a node with multiple predecessors is replicated so
that the reduction process can proceed. Upon reaching a single node, the reduction
sequence is reversed but the replicated nodes remain in place. This process trans-
forms an irreducible control ow into a reducible one with only natural loops. To
our knowledge, optimizing compilers do not tend to take this approach due to the
increase in code size, which can be exponential in theory. This paper contributes
a new approach of optimized node splitting, which is formally de�ned, proved cor-
rect and shown to be superior to previously published methods and evaluates its
implementation. Recent publications provide a third approach by detecting the
nesting hierarchy of irreducible and natural loops. This allows the application of
loop optimizations by extending them to irreducible loops with multiple entries,
thereby decreasing the likelihood of missed opportunities for optimizations. The
resulting code does not su�er from increases in code size, unlike the last approach.
This paper compares these three approaches in terms of overhead of the imple-
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mentation and bene�t in performance. It also contributes methods to extend loop
optimizations for the second approach when irreducible loops are recognized.

2. TRADITIONAL NODE SPLITTING

Node splitting is based on a certain kind of interval analysis known as T1/T2-
Analysis, which was used to check for the presence of irreducible regions in a ow
graph [Aho et al. 1986]. It iteratively performs two transformations on the ow
graph reducing it to a simpler one. These transformations are:

T1 Remove any edge that connects a node to itself.

T2 If any node has exactly one predecessor, then replace this node and its prede-
cessor with a single new node. All edges to the predecessor node are connected to
the new node, and all edges leaving one of the original nodes will now originate
from the new abstract node.

If these transformations are applied as long as possible the resulting graph is called
the limit graph. As shown by M. S. Hecht [Hecht 1977] this limit graph is inde-
pendent of the order of transformations and the nodes subject to transformations.
If the �nal graph is trivial, i.e., it has only one node, the original ow graph was
reducible. If the limit graph is non-trivial, all of its nodes either have none or more
than one predecessor.
The idea of node splitting is to de�ne an additional transformation T3, which is

applied if neither T1 nor T2 are applicable anymore. T3 is de�ned as follows:

T3 Choose any node with at least two predecessors. Duplicate this node so that
there is one copy for each of them. Each of the predecessors is now connected to
one of the copies, and all of the outgoing edges of the original node are duplicated
for each copy.

After the application of T3, it is possible to use T2 again on these duplicated nodes
since they now have only one predecessor. If this process is repeated the resulting
limit graph is always trivial. If the above process is reversed, leaving the duplicated
nodes in place, the result is a reducible ow graph that is equivalent to the original
one. The entire process is illustrated in Figure 1. First, the transformation T2
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Fig. 1. Process of Node Splitting
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is applied twice, once on node 3 and once on node 5. The result is shown in
Figure 1(b). Since there are now no more nodes with only a single predecessor, T2
is no longer applicable. Therefore, T3 is applied to the abstract node containing
nodes 4 and 5 with the result shown in Figure 1(c). Now the ow graph is reducible
and the sequence T2((40,50)), T2((4,5)), T1((2,4,5)), T2((2,4,5)) reduces it into a
single abstract node.
Reversing that process �rst leads to the same ow graph as in Figure 1(c). The

transformation T3 that led to this graph, however, is not reversed but skipped.
This means that the transformation T2(5) must now be reversed for two nodes 5
and 50. Finally, the transformation T2(3) is reversed resulting in the �nal reducible
ow graph of Figure 1(d).
Though this process already yields an algorithm, its performance may be poor.

In Figure 1, for example, there is no need to split node 5. The resulting ow
graph would still be reducible if there were just one node 5 with both 4 and 40 as
predecessors. This algorithm is ineÆcient because it does not consider which nodes
form the irreducible loops. In this work, algorithms will be presented that exactly
analyze the extent, structure and nesting of irreducible loops. Based on such an
analysis a much better algorithm than that above will be constructed.

3. PROPERTIES OF IRREDUCIBLE REGIONS OF CODE

The motivation of this work is to develop an algorithm that converts an arbi-
trary irreducible control ow graph into an equivalent reducible one with the min-
imal possible growth in code size. This �rst involves the construction of an al-
gorithm and second a proof of its correctness. This work builds on Sreedhar et
al. [Sreedhar et al. 1996a], Bilardi and Pingali [Bilardi and Pingali 1996] as well as
Janssen and Corporaal [Janssen and Corporaal 1997]. We reuse some of the termi-
nology of Janssen and Corporaal [Janssen and Corporaal 1997]. In these previous
suds, it was established that each irreducible loop has exactly one maximal subset
of at least two of its nodes that have the same immediate dominator, which in turn
is not part of the loop. They also discovered that these sets play an important role
when minimizing the number of splits. Their de�nition of so-called Shared External
Dominator sets was:

De�nition 1 (Loop-set). A loop in a ow graph is a path (n1; : : : ; nk) where n1
is an immediate successor of nk. The nodes ni do not have to be unique. The set
of nodes contained in the loop is called a loop-set.

De�nition 2 (SED-set). A Shared External Dominator set (SED-set) is a subset
of a loop-set L with the properties that it has only elements that share the same
immediate dominator and the immediate dominator (idom) is not part of L. A
SED-set of a loop-set L is de�ned as:

SED-set(L) =
�
ni 2 L

�� idom(ni) = e =2 L
	
:

For a de�nition of dominators, immediate dominators and other techniques for
control ow analysis see, for instance, Muchnick [Muchnick 1997].

De�nition 3 (MSED-set). A Maximal Shared External Dominator set (MSED-
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set) K of a loop-set L is de�ned as:

SED-set K is maximal ()

6 9 SED-set M , such that K �M and K;M � L:

For example, in the original ow graph of Figure 1, there is only one loop-set
f2; 4g and the MSED-set is the entire loop-set with 1 as external dominator.
The MSED-set is really a generalization of the single entry block in natural loops,

and, in that special case, it consists of just one node. In the following, the nodes
of MSED-sets will be simply called the header nodes or headers.
Building on that, new generalized de�nitions can also be found for the bodies (an

irreducible loop can have more than one), backedges and the nesting of irreducible
loops. Figure 2 illustrates this generalized structure. The domains represent the
body of a natural loop. All edges from a domain back into the MSED-sets are
backedges. The node e is the immediate dominator of the header nodes. The
region called e-domain will be de�ned and used in the next section.
The following, generalized de�nitions of backedges and domains are based on

MSED-sets whose de�nition in turn depends on the loop-set. This means, that
the extension of the loop-set cannot be de�ned using backedges as it is for natural
loops. This is only a problem because the de�nition of MSED-sets does in no way
require the loop-set to be maximal. However, several of the following theorems only
hold if the loop-sets are SED-maximal.

De�nition 4 (SED-maximal loop-sets). A loop-set L is SED-maximal if there
is no other loop-set L0 such that L � L0 and MSED-set(L) � MSED-set(L0).
Based on that, domains and backedges can be precisely de�ned as:

De�nition 5 (Domains). Let L be an irreducible SED-maximal loop-set, K be
its MSED-set and hi be the nodes of K. The domain of hi is then de�ned as:

domain(hi) =
�
nj 2 L

�� hi dominates nj
	

Recall that the dominator relation is self-reexive. Hence, a domain includes its
header hi.

De�nition 6 (backedges). Let L be an irreducible SED-maximal loop-set, K be
its MSED-set and hi be the nodes of K. An edge (m;n) with m 2 L and n 2 K is
then called a back-edge of L.
Figure 2 already suggested several properties of irreducible loops:

Theorem 1. The nodes of L are in K or in exactly one of its domains.

Theorem 2. All edges into domain(h) n fhg originate from h.

Theorem 3. Let L1 and L2 be two di�erent, SED-maximal loop-sets, K1, K2 their
respective MSED-sets and e1, e2 the external dominators. Then

|If neither L1 � L2 nor L2 � L1 then L1 \ L2 = ;. (distinct loops)

|If L2 � L1 then there is a node h 2 K1

such that L2 � domain(h). (nested loops)
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Fig. 2. Structure of Irreducible Loops

The proofs of these theorems can be found in [Unger 1998]. The results are used
in the following section to develop an optimized algorithm for node splitting.

4. OPTIMIZED NODE SPLITTING

The knowledge about the structure of irreducible loops can be used to guide the
T3 transformation to some extend. Repeated application of T1/T2 will collapse
domains into their headers leaving an MSED-set. Applying T3 to a node in the
MSED-set then splits a header and its entire domain (see Figure 3 where b is
chosen). Alternatively, a could have been split leading to a minimal result if the

e

a b

c

(a)

e

a b; c

(b) after T2

e

a

b

b

c

c

(c) after T3

Fig. 3. Sample Split

weight �(a) < �(b) + �(c), which may be a function of code size. If, on the other
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hand, b had three incoming edges (i.e., add a header node in the example) then
three copies would result from splitting b and splitting a would have been preferable
if �(a) < 2(�(b) + �(c)). Hence, nodes should be split from the lightest to heaviest
wrt. weights of abstract nodes (the headers and domains) times the number of
incoming edges.
As the domains are collapsed into one abstract node, multiple edges from one

domain to a single header node will reduce to just one edge from the abstract node
to the header node. This is important because it reduces the number of copies of
that node and is also true for multiple edges from the outside. Figure 2 suggests
by the naming that the region called e-domain (de�ned below) should be handled
just as any other domain. That is, transformations T1 and T2 should collapse it
into e, thereby reducing multiple edges from that domain to any header node into
one edge. Of course, T3 should not be applied to this abstract node.

De�nition 7 (e-domain). Let L be an irreducible SED-maximal loop-set, K be its
MSED-set and e the external dominator. That is: If e is the immediate dominator
of the nodes in K, then the set e-domain is de�ned as:

e-domain =

8<
:ni 2 N

������
e dominates ni, ni =2 L and
9 a path p from ni into L with
e =2 p.

9=
;

Does this algorithm always produce the minimal reducible equivalent ow graph
as in the example? Unfortunately not, as is shown in Figure 4. Node b3 could

a
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e

�(a) = 5 �(c) = 4

�(b) = 3
�(G) = 12

(a)
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b1 b2

c

e

�(G) = 15
(b)

a

b1

b2

b3

c1

c2

e

�(G) = 22
(c)

Fig. 4. Splitting Lightest Nodes First (Nodes with same labels have indices for better reference)

actually be avoided. Its predecessor node c2 could as well jump to the copy b1 as
shown in Figure 5(c). Had not b but c been split �rst, Figure 5(c) would have been
the result. This means that selecting the nodes to split just by their weight is not
suÆcient. In fact, greedy algorithms for selecting a node to split are not optimal
since we can construct a counter-example in analogy to Fig. 4. Another question is
if there is always an order that leads to the minimum. Alas, not even that is true.
Figure 6 gives a ow graph together with its minimal reducible equivalent graph
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Fig. 6. T3 Cannot Split this Graph in a Minimal Way.

where no order will split the nodes to yield a minimal graph. The problematic node
is node d. This node belonged to the domain of a. Therefore, by the algorithm
above, each copy of a will get its own copy of d. But in the minimal ow graph
two copies of a share the same node d. The problem is that d is only a part of the
loop-set because of its edge to f . Once it has been moved out of the loop containing
f , it no longer is within any loop and, therefore, it no longer is in the domain of
a. This means that the domains may change in the process of splitting nodes and
this cannot be handled by the simple algorithm above.
A new approach has been developed, based on the observation that all of the

examples contained one of the header nodes that was not split at all. In the previous
approach, the header nodes had been selected for splitting one after another until
only one remained. At that moment, the irreducibility had been resolved. However,
as we have seen, there were examples where no selection scheme led to a minimal
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result. The new approach, therefore, does not choose single nodes for splitting.
Instead, it chooses a single header node (plus its domain, of course) that should be
the one that is not split at all. All other nodes of the loop-set are split once. This is
illustrated in Figure 7(a). The regions containing the copies of the remaining nodes
of L are not yet guaranteed to be reducible but they are guaranteed to be smaller
than L by at least one node. Hence, the above step can be applied recursively to
these copied regions. This new approach also needs a scheme for selecting the node
h1 with the advantage over the previous approach that for any ow graph there is
a selection scheme that leads to a minimal result. All that remains is to actually
�nd this scheme.

e

e

h1

h1

MSED-set

hi

hi

hi

(a)

a

a

b

b

c

c

d

d

e

f

(b)

Fig. 7. One Step of the Recursive Algorithm

4.1 Outline of the Algorithm

In the following, the algorithm is de�ned more precisely. The following notation will
be used in the following: If f is a function over the nodes of any control ow graph,
then f(X), where X is a subset of these nodes, stands for the set ff(x)jx 2 Xg.

De�nition 8 (Transformation Tr). Let G = (N;E; s) be an arbitrary (irre-
ducible) control ow graph, L an SED-maximal, irreducible loop-set of G, K its
MSED-set, e the external dominator and h an arbitrary node from K. Then
the transformation G0 = (N 0; E0; s0) = Tr(G;L; h) is de�ned as follows (with
S = (L n domain(h))):

|N 0 = (N � f1g) [ (S � f2g)

|E0 � N 0 �N 0 such that the following restrictions hold:

|(x; y) 2 E ^ (x; y) =2 (domain(h)� S) () ((x; 1); (y; 1)) 2 E0 (8.1)

|(x; y) 2 E ^ (x; y) 2 (domain(h)� S) () ((x; 1); (y; 2)) 2 E0 (8.2)

|(x; y) 2 E ^ (x; y) 2 (S � (N n S)) () ((x; 2); (y; 1)) 2 E0 (8.3)

|(x; y) 2 E ^ (x; y) 2 (S � S) () ((x; 2); (y; 2)) 2 E0 (8.4)

|s0 = (s; 1)
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The above transformation represents one step of the algorithm. All nodes of the
loop-set L, except for those in the selected header node's domain, are split. The new
copies of these nodes are represented by the syntactical construction S�f2g while
the old nodes are represented byN�f1g. In other words, a single Tr transformation
results in one split to copy S so that unnecessary copies are avoided.
For example, applying Tr once on the graph of Fig. 6(a) without copying node

f results in Fig. 7(b). Then, domain(f) = ffg and S = fa; b; c; dg. Restriction
8.1 preserves the original edges, such as e ! f . Restriction 8.2 creates new edges
from the domain to loop nodes outside the domain, such as f ! a. Restriction 8.3
duplicates exits from the loop to original nodes (not depicted in the example). And
restriction 8.4 covers internal nodes within the duplicated region, such as a! b in
the lower right box of Fig. 7(b).
A proof of the correctness of optimized node splitting using Tr is given in the

following. The formal proof shows the correctness but it does not provide a con-
structive scheme to select the optimal header node excluded from splitting. Intu-
itively, we can yield optimal results by freezing the \right" domain in each step,
thereby minimizing the number of splits, for a clairvoyant selection of the header
of this domain. It can be shown that an optimal header exists and that Tr would
result in an optimal splitting sequence if the optimal node was chosen. However,
it is an open problem if an eÆcient (polynomial time) algorithm to identify this
node exists. In our experiments, we use the heuristic to select (and then freeze) the
heaviest header and its domain while all other nodes in the loop set are split. The
heaviest header is the node of the MSED-set whose entire domain has the largest
number of instructions within the intermediate code representation (see section 6).
The pseudo code of the recursive algorithm for Tr is given in the appendix since

it uses data structures de�ned by DJ graphs, which are introduced in more detail
in section 5.

4.2 Proof of Correctness

The labeling and weight of the new graph can be easily de�ned by the labeling and
weight of the original graph:

De�nition 9 (Corresp. Labeling and Weight). If l is an labeling of G, then
the corresponding labeling l0 of G0 is de�ned as

l0((x; �)) = l(x)

If � is a weight function of G, then the corresponding weight function �0 of G0 is
de�ned as

�0((x; �)) = �(x)

Here, the notation (x; �) stands for any tuple (x; y).
For the proof of correctness we assume no particular order in which Tr is applied.

The algorithm just chooses an SED-maximal, irreducible loop-set L and a header
node h of L and applies Tr(G;L; h). Then, the algorithm will �nally construct an
equivalent reducible ow graph, where � denotes the equivalence relation between
two graphs, i.e., their labeling correspondence for all nodes. Because� is transitive,
it suÆces to show that the following theorem holds in order to show the partial
correctness of the algorithm.
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Theorem 4 (Partial correctness). Let G be an arbitrary (irreducible) control
ow graph, L an SED-maximal, irreducible loop-set of G, K its MSED-set, e the
external dominator and h an arbitrary node from K. Then G � Tr(G;L; h) with
respect to the labeling l and the corresponding labeling of Tr(G;L; h).

Proof. =)
Let p = (p1; : : : ; pn) be an arbitrary path of G. Then q = (q1; : : : ; qn) with

q1 = (p1; 1)

qi+1 =

8<
:

(pi+1; 2) if pi+1 2 S ^ (qi = (pi; 2)_
pi 2 domain(h))

(pi+1; 1) otherwise

is a path of Tr(G;L; h) with 81 � i � n : l(pi) = lr(qi) where lr is the corresponding
labeling of Tr(G;L; h).
(=

Let q = (q1; : : : ; qn) be a path of Tr(G;L; h). From the construction of Tr(G;L; h)
follows that qi = (pi; k) with k 2 f1; 2g and if (qi; qi+1) 2 E0, then (pi; pi+1) 2 E.
Thus, p = (p1; : : : ; pn) is a valid path of G and by De�nition 9 lr(qi) = l(pi), where
lr is again the corresponding labeling.

If the algorithm applies Tr as long as there is any irreducible loop-set, then the
proof of reducibility and termination become equivalent. Therefore, to complete
the proof of correctness, it is suÆcient to show that Tr �nally constructs a reducible
ow graph.

Theorem 5 (Termination). Let G = (N;E; s) be an arbitrary (irreducible) con-
trol ow graph. Then, if G is repeatedly transformed by Tr(G;L; h), where L is an
arbitrary irreducible loop-set of G and h is a header node of L, then after a �nite
number of such transformations G will be reducible.

Proof. From Theorem 1 follows that for each irreducible loop-set L0 with L0 6= L
one of the following is true:

|L0 \ L = ;
But then the nodes and edges of L0 are completely una�ected by the application
of Tr.

|L0 � L
But then L � domain(h0) for some h0 2 MSED-set(L0) and the changes made by
Tr are restricted to domain(h0) and do not a�ect MSED-set(L0).

|L0 � L
Then L0 � domain(h0) for some h0 2 MSED-set(L). If h0 = h, then L0 is
completely una�ected by the application of Tr. Otherwise L

0 � S and thus has
been split. However, since all edges within S have been duplicated on both copies
S�f1g and S�f2g, L0 is present twice in Tr(G;L; h) and both copies still have
the same number of header-nodes.

However, since (h; 1) dominates all nodes in S�f2g[domain(h)�f1g and there
is no edge from S � f2g [ domain(h) � f1g to S � f1g, any remaining irreducible
loop-set in these regions is either a nested loop-set already present in G or (since
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all of the original header nodes still dominate their respective domains) this loop
set must have at least one less header node than L.
Thus, on every application of Tr one loop-set's MSED-set becomes smaller by

one node, while the MSED-sets of all other loop-sets are una�ected. Though some
loop-sets are duplicated, these can only be subsets of the one that got smaller. And
�nally, each irreducible loop-set will become a top-level one and then can itself only
become smaller. Therefore, all loop-sets will eventually have an MSED-set with
only one node and thus will be reducible.

This means that any ow graph can be converted to an equivalent and reducible
one by the repeated application of Tr alone. It remains to be shown that there is
always a sequence of transformations that leads to a minimal �nal graph. To prove
this, a sequence is constructed from an arbitrary minimal graph. This, of course,
is not a constructive proof as it cannot be used to transform a ow graph into a
minimal equivalent one without knowing the �nal graph beforehand. However, it
is still important to prove the above property.
In the following, a brief outline of the remaining steps of the proof is given. The

complete formal proof is presented in the appendix.
The proof consists of the following steps: A minimal sequence is constructed by

choosing a loop L of ow graph G within some constraints. This L is identi�ed
within the minimal, reducible equivalence graph Gmin to �nd the header h for the
transformation Tr(G;L; h), which is accomplished by describing equivalent loop
sets of G and Gmin via their labeling. Then it is shown that

|there is always a loop-set L with exactly one equivalent loop-set;

|a header of the graph after applying Tr is always a header node of L; and

|the �nal (reducible) graph G from this construction is minimal wrt. its weights
since �(G) = �min(Gmin).

5. USING DJ GRAPHS TO OPTIMIZE IRREDUCIBLE LOOPS

The representation of DJ Graphs [Sreedhar et al. 1996a] may be used for incremen-
tal data-ow analysis but it also provides the means to perform loop optimizations
on irreducible loops. By constructing the DJ Graph of a control-ow graph, natural
and irreducible loops and their nesting hierarchy can be detected.
An example is depicted in Figure 8, which represents the DJ-Graph of the control-

ow graph in Figure 6(a). The DJ-Graph consists of the edges of the dominator
tree (dashed), backedges, and the remaining edges of the control ow called cross
edges (solid). Furthermore, sp-back edges are control-ow edges x ! y where
x = y or y is an ancestor of x in a spanning tree resulting from a depth-�rst search.
In the example, a search in the order of the indicies of the nodes indicates that
the edges marked with bullets are sp-back. Loops in the DJ-Graph can then be
found starting from the lowest dominator level (level 3). If a backedge exists at the
current level, then nodes corresponding to its natural loop are collapsed into one
node. Afterwards, if a cross edge is also sp-back, all strongly connected components
at the current level or below represent an irreducible loop and are collapsed to a
single node before considering the next higher level. In the example, there are
no backedges but several cross edges at level 1 that are also sp-back. The only
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Fig. 8. DJ-Graph for Fig. 6(a)

strongly connected components comprise all nodes at level 1 or below, i.e., exactly
one irreducible loop is found. However, Figure 6(b) shows that an inner loop
fa; bg and an outer loop fa; b; cg may be distinguished by optimized node splitting.
Nonetheless, DJ-Graphs still allow the distinction of irreducible loop bodies either
if they comprise di�erent levels or if they represent distinct strongly connected
components. Furthermore, DJ-Graphs also allow the detection of reducible loops
within irreducible ones. Had there been an edge d ! c in Figure 8, then this edge
would have been recognized as a backedge whose source and sink comprise a loop
at level 2.
There are other di�erences between natural loops and DJ-graphs representations

of irreducible loops. Instead of one loop header for natural loops, irreducible loops
have multiple entry blocks with predecessor blocks outside the loop. Furthermore,
there is no block in an irreducible loop that dominates all other blocks within the
loop. Notice, however, that we allow a natural loop to share a header with an
irreducible loop. We still distinguish both loops in this case. These di�erences
require changes to other loop optimizations, as presented in the following.

5.1 Adapting Code Motion

Code motion moves invariant operations out of the body of a natural loop into the
preheader block. For irreducible loops, the set of entry blocks can be augmented
by a set of preheader blocks. Then, a copy of a loop-invariant operation is moved
into all preheaders at once. Code motion as stated in [Aho et al. 1986] applies with
minor changes, e.g., to �nd invariant statements:

(1) dst = src is invariant if src is constant or its reaching de�nitions are outside
the loop. We check registers live on entry for each preheader of the loop in this
case.

(2) transitively mark statements in step 3 until no more unmarked invariant state-
ments are found.

(3) dst = src is invariant if src is constant, if its sole reaching de�nition inside the
loop is marked invariant or if its reaching de�nitions are outside the loop.
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The optimizing compiler VPO [Benitez and Davidson 1988] used in the experi-
ments also moves invariant memory accesses but reads are only moved if there are
no writes within the loop and the reads are executed during each iteration. The
latter condition prevents that reads conditional on non-null references are moved
out of the loop without the corresponding test-for-null, which would have caused a
memory fault. For natural loops, we test for an unconditional execution during each
loop iteration by requiring a read to dominate all sources of backedges within the
loop. Since irreducible loops do not have backedges, we have to calculate equivalent
information beyond DJ Graphs. For each entry of an irreducible loop, we delete
all other entries and collect the sources of all backedges within the resulting region.
Notice that such a region may contain more than one natural loop now. We call
the collected blocks the sources of pseudo-backedges of the irreducible loop. A block
of an irreducible loop is executed during each iteration if it dominates all sources
of pseudo-backedges within the corresponding reducible regions. This requires that
the dominator information of the reducible pseudo-regions be associated with an
irreducible loop. In Section 7, other techniques for code motion are discussed with
regard to their applicability to irreducible code.

5.2 Handling Induction Variables

Finding induction variables becomes more complicated due to irreducible loops. We
limit our approach by requiring that changes to induction variables are performed
in blocks which are executed on each loop iteration. This information is already
available from code motion for memory reads.
In addition, one could allow balancing modi�cations in corresponding conditional

arms. These arms range from a split at an always iterated block to a join at the next
block that is always executed during each loop iteration. We did not implement
this extension.
Once induction variables are identi�ed, strength reduction and induction variable

elimination can be performed as for natural loops, except that invariant operations
of register loads are moved into all preheaders of the irreducible loop.

5.3 Other Optimizations

Similar to the handling of induction variables, recurrences can be optimized by
moving the prologue into all preheaders, given that the memory access originates
in a block that is executed on each loop iteration. Other optimizations also bene�t
from the additional loop information. For example, global register allocation is
performed by prioritized graph coloring in VPO. The priority is based on the loop
frequency, which is readily available even for irreducible loops and their nesting
within other loops. No modi�cation was required to such optimizations.

6. MEASUREMENTS

We chose VPO [Benitez and Davidson 1988] as a platform to conduct a performance
evaluation. VPO only recognizes natural loops with a single header where a loop
is entered, just as all contemporary optimizing compilers we know of. Irreducible
regions of code (including natural loops within this region) are recognized but, due
to lack of knowledge about their structure (headers, backedges and exits), loop
optimizations cannot be applied.
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First, we added the recognition of DJ Graphs to VPO, extended code motion,
strength reduction, induction variable elimination and recurrences. Second, we also
implemented the method of optimized node splitting through the Tr transforma-
tion described in this paper. The heuristic driving node selection was to choose the
header of the domain with the most instructions. This node (and its domain) were
not split while all other nodes in the loop set were split. Third, traditional node
splitting using the T1/T2/T3 transformations was also integrated. The heuristic
considers for each header the number of instructions times predecessors (see sec-
tion 4, x1). The header with the smallest heuristic value is then chosen. These
optimizations were activated through additional compiler switches.
A number of test programs with irreducible loops were used to measure the e�ect

of the three di�erent approaches. Dfa is a program that simulates a deterministic
�nite automaton representing an irreducible loop containing two independent nat-
ural loops (see Fig. 2a in [Sreedhar et al. 1996a]). Arraymerge merges two sorted
arrays into a third sorted one and was originally extracted and translated from a
Fortran application. Tail (output the bottom of a �le), Unifdef (C-�les without con-
ditionally compiled regions), Hyphen (�nd hyphenated words), Cpp (preprocessor
for C-�les), Nro� (text formatter) and Sed (string editor) are UNIX utilities.
The measurements were collected for the Sun SPARC architecture us-

ing the environment for architectural study and experimentation (EASE)
[Davidson and Whalley 1990] that is integrated into VPO. Table I shows in col-
umn 1 the name of a program with an irreducible region in some function. (See
Table III for a correlation between functions and programs.) Column 2 depicts
the number of dynamically executed instructions (of the object code) within this
function when loop optimizations are not applied to irreducible regions. Column

Ignore DJ Node Splitting
Program IRLoops Graph T3(trad.) Tr(opt.)

dfa 64736 -13.91% -13.85% -13.88%
arraymerge 37401300 -36.76% -39.70% -39.70%

tail 270012 0.00% 0.00% 0.00%
unifdef1 16864 -0.36% +9.01% +10.37%
unifdef2 13169 -4.40% -7.23% -1.10%
hyphen 447232850 +0.01% +0.01% +0.01%
cpp 7510602 +0.05% -1.61% -1.18%
nro�1 340830 -8.28% -7.19% -13.50%
nro�2 1950909 -4.37% -4.42% -0.19%
nro�3 350305 0.00% +0.06% +0.13%
sed 846 -0.59% -4.02% -4.49%

Table I. Executed Instructions and their Changes for Irreducible Regions

3 represents the portion of executed instructions for the DJ-Graph approach and
adapted loop optimizations relative to Column 2. Column 4 shows the portion of
executed instructions for traditional node splitting (using the T3 transformation)
relative to Column 2. Column 5 depicts the portion of executed instructions for
optimized node splitting (using the Tr transformation) relative to Column 2.
For the DJ-Graph approach, optimized and traditional node splitting show com-

parable reductions of 1-40% in the number of executed instructions. Notice that
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our compiler, VPO, optimizes code quite aggressively, i.e., in the presence of ir-
reducible regions only loop optimizations are suppressed. All other optimizations
are still performed on reducible and irreducible regions. Furthermore, loop opti-
mizations are performed on reducible loops that share a function with irreducible
ones. Other compilers may not optimize any loops within a function when an ir-
reducible region is detected, or may even suppress a larger range of optimizations
in such a case. In that case, handling irreducible code would result in even higher
gains. The quantity of improvements are subject to the execution frequency of ir-
reducible regions within the enclosing function. For example, Arraymerge contains
a central loop for sorting that was irreducible. Tail, on the other hand, contains
an irreducible loop for block reads, which is executed infrequently relative to the
other instructions within the function. The function \skipcomment" in Unifdef1
showed worse results for optimized node splitting, which is correlated to fewer delay
slots of branches being �lled. The measurements only include those instructions in
delay slots that are actually executed [Weaver and Germond 1994]. But when no
instruction can be moved into a delay slot due to instruction dependencies, then
no-ops must be placed in the delay slot resulting in the execution of additional
instructions. A more aggressive method to �ll delay slots may be required in this
particular case to compensate for the increased number of branch instructions due
to node splitting. Similar e�ects were observed for cases where little changes were
observed.
Table II depicts for a function of a program containing an irreducible loop the size

of the function in number of instructions. The code size only changes insigni�cantly

Ignore DJ Node Splitting
Program IRLoops Graph T3(trad.) Tr(opt.)

dfa 167 -4.79% +30.54% +21.56%
arraymerge 120 -0.83% +32.50% +19.17%
tail 470 +1.70% +6.60% +3.83%
unifdef1 56 +7.14% +26.79% +28.57%
unifdef2 56 +1.79% +21.43% +25.00%
hyphen 168 +8.93% +20.24% +20.24%
cpp 730 -0.27% +1.64% +2.33%
nro�1 239 +0.84% +35.15% +10.46%
nro�2 215 +0.47% +25.58% +1.86%
nro�3 102 0.00% +16.67% +9.80%
sed 1260 +2.06% -0.40% -1.27%

Table II. Size of Irreducible Regions in Instructions and their Changes

for DJ-Graphs. These small changes are due to other optimizations. The quantity
of changes depends on the number of preheaders and the compensation by other op-
timizations, such as peephole optimization. For optimized node splitting, the code
size changes between -1% and 28%. This change in size is measured relative to the
original function containing an irreducible loop. The change in code size relative to
the entire program was between 0.5% and 3.5% for larger test programs and 8-17%
where the irreducible loop comprised most of the test program (Dfa, Arraymerge
and Hyphen). The fact that node splitting stops at function boundaries limits the
overall increase in code size for the entire program so that exponential growth was
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not encountered in the experiments and is unlikely in general. Traditional node
splitting resulted in more code growth (up to 35%). In most cases, traditional node
splitting not only resulted in larger code, the dynamic instruction count was also
not much di�erent than optimized node splitting. This shows that for most cases
optimized node splitting reduces the amount of code duplication while preserving
the performance. In a few cases (e.g. unifdef2), the traditional method performed
better than the optimized one (few instructions executed and less duplication).
This seems to indicate that there is still room for further investigation into better
heuristics or even pro�le-driven node selection for the Tr transformation.
The di�erences between the two node splitting techniques are further illus-

trated in Table III depicting the number of copied register transfer lists (RTLs)
[Benitez 1991] for traditional T3 splitting (Column 2) and optimized Tr splitting
(Column 3) with changes relative to Column 2 in parenthesis. Since both node

Node Splitting
Program(Function) T3(trad.) Tr(opt.)

dfa(main) 701 204 (-70.90%)
arraymerge(MergeArrays) 306 50 (-83.66%)
tail(main) 1906 100 (-94.75%)
unifdef1(skipcomment) 218 56 (-74.31%)
unifdef2(skipquote) 191 44 (-76.96%)
hyphen(main) 914 153 (-83.26%)
cpp(cotoken) 2791 71 (-97.46%)
nro�1(text) 975 138 (-85.85%)
nro�2(getword) 787 103 (-86.91%)
nro�3(suÆx) 417 28 (-93.29%)
sed(fcomp) 4897 38 (-99.22%)

Table III. Number of Copied RTLs (Instructions) during Node Splitting

splitting approaches are performed as one of the �rst optimizations, each RTL of
the intermediate code representation resembles a very simplistic instruction. The
numbers show that the traditional method results in signi�cantly more replicated
code after node splitting than the optimized approach, which only requires 1-30%
of copied RTLs under Tr relative to T3. This underlines the qualities of our new
method for node splitting. Notice that the increases in code size depicted in Table
III are not as signi�cant as the di�erences between T3 and Tr in Table II. This can
be explained as follows. Both node splitting techniques are performed as one of the
�rst code optimizations. VPO then thoroughly optimizes the resulting code, e.g.,
through aggressive peephole optimization, folding branch chains etc., which results
in a less signi�cant di�erence of increased code sizes for T3 and Tr. This suggests
that T3 may yield considerably inferior results than Tr for optimizing compilers
with less aggressive optimizations than VPO. It shows again that optimized node
splitting is superior to the traditional approach but actual savings depend on the
phase ordering of optimizations and the infrastructure of the optimizing compiler
as such.
In addition, we compared the node splitting methods T3 and Tr with the

controlled node splitting (CNS) using heuristics by Janssen and Corporaal
[Janssen and Corporaal 1997]. The CNS approach is detailed in the related work
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section. The measurements indicated that CNS di�ered only insigni�cantly from
our T3 approach, both in the number of executed instructions and the change in
code size. Careful analysis revealed that the heuristic used for T3 almost always
picked the same nodes for splitting as CNS. Further restrictions on node selection
by CNS only occurred in one case (nro�) but had hardly any e�ect on the results.
We also measured the instruction cache performance for a 4kB and 512B direct-

mapped cache using VPO and EASE. The hit ratio did not change signi�cantly
(less than 1%) for the tested programs, regardless of the cache size. For changing
code sizes, the cache work is often a more appropriate measurement [Mueller 1991],
where a miss accounts for 10 cycles delay (for going to the next memory level
[Hennessy and Patterson 1996]) and a hit for one cycle. The methods of handling
irreducible loops all resulted in reduced cache work for most cases, varying between
a reduction of 6% and 28%. This reduction seems to indicate that execution in
replicated regions tends to be localized, i.e., once such a region is entered, executing
progresses within this replica rather than transferring control between di�erent
replicas.

Ignore DJ Node Splitting
Program IRLoops Graph T3(trad.) Tr(opt.)

dfa 162007 -5.56% -5.53% -5.55%
arraymerge 53911598 -19.38% -22.54% -27.54%
unifdef 251607 -0.25% +0.34% +0.64%
cpp 18525543 +0.02% -0.65% -0.48%
nro� 44628332 -0.31% -0.41% -0.27%

Table IV. Executed Instructions and their Changes for Entire Program

Finally, the impact of handling irreducible loop on entire programs was assessed.
Table IV depicts the change in executed instructions results for the di�erent opti-
mization methods. The results illustrate that the bene�ts within a function (as seen
in Table I only translate to the entire program if irreducible loops are frequently
executed, such as for Dfa and Arraymerge, while the overall impact on other test
programs was low. The changes for Tail, Hyphen and Sed were omitted since they
were below a tenth of a percentile for all three approaches. Notice that handling
irreducible loops does not inadvertently impact the compilation overhead. In fact,
detecting the presence of irreducible loops can be performed without additional
overhead during the recognition of reducible loops [Aho et al. 1986]. Hence, com-
pilation overhead is only imposed if an irreducible loop is actually present. Table
V depicts the change in program size of the entire program for the optimization
methods in question. As expected, changes in program size are less signi�cant than
the reported changes in size for functions (see Table II), which indicates that code
size becomes less signi�cant when considering the overall program.

7. RELATED WORK

Reducible ow graphs were �rst mentioned by Allen [Allen 1970]. The idea of
node splitting stems from Cocke and Miller [Cocke and Miller 1969]. DJ Graphs
are due to Sreedhar et al. [Sreedhar et al. 1996a]. Loop analysis via DJ Graphs
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Ignore DJ Node Splitting
Program IRLoops Graph T3(trad.) Tr(opt.)

dfa 208 -3.85% +24.52% +17.31%
arraymerge 283 -0.71% +28.27% +8.13%
tail 507 +1.58% +4.73% +3.55%
unifdef 943 +0.53% +4.77% +3.18%
hyphen 219 +6.85% +15.53% +15.53%
cpp 4606 -0.13% +0.26% +0.37%
nro� 12709 -0.13% +1.12% +0.42%
sed 4360 +0.57% -0.11% -0.37%

Table V. Size of Entire Programs in Instructions and Changes

has the advantage over previously proposed methods that it �nds nestings of nat-
ural and irreducible loops in arbitrary orders. DJ Graphs have also been used
to perform incremental data-ow analysis for irreducible control ow. A frame-
work for graph reduction and variable elimination is described by Sreedhar et al.
[Sreedhar et al. 1996b].
Even more recently, Havlak proposed a method for recognizing reducible and

irreducible loops as well as the nesting of either ones [Havlak 1997]. His algorithm
used node splitting only for headers of natural loops contained within irreducible
loops as a means to have distinct header nodes. This work did not use node splitting
to make irreducible loops reducible, whereas our work did. Furthermore, our notion
of backedges is independent of any graph traversals while Havlak's backedges for
irreducible loops depend on the order of a traversal of the control ow. Ramalingam
[Ramalingam 1999; Ramalingam 2000] contributed performance improvements and
a common formal framework for three schemes for recognizing loop structures,
including those by Sreedhar et al. and Havlak. Since our study is concerned
with the performance of the compiled programs rather than the performance of the
compiler, we did not implement his improvements. However, we strengthen the
results of [Ramalingam 2000] through our structural de�nition of loops and our
SED-maximal loop sets that capture the loop descriptions of previous work and
represent a minimal loop nesting forest. In particular, we reduce irreducible loops
into reducible ones in a bottom-up fashion (wrt. the level in the dominator tree)
by isolating (and freezing) the largest domain and its header while splitting the
remaining nodes in the loop set. Recursive splitting ensures that di�erent loops
within one irreducible region can be isolated. Hence, we go beyond the approach
by Sreedhar et al. although our algorithm uses the same data structures. We also
showed how several optimization methods for reducible graphs can be transformed
into methods for irreducible graphs, which, once again, strengthens Ramalingam's
results [Ramalingam 2000].

The notion of MSED-sets is introduced by Janssen and Corporaal
[Janssen and Corporaal 1997], and a node-splitting algorithm, called \Controlled
Node Splitting", is presented that tries to minimize the number of splits. However,
their algorithm di�ers from our approach in that they use the traditional approach
of splitting one node while we exclude one node from splitting and split all other
nodes in the MSED-set. Janssen and Corporaal restrict the set of nodes that are
candidates for splitting as follows:
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(1) Only nodes that are elements of an SED-set are candidates for splitting.

(2) Nodes that are elements of RC are not candidates for splitting.

The set RC is de�ned as the set of nodes of SED-sets that dominates other SED-sets
and that are reachable from them.
When applying these restrictions, code sizes were reduced to almost one tenth

of the original size. Our measurements indicated that these savings were mostly
due to the heuristic used for node selection. Restriction one (choose SED nodes
only) excludes nodes that are outside the irreducible region but can have di�erent
predecessors within this region, i.e., this occurs when di�erent loop exits branch
to a common successor. We hardly ever observed such a case since transforma-
tions T1/T2 already eliminated most non-SED nodes and for the remaining nodes,
heuristic selection seemed suÆcient. Restriction two (do not choose RC nodes) only
applies when multiple SED-sets exist within an irreducible region, i.e., if multiple
loops are contained in the region, each of which comprise independent irreducible
regions. We only found one such case in our test set.
On a more abstract level, restriction two implies that a node must not be split

while its domain is itself irreducible. Consider Figure 9. Since the nesting is not

a b

c d

e

Fig. 9. An Example with an RC-Node. (Node b)

known to the algorithm, it might split node a as the only possibility in the MSED-
set fa; bg, though node b could have been split once c or d had been split and
reduced into it. If a is very heavy compared to b, c and d, this might increase the
code size and would have been avoided by always reducing the domains �rst. Hence,
the algorithm would never come upon an RC node and would have the freedom to
choose b if it is lighter than a, even though it contains c and d. However, this would
always result in splits of entire domains, which leads to the problems discussed in the
context of Figure 4. Another problem was illustrated in the example of Section 2.
Transformations T1 and T2 might reduce parts of the control-ow graph into an
MSED-node that are not even part of the loop and, therefore, does not need to be
split. This problem has not been solved by the above restrictions.
Partial redundancy elimination [Knoop et al. 1992] can handle code motion for

irreducible regions. It supports a di�erent form of strength reduction that restricts
the handling of constants to source code constants instead of loop constants. We
focus on the recognition and optional transformation of irregular loops that can be
utilized for any optimization, such as global register coloring, induction variable
elimination and software pipelining.
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8. CONCLUSION

We formally de�ned and showed the correctness of a new approach for optimized
node splitting that transforms irreducible regions of control ow into reducible
ones. This method is superior to approaches previously published since it reduces
the number of replicated nodes by comparison. We also discussed the application
of DJ Graphs to recognize the structure of irreducible loops and implemented ex-
tensions to common code optimizations to handle these new types of loops. We
evaluated the performance of an implementation of both optimized node splitting
and optimizations for irregular loop via DJ Graphs in an optimizing compiler back-
end by comparing them with unoptimized irreducible loops, which is the common
approach in contemporary optimizers, as well as traditional node splitting. Our
results showed improvements of 1-40% in the number of executed instructions for
the approaches of handling irreducible loops. Optimized node splitting has the
advantage that it does not require changes to other code optimizations within the
compiler but may increase the code size of large programs by about 2% and the
size of small programs by about 12%. On the average, it results in less code growth
than traditional node splitting and, hence, is superior to it. Recognizing loops via
DJ Graphs requires moderate changes to the optimizer and does not signi�cantly
change the code size. We suggest the use of DJ Graphs for the design of new compil-
ers and optimized node splitting to retro�t existing compilers as means to optimize
irreducible loops. The bene�ts of handling irregular loops should even be more sig-
ni�cant in the context of global instruction scheduling to exploit instruction-level
parallelism by the compiler and enhanced modulo scheduling, which may introduce
irreducible loops. There issues are becoming increasingly important for contempo-
rary architectures with a VLIW design.
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APPENDIX

A. ALGORITHM FOR OPTIMIZED NODE SPLITTING

In the following, the recursive algorithm for Tr is given. Transformations are initi-
ated by a call splt loops(start node, empty set). The �rst argument to splt loops

is the node dominating all nodes that have yet to be processed. The second argu-
ment is a set of nodes that, if non-empty, de�nes a region that should be handled
since all nodes outside of it have already been processed and did not change. The
function returns true if the given node has any edges that indicate an irreducible
loop at its level.

bool splt_loops(top, set) {

cross = false;

foreach (child in domtree.successors(top))

if (set is empty OR child in set)

if (splt_loops(child, set))

cross = true;
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if (cross) handle_ir_children(top, set);

foreach (predecessor in controlflow.preds(top))

if (is_sp_back(pred, top) AND !(top dominates pred))

return true;

return false;

}

At �rst, splt loops handles all levels below the given node (but only within the
current region). If any of these calls return true, then a child of top contains an
irreducible loop on the level just below top. This is handled in a bottom-up fashion
so that the domains in that loop are already reducible.
After the children of the current top have been handled completely, it is checked

if there exits any edge that indicates an irreducible loop on the level of top itself
and the result is returned.
The function handle ir children is called with the external dominator node as

an argument. It has to �nd all SED-maximal loop-sets and then split the irreducible
ones one after another.

void handle_ir_children(top, set) {

// find all strongly conntected components (SCCs)

scclist = find_sccs(child, set, top.level);

foreach (scc in scclist)

if (size_list(scc) > 1) // non-trivial component

handle_scc(top, scc);

}

After all SCCs have been found, they are now converted one by one into reducible
regions by handle scc.

void handle_scc(top, scc) {

ComputeWeights(top, scc);

// find header w/ max sum(weights(nodes in domain))

hdr = ChooseNode(msed);

// split nodes in scc (except hdr and it domain)

SplitSCC(hdr, scc);

RecomputeDJG(top); // renew control-flow and DJ info

// add copies that are headers to tops

tops = find_top_nodes(scc);

foreach (hdr in tops)

splt_loops(hdr, scc); // recurse: split all headers

}

SplitSCC then splits all nodes in the SCC except the chosen node and its domain,
rearranges the control ow graph and changes the dominator information such that
the copied regions are independent subtrees in the dominator tree.

void SplitSCC(header, scc) {

make a copy of nodes in {scc - domain(header)};

connect copies (within loop set and immediate

neighbors outside loop set), renew DJ info;

scc = scc + copies;

}
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The heuristic selects the node with the maximum weight out of headers in the
MSED-set.

node ChooseNode(msed) {

MaxWeight = 0;

foreach (node in msed)

if (node.weight > MaxWeight) {

MaxWeight = node.weight;

MaxNode = node;

}

return MaxNode;

}

Weights of header nodes are computed as the sum of the weights of nodes in
the domain of the header. The weight of a single node sigma is determined as
the number of RTLs of this node (instructions in the intermediate representation)
excluding branches and jumps.

void ComputeWeights(top, scc) {

foreach (node in scc)

if (node.level == top.level + 1) {

GetWeight(node, node, scc);

add_list(node, msed);

}

}

void GetWeight(node, header, scc) {

node.weight = sigma(node);

foreach (child in domtree.successors(node))

if (in_list(child, scc)) {

GetWeight(child, header, scc);

node.weight = node.weight + child.weight;

}

node.header = header;

}

See [Unger 1998] for more details including an adapted algorithm for �nding
strongly connected components (SCCs) [Cormen et al. 1993].

B. PROOF OF CORRECTNESS (CONTINUED)

As mentioned before, the remainder of the proof consists of the following steps: A
minimal sequence is constructed by choosing a loop L of ow graph G within some
constraints. This L is identi�ed within the minimal, reducible equivalence graph
Gmin to �nd the header h for the transformation Tr(G;L; h), which is accomplished
by describing equivalent loop sets of G and Gmin via their labeling. Then it is shown
that

|there is always a loop-set L with exactly one equivalent loop-set;

|a header of the graph after applying Tr is always a header node of L; and

|the �nal (reducible) graph G from this construction is minimal wrt. its weights
since �(G) = �min(Gmin).
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But �rst, a number of terms have to be de�ned.

B.1 De�nitions for the Proof

In the following, we assume ow graphs G = (N;E; s) with nodes N , edges E
and a start node s whose dead code (unreachable nodes and their edges) have
been removed. First, labeling and equivalence properties of ow graphs have to be
introduced.

De�nition 10 (Labeling). Let G = (N;E; s) be an arbitrary ow graph. A
total function l : N ! N is then called a labeling of G if for all (n;m) 2 E and
(n;m0) 2 E the following holds:

l(m) = l(m0) �! m = m0

Note that l is not requested to be injective. Indeed, the case where l is not injective
provides the necessary notion of equivalent nodes: All nodes that share the same
label are equivalent. With that notion we can now de�ne exactly when two ow
graphs are equivalent.

De�nition 11 (Equivalent ow graphs). Two ow graphs G1 and G2 with
labelings l1 and l2, respectively, are said to be equivalent, in short G1 � G2, if
l1(s1) = l2(s2) and if for every path p = (p1; : : : ; pk) of G1 there is a path q =
(q1; : : : ; qk) of G2 such that

81 � i � k : l1(pi) = l2(qi)

and vice versa.
In the initial ow graph an injective labeling l is chosen. But if any nodes are

duplicated, their labels are kept on all copies.

Theorem 6. � is an equivalence-relation.
The proof follows directly from the de�nition. Next, it is shown that Theorem 2

also holds for the e-domain from De�nition 7:

Theorem 7. All edges into e-domain originate from e.

Proof. (indirect)
Let (m; l) 2 E be an edge, such that l 2 e-domain and e 6= m =2 e-domain. Then
one of the following would have to be true:

|e does not dominate m
But then e does not dominate l, which is a contradiction to l 2 e-domain.

|m 2 L
But since l 2 e-domain, there must be a path p from l into L that does not touch
e. This, however, means, that e dominates all nodes in p. Thus, L[p would also
be a loop-set and MSED-set (L[ p) � MSED-set (L). This is not possible if L is
SED-maximal.

|There is no path from m into L that does not touch e.
But then, there is no such path originating from l either. This is a contradiction
to l 2 e-domain.
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B.2 Completing the Proof

Throughout the following proof, several symbols will be used without being de�ned
over and over again. These are:

|G = (N;E; s) stands for the ow graph that is being transformed. For each
iteration G is the graph before Tr is applied.

|G0 = (N 0; E0; s0) is the result of the application of Tr in the current iteration.

|Gmin = (Nmin; Emin; smin) is a minimal, reducible graph equivalent to G.

|l, l0 (the corresponding labeling) and lmin are labelings of G, G0 and Gmin,
respectively.

|L is an irreducible, SED-maximal loop-set of G.

|h is a header node of L.

|S = L n domain(h)

|b is a total function b : Nmin ! N , such that 8n 2 Nmin : lmin(n) = l(b(n)).

|b0 is a total function b0 : Nmin ! N 0, with 8n 2 Nmin : lmin(n) = l0(b0(n)).

These functions b and b0 will be used to map each node of Gmin to the node of G
and G0, respectively, from which it is a copy.
The proof will construct a minimal sequence by choosing an L of G within some

constraints. This L will then be looked up in Gmin to �nd the node h for the
transformation Tr(G;L; h). For this look-up it is necessary to de�ne, which loop-
set in Gmin is related to L. This is done in the next de�nition:

De�nition 12 (Equivalent Loop-set). Let G, Gmin, L, l, lmin and b be de�ned
as above.
Then a loop-set Lmin of Gmin is called an equivalent loop-set of L, if and only if

Lmin is maximal such that

b(Lmin) = L

Note that the Lmin is not necessarily unique. However, if b is constructed as
below, then there is always at least one equivalent loop-set.
For the initial graph, where l is an injective labeling of G, b is constructed as

8n 2 Nmin : b(n) = l�1(lmin(n)):

Then, in each iteration, L is selected such that there is exactly one equivalent
loop-set Lmin of L. It will be shown later that such an L does always exist.
Since Lmin is a loop-set of Gmin, which is reducible, it must be a reducible loop-

set itself and thus have a single entry node h0. Then, h = b(h0) is one of the header
nodes of L and, therefore, the graphG0 can be constructed byG0 = Tr(G;L; h). The
labeling and weight of G0 has already been de�ned. The function b0 : Nmin ! N 0

is de�ned as

8n 2 Nmin : b0(n) =

�
(b(n); 2) If n 2 Lmin ^ b(n) 2 S
(b(n); 1) otherwise

Thus, a new iteration can be done with G0, l0, �0 and b0 as G, l, � and b,
respectively, if G0 is still irreducible.
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For the above algorithm to be correctly de�ned, the following three things have
to be shown:

|There is always a loop-set L with exactly one equivalent loop-set. This is proved
in Theorem 8.

|b(h0) is always a header node of L, which is proved in Theorem 9.

|For the �nally constructed (reducible) graph G: �(G) = �min(Gmin), which is
shown in Theorem 10.

The last point is not strictly needed for the above algorithm but it will show that
the constructed graph is minimal.
To be able to prove the above items, several lemmas will be needed.

Lemma 1 (s is unique). Let G, Gmin, l, lmin and b be de�ned as above. Then

(i) 6 9n 2 Nmin n fsming : lmin(n) = lmin(smin) and

(ii) 6 9n 2 N n fsg : l(n) = l(s).

Proof. (i) Since smin dominates all nodes of Gmin, any edge (u; n) 2 Emin

where lmin(n) = lmin(smin) can be replaced by the edge (u; smin) without
destroying the reducibility or equivalence of Gmin. But then n has no longer
any incoming edge and can be removed from Gmin thus making Gmin lighter.
This is a contradiction to the assumption, that Gmin is minimal. Therefore,
such a node n cannot exist.

(ii) This is obviously true for the initial graph G with an injective labeling. Since
s dominates all nodes in G, it cannot be in any irreducible loop and, therefore,
cannot be split by the algorithm. Thus, the above property holds through all
iterations of the algorithm.

Flow graphs, which are equivalent to a graph with an injective labeling have
a special property, which is much stronger than simple equivalence as de�ned in
De�nition 11.

Lemma 2. Let G, G0, G0 be ow graphs with labelings l, l0 and l0, respectively,
such that G � G0 � G0. Furthermore let l0 be injective and let G and G0 be such
that the property of Lemma 1 holds. Then the following is true:

For all q0 2 N 0 and for each path p = (p0; : : : ; pk) of G with l0(q0) = l(p0)
exists exactly one path q = (q0; : : : ; qk) of G

0 with l0(qi) = l(pi)

Proof. Since G0 was supposed to not contain dead code, there is a path q0 =
(q0
�j ; : : : ; q

0

0) of G0 with q0
�j = s0 and q00 = q0. Since G0 � G0 there must be

a path q = (q
�j ; : : : ; q0) of G0 with l0(qi) = l0(q0i) 8 � j � i � 0. Since l0 is

injective q
�j = s0. Since G � G0 there must be a path p = (p0; : : : ; pk) of G0 with

l0(pi) = l(pi) 80 � i � k. Furthermore, since l0 is injective there can only be one
such path p and p0 = q0. Thus, qp = (q

�j ; : : : ; q0; p1; : : : ; pk) is a path of G0 and
because G0 � G0 there must be a path r = (r�j ; : : : ; r0; : : : ; rk) of G

0 such that
l0(ri) = l0((qp)i) 8 � j � i � k. All that remains to be shown is that r0 = q0 and
thus that q = (r0; : : : ; rk) is a path as requested.
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From l0(s0) = l0((qp)�j) = l0(r�j) = l(s0) and from the property of Lemma 1
follows that r�j = s0 = q0

�j . From De�nition 10 follows that ri = q0i �! ri+1 = q0i+1
and thus (by induction) that r0 = q00 = q0. From De�nition 10 also follows that q
is the only path originating from q0 following the same labels as p.

Lemma 3. Let G, Gmin, l, lmin and b be de�ned as above.
Then, for every path q = (q1; : : : ; qk) of Gmin, (b(q1); : : : ; b(qk)) is a path of G.

Proof. From Lemma 2 and Lemma 1 follows that there is exactly one path
p = (p1; : : : ; pk) of G such that p1 = b(q1) and l(pi) = lmin(qi). From 8n 2 Nmin :
l(b(n)) = lmin(n) and De�nition 10 follows that pi = b(qi).

Lemma 4 (b is surjective). Let G, Gmin, l, lmin and b be de�ned as above.
Then b is surjective.

Proof. G was supposed to not contain dead code
) 8n 2 N there is a path p = (p1; : : : ; pk) of G with p1 = s and pk = n. Since
G � Gmin and Lemma 2 there is exactly one path q = (q1; : : : ; qk) of Gmin with
q1 = smin and l(pi) = lmin(qi). Thus, b(q1) = p1 and from De�nition 10 follows
that b(qi) = pi and thus that b(qk) = n

.

Lemma 5. Let G be an arbitrary control ow graph. Any node x 2 N is outside
of all irreducible loops if and only if the following holds:
8y 2 N with x is reachable from y and y is reachable from x: 9z 2 N such that z

dominates both x and y and z either occurs on every path from x to y or on every
path from y to x (or both).
Furthermore, if x is not in any irreducible loop, then the above nodes z are in no

irreducible loop either.

The proof uses the following de�nition that determines if a node is inside of an
irreducible loop:
x is inside of an irreducible loop if and only if it is inside a loop-set whose MSED-

set contains more than one node.

Proof. =)
Since x and y are reachable from each other, there is at least one loop-set that
contains both nodes. Let L be the smallest SED-maximal loop-set with x; y 2 L.
This L is well de�ned because of Theorem 3. Since x 2 L, L must be reducible
and thus have a single entry node z with z dominates all nodes in L. If there is
a path from x to y that does not touch z, then all nodes on this path are part of
L (because z dominates all these nodes and L is SED-maximal). The same is true
for any path from y to x that does not touch z. However, if two such paths really
existed, they would form a loop-set L0 that does not include z and with L0 � L.
This, in turn, means that there is another SED-maximal loop-set, which is strictly
smaller (with respect to inclusion) than L and contains both x and y. This is a
contradiction to the assumption that L is the smallest SED-maximal loop-set.
Furthermore, from Theorem 3 and the minimality of L follows that for each loop-

set L0 with z 2 L0: L � L0 and thus x 2 L0 and thus that L0 is reducible. Therefore,
z is not part of any irreducible loop either.
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(= (the negation)
If x is inside an irreducible loop L it must be in domain(h) for some h 2
MSED-set(L). Because L is irreducible, there is a node y 2 MSED-set(L) with
y 6= h. Because x; y 2 L, x is reachable from y and y is reachable from x without
leaving L. However, since 8z 2 L; z 6= y: z does not dominate y and since y does
not dominate x the following is true:
8z0 2 N with z0 dominates x and y: z0 =2 L and thus there are paths from x to y
and from y to x that do not touch z0.

Lemma 6 (b is injective). Let G, Gmin, l, lmin and b be de�ned as above.
Then b is injective outside of irreducible loops. This means that the following is
true:
8m;n 2 Nmin with b(m) = b(n) and b(m) is not inside any irreducible loop: m = n.

Proof. Induction over the depth of b(m) in the dominator-tree.
Induction-base:

From Lemma 1 follows directly that the above lemma is true for m = smin.
Induction-step:

Indirect: Assume there exist nodes m;n0 2 Nmin such that b(m) = b(n0) and b(m)
is not inside any irreducible loop but m 6= n0. However, it is assumed, that the
lemma is true for all such nodes m0 and n0 where b(m0) is an ancestor of b(m) in
the dominator-tree of G.
The following proof will show that, if such m and n0 exist, then Gmin cannot

be minimal because it is possible to construct another reducible, equivalent ow
graph, which is lighter with respect to �:
Let m and n0 be as assumed above. Then the graph G0

min is constructed as
follows:

| s0min = smin

| E0

min = Emin n

�
(�; n) 2 Emin

���� b(n) = b(m) ^
n 6= m

�

[

�
(n1;m)

���� 9(n1; n2) 2 Emin :
b(n2) = b(m) ^
n2 6= m

�

| N 0

min = Nmin n

�
n 2 Nmin

���� 6 9 a path p = (p1; : : : ; pk) in
E0

min : p1 = smin ^ pk = n

�

In short, the above construction replaces all edges to any node n with b(n) = b(m)
except to m itself with appropriate edges to m. After that the other copies of m
are dead-code and can be removed. Since the removed edges have been replaced by
edges to a node with the same label and the removed nodes are just those that are
no longer reachable, the new graph is equivalent to the old one, i.e. G0

min � Gmin.
Since at least the node n0 has been removed from N 0

min, the above control ow
graph is equivalent to and lighter than Gmin. This would only be possible if it were
not reducible since Gmin was assumed to be minimal. Therefore, it is suÆcient to
prove that G0

min is reducible in order to show that such m and n0 cannot exist.
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However, if G0

min is compared to Gmin, only a few nodes and edges have been
removed and some other edges have been added. But neither the removed edges
nor the removed nodes may have introduced any irreducibility. Therefore, if G0

min

were irreducible, this irreducibility would have been introduced by the added edges.
These, however, are all targeted at m. Therefore, if G0

min is irreducible, m must be
part of at least one of the irreducible loops.
Thus, it is suÆcient to show thatm is outside of all irreducible loops. By Lemma 5

this can be shown by proving that:
8y 2 N with m is reachable from y and y is reachable from m: 9z 2 N such that

z dominates both m and y and z either occurs on every path from m to y or on
every path from y to m (or both).
Let y 2 N 0

min be such that y is reachable from m and m is reachable from y in
G0

min. By the construction of G0

min these two nodes must also be reachable from
each other in Gmin and thus by Lemma 3 b(m) is reachable from b(y) and vice
versa. Since b(m) is not in any irreducible loop (consider the prerequisites of the
lemma) and because b is surjective according to Lemma 4 there is a node z 2 Nmin

with b(z) dominates b(m) and b(y), and b(z) either occurs on every path from b(m)
to b(y) or on every path from b(y) to b(m) (or both).
Assume �rst that b(z) 6= b(m).

Then b (z) is an ancestor of b (m) in the dominator-tree and by Lemma 5 not in
any irreducible loop either. Therefore, b is injective at b(z) and thus 6 9z0 2 Nmin

with b(z0) = b(z). From this and Lemma 3 follows that z dominates y and all nodes
n 2 Nmin with b(n) = b(m). Because b(z) 6= b(m) and the above, z 2 N 0

min and
z dominates m in G0

min. This, however, means that the added edges to m cannot
inuence the dominance of z over y. Thus, z dominates both m and y in G0

min.
By Lemma 3 and the uniqueness of z, if b(z) occurred on every path from b(m)

to b(y), then z occurs on every path from m to y in Gmin and thus on every path
from m to y in G0

min. On the other hand, if b(z) occurred on every path from b(y)
to b(m), then, again by Lemma 3 and the uniqueness of z, z occurs on every path
of Gmin from y to any node n with b(n) = b(m) and thus it occurs on every path of
G0

min from y to m. Thus, m is not in any irreducible loop in G0

min and therefore,
G0

min is completely reducible.
On the other hand, if b(z) = b(m), then b(m) dominates b(y). Thus, by Lemma 3,

on every path of Gmin from smin to y a node n 2 Nmin with b(n) = b(m) must
occur. This, in turn, means that m must occur on every path of G0

min from s0min

to y. Thus, m dominates y and occurs on every path from m to y and vice versa.
Therefore, m cannot be in any irreducible loop and thus G0

min must be completely
reducible.
As was said above, this is not possible if Gmin was truly minimal and thus such

nodes m and n0 cannot exist.

Lemma 7 (Existence of equivalent loop-sets). Let G, Gmin, l, lmin and b be
de�ned as above.
Then for each loop-set L of G, there is an equivalent loop-set Lmin of Gmin.

Proof. Since G was supposed to not contain dead code and since L is a loop-set
there is at least one in�nitely long path p = (p1; p2; : : :) of G such that p1 = s and
9k8j > k : pj 2 L and 8k8n 2 L9j > k : pj = n. From Lemma 2 follows that there
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is a path q = (q1; q2; : : :) of Gmin such that q1 = smin and l(pi) = lmin(qi). Since
Gmin is �nite there must be a loop-set Lmin such that 9k08j > k0 : qj 2 Lmin and
8k8n 2 Lmin9j > k : qj = n. From Lemma 3 follows that b(q) = (b(q1); b(q2); : : :)
is a path of G following the same labels as p. Since, furthermore, b(q1) = s = p1
follows from De�nition 10 that b(q) = p and thus that b(Lmin) = L.

With the above lemmas the remaining properties as listed on page 26 can be
proven.

Theorem 8 (Uniqueness of equivalent loop-sets). Let G, Gmin, l, lmin and
b be de�ned as above.
Then, there is always at least one loop-set L of G, which has exactly one equivalent
loop-set Lmin.

Proof. Let L be a loop-set of G such that the external dominator e of L is
not in any irreducible loop. Since s is never in any irreducible loop and because of
Theorem 3 and because G is �nite, such a loop-set must always exist. By Lemma 7,
L must have at least one equivalent loop-set. Thus, it is enough to show that L has
at most one equivalent loop-set.
This is shown indirectly: Assume there are two di�erent equivalent loop-sets

Lmin;1 and Lmin;2. Because equivalent loop-sets are maximal, either on every path
from Lmin;1 to Lmin;2 or on every path from Lmin;2 to Lmin;1 a node n with
b(n) =2 L must occur. Without restricting generality, it is assumed that it occurs
on every path from Lmin;1 to Lmin;2. Let m be the header-node of Lmin;1. Then
another ow graph G0

min can be constructed as in the proof for Lemma 6, except
that only edges to nodes n with b(n) = b(m) and n 2 Lmin;2 are replaced. Then,
for the same reasons, G0

min � Gmin and since b(Lmin;2) = L at least one such node
n has been removed. Therefore, it is again enough to show that G0

min is reducible
in order to prove that such two equivalent loop-sets cannot exist.
Since only edges to m have been added, the above assumption about paths from

Lmin;1 to Lmin;2 is still true in G0

min.
As in the proof of Lemma 6, if G0

min is irreducible, this irreducibility could only
have been introduced by the added edges to m. Thus, m would have to be in at
least one irreducible loop-set. It is therefore enough to show that
8y 2 N 0

min with m and y are reachable from each other: 9z 2 N 0

min such that
z dominates y and m and z either occurs on every path from m to y or on every
path from y to m.
Let y be an arbitrary node in G0

min such that y and m are reachable from each
other. If y 2 Lmin;1, then m dominates y and thus z = m is such a node. Therefore,
y =2 Lmin;1. Then on every path p = (m; : : : ; y; : : : ;m) a node n with b(n) =2 L
must occur, since Lmin;1 is maximal. Thus, there is an edge (pi; pi+1) in p such
that b(pi) 2 L and b(pi+1) =2 L. From Theorem 7 follows that b(pi+1) =2 e-domain.
This means that 9j > i : b(pj) = e. However, since e is not in any irreducible loop,
there is only one node emin with b(emin) = e and thus emin occurs on every path
p = (m; : : : ; y; : : : ;m).
This, however, means that for each loop-set L0 of G0

min with m; y 2 L0: emin 2
L0. Let L0

0 be the smallest such loop-set with respect to inclusion. This is well
de�ned because of Theorem 3. From Lemma 3 follows, that b(L0

0) is a loop-set
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and e 2 b(L0

0). Thus, b(L0

0) is reducible and has a single header-node. Since b is
surjective, there is a node z 2 Nmin such that b(z) is that header-node and thus
dominates all nodes in b(L0

0). Furthermore, because b(z) =2 L, z 2 N 0

min. Because of
Theorem 3 b(z) is not in any irreducible loop and thus z is unique. This, however,
means that z dominates all nodes in L0

0 (including y and m) and thus that L0

0 is
reducible and z is its single entry-node. Then, however, z must either occur on
every path from m to y or on every path from y to m because L0

0 was the smallest
loop-set containing y and m.
Thus, m cannot be in any irreducible loop and G0

min is completely reducible.
This is not possible if Gmin is minimal as assumed and thus L cannot have two (or
more) equivalent loop-sets.

Theorem 9 (b(h0) is a header node). Let G, Gmin, l, lmin and b be de�ned as
above.
Let L be a SED-maximal loop-set of G, e its external dominator and e not in any
irreducible loop-set. Let Lmin be the equivalent loop-set of L and h0 the single
entry-node of Lmin.
Then b(h0) 2 MSED-set(L).

Proof. Indirect.
Let L be such a loop-set, Lmin its equivalent loop-set and h0 the entry node of
Lmin with b(h0) =2 MSED-set(L). Then by Theorem 1 b(h0) 2 domain(h) for
some h 2 MSED-set(L). Because Lmin is an equivalent loop-set, there is a node
m 2 Lmin with b(m) = h. On the other hand, since h dominates b(h0) in G, on
every path from smin to h0 a node n with b(n) = h must occur. Furthermore,
because h0 is the entry node of Lmin, n =2 Lmin and thus n 6= m. Thus, if G0

min is
constructed as in the proof for Lemma 6, then G0

min � Gmin, for the same reasons
as given there, and �(G0

min) < �(Gmin) since at least n has been removed. Thus,
it is suÆcient to show that G0

min is reducible in order to prove that h0 must be a
header node of L.
If G0

min was reducible, m had to be in at least one irreducible loop, since only
edges to m have been added. Thus, all that remains to be shown is that:
8y 2 N 0

min with m and y are reachable from each other: 9z 2 N 0

min such that
z dominates y and m, and z either occurs on every path from m to y or on every
path from y to m.
Let y be such a node.

Since h = b(m) dominates b(h0) in G and since h0 dominates all nodes in Lmin,
on every path of Gmin from smin to any node in Lmin at least one node n with
b(n) = h must occur. Since all added edges are edges to m and b(m) = h, this
must still be true for G0

min. Thus: On every path of G0

min from s0min to any node
in Lmin \ N 0

min at least one node n with b(n) = h must occur. However, by the
construction of G0

min, m is the only node in N 0

min with b(m) = h and thus m
dominates all nodes of Lmin\N 0

min. Therefore, if y 2 Lmin, then z = m ful�lls the
above requirements.
Thus, let y =2 Lmin.

Since b(y) 2 L and Lmin is the only equivalent loop-set of L, there must be a path
q of Gmin from y into Lmin such that b(qi) 2 L for all i. However, since y =2 Lmin,
this means that on every path of Gmin from any node in Lmin to y, a node n with
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b(n) =2 L must occur. In particular, this is true for m and since only edges to m
have been added in G0

min it is also true that: On every path p = (m; : : : ; y) of
G0

min a node n with b(n) =2 L must occur. Since the same applies to every path
p = (m; : : : ; y; : : : ;m) the arguments of the proof of Theorem 8 apply here as well
and there is a node z, which ful�lls the above requirements.
Therefore, m cannot be in any irreducible loop and G0

min must be completely
reducible. Since this is a contradiction to Gmin minimal, h0 must be a header node
of L.

Theorem 10 (The constructed graph is minimal). Let G, Gmin, l, lmin and b
be de�ned as above. Furthermore, let G be the �nal graph, namely let G be reducible.
Then �(G) = �min(Gmin).

Proof. By Lemma 4 b is surjective.
Since G is completely reducible, b is completely injective by Lemma 6.
Thus, b is bijective and thus �(G) = �min(Gmin).

The previous theorems show that there is always a sequence that constructs a
minimal, equivalent and reducible ow graph for any control ow graph G. The
proof, however, already used such a minimal graph for the selection of the header
node, on which the transformation Tr is applied and, therefore, does not provide a
usable method for choosing the nodes. The Theorems 4 and 5, on the other hand,
were proven independently of any order, and, therefore, if another selection scheme
is used, the algorithm remains correct, though possibly not minimal.
In the proof above, it was necessary to handle the outer loops �rst. This, however,

is not really necessary. It is possible to give a similar (but even more technical and
incomprehensible) proof that does not depend on any order in which the irreducible
loop-sets L are chosen.
Figure 10 shows the steps of the algorithm for two di�erent selections of the hi.

Any of the resulting ow graphs may be minimal depending on the weight of the
nodes. Table 10(f) lists di�erent weights and the corresponding minimal graph.
As can be seen from this table, the weight of the nodes alone is not suÆcient to

decide which node has to become hi in each step. The resulting number of copies
for other nodes has to be considered as well. Though it might be possible to deduce
that number from the structure of the MSED-set without actually constructing
each possible �nal graph, such a method could not be found.
Still, the weight of the nodes is known from the beginning and can be used as a

heuristic for the selection of the hi. The algorithm outlined in Section 4.1 and in
Appendix A uses such a heuristic by choosing the header hi such that �(domain(hi))
is maximal for all possible hi. This, however, requires that the �nal weight of the
domains is known and thus that the inner (nested) loops are converted �rst.
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Fig. 10. Two possible traces of the recursive alg.
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