
MOLAR: Ad a p tiv e Ru n tim e S u p p o r t fo r H ig h -E n d
C o m p u tin g Op e r a tin g a n d Ru n tim e S y s te m s

∗

Chris tian E n g e lman n 1,4, S te p he n L . S c o tt1, David E . B e rn ho ld t1,
Naras imha R . G o ttu mu k k ala2, Cho k c hai L e an g s u k s u n 2, Jyo this h Varma3,

Chao Wan g 3, Fran k M u e lle r3, A n iru d d ha G . S he t5, P. S ad ayap p an 5

1Oak R id g e Natio n al L ab o rato ry, Oak R id g e , TN 3 7 8 3 1 , U S A
2L o u is ian a Te c h U n ive rs ity, R u s to n , L A 7 1 2 7 2 , U S A

3No rth Caro lin a S tate U n ive rs ity, R ale ig h, NC 2 7 6 9 5 , U S A
4U n ive rs ity o f R e ad in g , R e ad in g , B e rk s hire , R G 6 6 A H, U K

5The Ohio S tate U n ive rs ity, Co lu mb u s , OH 4 3 2 1 0 , U S A

{e n g e lman n c ,s c o tts l,b e rn ho ld td e }@ o rn l.g o v, {n rg 0 0 3 ,b o x}@ late c h.e d u ,
{js varma,w c hao }@ n c s u .e d u , mu e lle r@ c s .n c s u .e d u , {s he t,s ad ay}@ c s e .o hio -s tate .e d u

http://www.fastos.org/molar

ABSTRAC T
MOLAR is a multi-institutional research effort that con-
centrates on adaptive, reliable, and efficient operating and
runtime system (OS/ R) solutions for ultra-scale high-end
scientifi c computing on the next generation of supercom-
puters. This research addresses the challenges outlined in
FAST-OS (forum to address scalable technology for runtime
and operating systems) and HE CRTF (high-end computing
revitalization task force) activities by exploring the use of
advanced monitoring and adaptation to improve application
performance and predictability of system interruptions, and
by advancing computer reliability, availability and service-
ability (RAS) management systems to work cooperatively
with the OS/ R to identify and preemptively resolve system
issues. This paper describes recent research of the MOLAR
team in advancing RAS for high-end computing OS/ Rs.

Ke y w o r d s
High-E nd Computing, RAS, Reliability, Availability, Fault
Tolerance, Monitoring, Group Membership

1 . OV E RV I E W
Current operating systems and runtime systems (OS/ Rs) for
high-end scientifi c computing (HE C) are not able to meet
the various req uirements to run large applications efficiently
on future ultra-scale computers. B uilding on the current
open-source operating system, Linux, we target HE C ap-
plications for the next generation of supercomputers. Un-
doubtedly, these HE C OS/ Rs must scale to the levels pre-

∗Research sponsored by the Office of Advanced Scientifi c
Computing Research; U.S. Department of E nergy (DOE).
This work was performed in part at Oak Ridge National
Laboratory, which is managed by UT-B attelle, LLC un-
der DOE Contract No. DE -AC0 5 -0 0 OR2 2 7 2 5 , where it
was also supported in part by the Laboratory‘s Directed
Research and Development P rogram. This work was sup-
ported at Louisiana Tech University by DOE grant DE -
FG0 2 -0 4 E R4 6 1 4 , at North Carolina State University in part
by DOE grant DE -FG0 2 -0 5 E R2 5 6 6 4 and NSF grants CA-
RE E R CCR-0 2 3 7 5 7 0 and CCF-0 4 2 9 6 5 3 , and at the Ohio
State University by DOE grant DE -FG0 2 -0 5 E R2 5 6 6 0 .

dicted by hardware architects for both shared memory and
distributed memory platforms. Furthermore, they must en-
able applications to operate efficiently and reliably on any
of these architectures as transparently as possible. As de-
scribed in recent reports by FAST-OS [1 4] (Forum to Ad-
dress Scalable Technology for Runtime and Operating Sys-
tems), HE CRTF [2 4] (High-E nd Computing Revitalization
Task Force) and ScaLeS [4 1] (Science Case for Large-scale
Simulation) activities, system software is a key challenge in
exploiting the promise of extreme-scale scientifi c computing.
Conceptually, the MOLAR [1 5] research has the following
goals to address these issues.

• E xplore the use of advanced monitoring and adap-
tation to improve application performance and pre-
dictability of system interruptions.

• Advance computer reliability, availability and service-
ability (RAS) management systems to work cooper-
atively with the OS/ R to identify and preemptively
resolve system issues.

As part of MOLAR, our research focuses on the develop-
ment of a RAS-aware job and resource management solu-
tion for Linux clusters based on HA-OSCAR [2 1 , 2 2], a high
availability Linux clustering software suite. This work in-
cludes the design of a RAS-aware Federated System Manage-
ment (fSM) for HA-OSCAR with partition-centric service
and management nodes to provide highly available critical
services for local and intra-partition req uests, such as lo-
cal and global job scheduling and monitoring. Furthermore,
based on our experience with HA-OSCAR and Harness [6 ,
1 9 , 3 5], a heterogeneous distributed metacomputing envi-
ronment, the MOLAR team targets the development of a
fl exible, pluggable high availability framework that is ca-
pable of providing service-level active/ hot-standby and ac-
tive/ active high availability to critical system services, such
as user login, resource management, job scheduling, data
storage and I/ O. As part of this research, we aim to develop

63

efficient, scalable alg orithms for hig h availability without
sing le points of failure and without sing le points of control.

With this paper, we report our recent research in advanc-
ing RAS for hig h-end computing OS / Rs. This paper is
structured as follows. First, we present our work in per-
formance instrumentation to characterize computation-com-
munication overlap in messag e-passing systems. S econd, we
describe our efforts in devising a hig h availability taxon-
omy specifi cally adapted to HE C environments that takes
into account that the purpose of a HE C system is to offer
computing cycles for parallel applications, which requires
a different approach than for sing le services, such as Web
servers. Third, we portray our accomplishments in providing
a reliability-aware job and resource manag ement solution for
the HA-OS CAR Linux clustering software suite. Fourth, we
continue by illustrating results of ong oing work in develop-
ing a flexible, plug g able component-based hig h availability
framework that allows adaptation to system properties and
application needs. Fifth, we describe two replication meth-
ods for equipping existing critical HE C system services with
service-level active/ active hig h availability. Lastly, we show
early results of developing a scalable fault-tolerant member-
ship alg orithm for MPI communication. This paper closes
with a short summary of the presented research and a brief
description of planned work.

2. P E R F O R M AN C E I N S T R U M E N T AT I O N

AN D M O N I T O R I N G
MPI has been the de fa cto standard for writing parallel sci-
entifi c applications. Available performance tools for MPI
prog rams convey different kinds of insig hts using approaches
like profi ling , tracing or monitoring of hardware counters
[29]. Current tools do not characterize the overlap between
user computation and data communication for a running
MPI prog ram. In this work, we attempt to quantify com-
putation-communication overlap by adding low-overhead in-
strumentation to the MPI library. The instrumentation has
been prototyped in MVAPICH2 [33], a MPICH2 library [32]
for Infi niBand.

2.1 M o t iva t io n
User-level networking architectures like Infi niBand [25] sup-
port OS -bypass communication that reduces the involve-
ment of host CPU in the actual data transfer path and frees
the CPU to do user computation instead. MPI libraries,
like MVAPICH2, exploit RD MA support in modern net-
works to implement zero-copy transfers of larg e messag es.
The MPI interface defi nes non-blocking point-to-point calls
like MPI Isend and MPI Irecv that provide a mechanism for
seperating the initiation and completion of communication,
thereby allowing application prog rammers to interleave use-
ful computation in between. Thus, overlapping computation
with communication using non-blocking calls can be an ef-
fective technique for masking the latency of data transfer,
yielding sig nifi cant performance g ains and reducing execu-
tion time of parallel applications. However, previous stud-
ies [46 , 34] have shown that MPICH-based MPI libraries
achieve very low overlap for larg e messag es even with non-
blocking calls. It has been observed that the extent of over-
lap for an MPI prog ram varies depending upon the type,
frequency and order in which MPI calls are made. There-

fore, instrumentation quantifying the overlap realized by a
running application on a g iven system can be a valuable aid
in explaining and improving its performance on that system.

2.2 I n s t r u m e n t a t io n Ap p r o a c h
E ach process timestamps the initiation and completion of
data transfer as well as the invocation and completion of
MPI calls in the MPI library. Timestamps corresponding to
invocation and completion of MPI calls serve to demarcate
the user computation and MPI reg ions. Time for commu-
nicating data of different sizes on the network is either ob-
tained apriori or projected from g athered times. The overlap
obtained for a messag e is measured by tracing its communi-
cation time interval into user computation reg ion. This cal-
culation is done for all data communicated over the leng th of
execution of a MPI prog ram. Thus a per-process character-
ization of computation-communication overlap is obtained.

2.3 I m p le m e n t a t io n
A precise overlap characterization for MPICH-based librar-
ies is not currently possible due to the following reasons:

1. NICs do not currently timestamp data transfers.

2. MPICH-based libraries have a sing le-threaded mono-
lithic architecture, a polling type of prog ress eng ine
and a synchronous messag e completion and notifi ca-
tion mechanism.

3. D epending on the underlying protocol primitives, the
initiation of communication may not be known to one
of the participating processes.

Hence, we g enerate lower and upper bounds on the total
communication time that was overlapped with user compu-
tation on a per-process basis. When the initiation of com-
munication is transparent to a process, potentially the en-
tire communication time may have been overlapped, but it
is impossible to be conclusive; hence only the upper bound
is updated. On the other hand, if a process can accurately
timestamp communication, we update both the lower and
upper bound values.

2.4 E x p e r im e n t a l R e s u lt s o f O ve r la p

M e a s u r e m e n t
We ran NAS benchmarks from the NPB3.2 suite, compiled
with instrumented MVAPICH2-0 .6 .5 , for problem sizes A
and B, on different numbers of processors of the Intel Pen-
tium 4 cluster at the Ohio S upercomputer Center. This
machine is a distributed/ shared memory hybrid system con-
structed from commodity PC components running the Linux
operating system. It has 112 compute nodes for parallel jobs,
each confi g ured with 4G B RAM, two 2.4G Hz Intel P4 X eon
processors and one Infi niBand 10 G b interface. Tables 1 - 4
show the overlap measures for NAS BT, CG , LU and MG
for problem size B. The results for the complete set of NAS
benchmarks appear in [42]. The various measures are: 1)
data xfer - the transfer time for all messag es communicated
(sent or received) by a process 2) min ovpd xfer - the lower
bound on transfer time that was overlapped with user com-
putation 3) max ovpd xfer - the upper bound on transfer

64

time that was overlapped with user computation 4) user
comp - the ag g reg ate user computation time 5) mpi call -
the summation of time spent executing M P I calls.

Time in sec B T-B -4 B T-B -9 B T-B -1 6
data xfer 1 .6 6 51 41 1 .52 59 1 2 1 .3 1 56 3 7

min ovpd xfer 0 .0 0 0 0 2 8 0 .0 0 41 58 0 .0 0 558 5
max ovpd xfer 0 .8 3 2 58 1 0 .7 6 7 0 8 0 .6 6 3 3 6 9

user comp 2 3 5.6 0 6 2 9 1 1 0 4.1 0 53 0 1 58 .43 3 8 7 9
mpi call 9 .48 9 9 46 6 .1 6 3 8 1 9 6 .3 2 2 0 1 4

Tab le 1: Overlap m easu rem en ts for NA S B T

Time in sec CG-B -4 CG-B -8 CG-B -1 6
data xfer 1 .43 1 546 1 .53 52 1 5 1 .53 52 2

min ovpd xfer 0 .0 0 3 48 2 0 .0 1 3 2 7 2 0 .0 1 1 8 7 8
max ovpd xfer 0 .7 1 9 2 6 0 .7 8 0 8 8 7 0 .7 7 9 49 8

user comp 6 1 .9 0 8 7 7 4 1 9 .9 3 0 2 1 4 1 1 .48 541 4
mpi call 1 1 .1 9 49 51 7 .0 2 6 51 4 7 .3 2 0 1 48

Tab le 2: Overlap m easu rem en ts for NA S C G

Time in sec L U -B -4 L U -B -8 L U -B -1 6
data xfer 1 .59 456 7 1 .3 7 8 2 56 1 .1 6 1 9 46

min ovpd xfer 0 .3 58 9 6 7 0 .3 1 1 6 51 0 .2 9 57 3 8
max ovpd xfer 1 .1 56 2 1 9 1 .0 0 0 7 2 2 0 .8 7 6 6 2 9

user comp 2 1 4.3 3 9 7 0 7 1 0 8 .0 3 7 7 48 49 .0 3 3 0 8 9
mpi call 1 2 .47 3 1 0 9 9 .7 448 4 9 .3 41 7 2 7

Tab le 3: Overlap m easu rem en ts for NA S L U

With the NA S benchmark applications, each process per-
forms a mix of of eag er sends and receives as well as ren-
dezvous sends and receives. The non-overlapped transfer
time is dominated by the transfer time for receiving ren-
dezvous messag es. B ecause the invocation of R D M A R ead
by the receiver is transparent to the sender and the invo-
cation of R D M A Write by the sender is transparent to the
receiver, the transfer time for sending rendezvous messag es
and receiving eag er messag es account for the g ap between
the minimum and maximum overlapped transfer times. The
minimum overlapped transfer time is attributable to the
overlap achieved for sending eag er messag es.

For the applications, it is clear that varying amounts of over-
lap of communication with computation is being achieved,
but there is a sig nifi cant amount of non-overlapped commu-
nication overhead.

In order to determine the overhead introduced by the mon-
itoring infrastructur, we ran the applications iunder a stan-
dard implementation of M V A P ICH2 without any instrumen-
tation, to compare the total execution time with that ob-
tained under the instrumented version of M V A P ICH2 . The
overhead numbers for NA S CG appear in table 5. M easure-
ments for other NA S benchmarks may be found in [42]. It
is seen that the instrumentation only marg inally affects the
running time of the benchmarks across varying processor
counts.

3. H I G H AVAI L AB I L I T Y M O D E L S

The research conducted under the M O L A R project focuses
on the desig n and development of core technolog ies and

Time in sec M G-B -4 M G-B -8 M G-B -1 6
data xfer 0 .2 52 0 6 5 0 .2 1 1 6 8 5 0 .1 559 9 1

min ovpd xfer 0 .0 0 7 2 7 9 0 .0 1 6 6 54 0 .0 1 7 56 7
max ovpd xfer 0 .1 3 3 2 8 1 0 .1 2 2 449 0 .0 9 56 3 7

user comp 1 0 .4441 8 7 4.56 1 6 46 2 .4448 8 2
mpi call 0 .9 6 1 9 56 0 .7 46 1 42 0 .6 2 8 7 45

Tab le 4: Overlap m easu rem en ts for NA S MG

Time in sec CG-B -4 CG-B -8 CG-B -1 6
Without instr. 7 8 .57 2 6 .0 7 1 7 .41

With instr. 7 9 .55 2 5.8 7 1 8 .0 5

Tab le 5: Measu rem en t of in stru m en tation overh ead

for NA S C G

proof-of-concept prototypes that improve the overall R A S
of HE C systems. A s part of this effort, we devised a hig h
availability taxonomy specifi cally adapted to HE C environ-
ments [9]. It takes into account that the purpose of a HE C
system is to offer computing cycles for parallel application s
via different subsystems (head, service and compute nodes)
at drastically different scale (a few head and service nodes
versus tens of thousands of compute nodes) using various
critical system services (job and resource manag ement, data
storag e and I/ O , and messag ing). HE C systems are inher-
ently complex and hig h availability solutions need to ad-
dress individual defi ciencies without introducing new ones.
Furthermore, raw performance delivered to scientifi c appli-
cations is an essential q uality of service. Hig h availability
solutions are req uired to have a low overhead in a failure-
free environment. Considering the delicate balance between
the overhead in a failure-free environment and the impact
of unmasked failures is essential for the acceptance of any
fault tolerance solution.

Head and service nodes running critical system services,
such as user log in, resource manag ement, job scheduling ,
data storag e and I/ O , typically represent sin g le poin ts of
failu re and sin g le poin ts of con trol as they render an entire
HE C system inaccessible and unmanag eable in case of a fail-
ure until repair, causing a sig nifi cant downtime. Compute
nodes running the actual scientifi c application typically rep-
resent sin g le poin ts of failu re as they interrupt a HE C system
in case of a failure. However, they also may run critical sys-
tem services, such as essential parts of the messag e passing
layer. In the worst case scenario, compute node failures may
cause outag es similar to head and service node failures.

There are various techniq ues to implement hig h availabil-
ity for critical system services [9 , 40]. They include ac-
tive/ stan d by and active/ active. Active/ stan d by high avail-
ability [2 1 , 2 2 , 43] follows the fail-over model. Service state
is saved reg ularly to some shared stable storag e. U pon fail-
ure, a new service is restarted or an idle one takes over
with the most recent or even current state. This implies
a short interruption of service for the time of the fail-over
and may involve a rollback to an old backup. Asy m m et-
ric active/ active high availability [2 8] further improves the
R A S properties of a system. In this model, two or more
active services offer the same capabilities at tandem with-
out coordination, while an optional idle service is ready to

65

take over in case of a failure. This technique allows con-
tinuous availability of a service with improved throughput
performance. However, it has limited use cases due to the
missing coordination between active services. Symmetric
a ctive/ a ctive h igh a va ila b ility [12, 45] offers a continuous
service provided by two or more active services that provide
the same capabilities and maintain a common global state
using distribu ted con trol [11] or v irtu a l syn ch ron y [3 0]. The
symmetric active/ active model is superior in many areas in-
cluding throughput, availability, and responsiveness, but is
significantly more complex due to need for advanced commit
protocols.

High availability for scientific applications running on com-
pute nodes is based on a different approach due to scalabil-
ity and cost constraints. Reactive fault-tolerance solutions,
such as message logging [3 1] and checkpoint/ restart [26], can
lessen the impact of occurring failures by effectively offering
active/ standby support. More advanced reactive methods
provide adaptive checkpointing (presented in this paper, see
section 4), survivability of the message passing layer, like
PV M [18 , 3 9] and FT-MPI [13 , 16]), diskless checkpoint-
ing [2, 5] and fault tolerant scientific algorithms [1, 7]. Fu-
ture research in this area, outside the scope of MOLAR,
needs to target proactive fault-tolerance, i.e. anticipation of
failures and respective preemptive measures.

A more detailed description of our adapted high availability
tax onomy can be found in an earlier paper [9].

4. R E L I AB I L I T Y -AWAR E J O B AN D

R E S O U R C E M AN AG E M E N T
In this section, we investigate the effect of reliability-aware
runtime adaptation on job completion times of large scale
parallel applications in HEC environments. Our main goal
is to unveil insights in order to enhance runtime fault tol-
erance and improve system resource utilization. Key at-
tributes in this study are reliability (time to failure) and
availability (time to recover). B oth play important roles in
enabling HEC OS / Rs to make smarter decisions and to deal
with faulty situations more efficiently. For ex ample, ide-
ally, we want to place a checkpoint immediately before the
failure or optimally place tasks in failure-prone HEC envi-
ronments. We analyze and discuss the failures and down-
time event logs of major production HEC systems, per-
form runtime availability and reliability analysis, and de-
velop a performance and reliability tradeoff based on the ac-
tual runtime mean-time-to-failure (MTTF) and mean-time-
to-recover (MTTR).

We analyzed the system logs of a major HEC computing
infrastructure [27]. The system log file contains significant
system events from years past, collected from four AS C ma-
chines, namely White, Frost, Ice, and S now. We then per-
formed a detailed analysis on these data sets. For the pur-
pose of brevity, we present only the analysis results of White.
White, the largest among the aforementioned systems, is a
5 12-node, 16-way symmetric multiprocessor (S MP) paral-
lel computer. All nodes are of IB M’s RS / 6000 POWER3
symmetric multiprocessor architecture. Each node is a stan-
dalone machine possessing its own memory, operating sys-
tem (IB M AIX), local disk, and 16 CPU s.

Figure 1 : N um ber o f Failures o n A S C Wh ite

Figure 2 : M T T F o n A S C Wh ite (in Ho urs)

The availability, MTTF and MTTR was analyzed for each
node in the system. The MTTF for the a node is equal to
(total elapsed time)/ (number of failures). Figure 1 shows
failure counts at each interval during a four-year span. We
assume that the system was utilized with the max imal pos-
sible performance. Therefore, the total system reliability
MTTF of 5 12 nodes is 18 .28 hrs or the failure rate λ of the
5 12 nodes is 0.05 468 6. Figure 2 presents the AS C white
overall system MTTF during the four year period.

D epending on how the HEC resources are utilized, system
reliability varies from application to application and ex ecu-
tion to ex ecution; it also depends on runtime configurations.
In order to effectively deal with reliability issues, runtime
mechanisms must be aware of current situations and an-
ticipate any disruption that may occur in the system. We
conduct a study on reliability-aware runtime, particularly
on a scheduling mechanism. The main objective is to study
the benefit of the scheduler that assigns application tasks
to a set of nodes while taking into account system reliabil-
ity in order to beat the odds of failure rate. Let us con-
sider a scenario of parallel application ex ecutions under the
job queue fault tolerance that supports transparent check-
point/ recovery mechanism. D uring the ex ecution, there will
be a series of checkpoints and perhaps failures until job com-

66

(a) p = 0.7 41

(b) p = 0.841

Figure 3 : J ob Com p letion Tim e (in H ours)

pletion. We construct an ex ecution model and simulation to
study parallel application performance and reliability trade-
off. The details can be found in [20].

In our study, we assume that parallel applications ex ecuting
in an environment similar to AS C White. Thus, the failure
model and distributions follow those in the White environ-
ment shown in Figures 1 and 2. We present the results of
comparing round robin and scheduling algorithms that con-
sider reliability and availability of the nodes. We name these
Availability-Aware S cheduling (AAS) and Reliability-Aware
S cheduling (RAS) algorithms. We compare the algorithms
by varying the number of nodes assigned for the job (k) up
to 5 12 nodes. If any node selected to run the job fails be-
fore completion, the job is allocated to the nex t available k
nodes. This is repeated until the job completes successfully.
The completion time of the job is the sum of the times the
job has spent on the nodes that have failed.

Figures 3(a) and 3(b) show job completion time comparisons
among studied scheduling algorithms for parallel applica-
tions with different degrees of parallelism (p = 0.7 41 and
p = 0.841 – a more complete analysis can be found in [20]).
O ur results indicate that the scheduling algorithms with re-
liability and availability awareness can improve the job com-
pletion time of a parallel program. When we increase the
number of nodes to solve a computational problem, the com-

!"##$%&'()&"%*+,&-.,
!"##$%&'()&"%*+,&-.,
!"##$%&'()&"%*+,&-.,

!"##$%&'()&"%*+,&-.,

/,"$0*!"##$%&'()&"%

/&%01.'(2) 3$1)&'(2)4(&1$,.*+.).')&"%

3.#5.,26&7

3(%(0.#.%)

8.1&(51.

3$1)&'(2)

4(&1$,.

+.).')&"%

9)"#&'

3$1)&'(2)

1&,)$(2*34%'5,"%4

8.71&'().:*

3.#",;

8.71&'().:

/)().<3('6&%.

8.71&'().:

4&1.

8.71&'().:

+()(5(2.

8.71&'().:

8=!>83?

+&2),&5$).:

!"%),"1

6002&'()&"%7

/'6.:$1., 4&1.*/;2).#3=?*8$%)&#. //?

8.)9",:*;<)5.,%.)=*>4,&%.)=*<2(%?=*@%A&%&B(%C=*DDE

Figure 4 : H igh A v a ila b ility Fra m ew ork

pletion time would decrease until a certain threshold, which
is the reliability break-even point. Therefore, increasing the
number of nodes may not necessarily reduce the completion
time. It is therefore imperative to consider availability and
reliability as important attributes in scheduling large scale
HE C to achieve better performance.

5. H I G H AVAI L AB I L I T Y F R AM E W O R K

In order to provide high availability for HE C , we are in the
process of developing a flex ible, pluggable component frame-
work that allows adaptation to system properties, like net-
work technology and system scale; and application needs,
such as programming model and consistency req uirements.

The high availability framework (Figure 4) consists of four
layers: communication drivers, a group communication sys-
tem, virtual synchrony interfaces and applications. At the
lowest layer, communication drivers provide single- and mul-
ticast messaging capability and messaging related failure de-
tection. The group communication layer offers membership
management, ex ternal failure detection, reliable and atomic
multicast. The virtual synchrony layer builds a bridge be-
tween the group communication system and applications
offering easy-to-use interfaces common to application pro-
grammers. The framework itself is component-based, i.e.,
individual modules within each layer may be interchanged
using plug-in technology previously developed in the Har-

67

ness project [6 , 1 9 , 3 5]. In the following sections, we describe
each of the four framework layers in more detail.

5.1 C o m m u n ic a t io n D r ive r s
Today‘s HEC systems come with a variety network technolo-
gies, such as Myrinet, Elan4 , Infi niband and Ethernet. The
high availability framework is capable of supporting vendor
supplied network technologies as well as established stan-
dards, such as TC P and UDP , using communication drivers,
thus enabling efficient communication. The concept of us-
ing communication drivers to adapt specifi c AP Is of different
network technologies to a unifi ed communication AP I in or-
der to make them interchangeable and interoperable is not
new. For ex ample, Open MP I [1 7 , 3 6] uses a component-
based framework and encapsulates communication drivers
using interchangeable and interoperable components.

We are currently investigating if our framework is able to
profi t from Open MP I communication driver technology by
using the Open MP I framework. This also provides an op-
portunity for Open MP I to benefi t from our high availability
framework using active/ active high availability for essential
Open MP I services. Furthermore, we are also currently con-
sidering heterogeneity aspects and high-level protocols. For
the moment, communication drivers offer an interface that
deals with raw data, only. Future work in this area will also
reuse recent research in adaptive, heterogeneous and recon-
fi gurable communication frameworks, such as RMIX [8].

5.2 G r o u p C o m m u n ic a t io n L a y e r
The group communication layer contains all essential pro-
tocols and services to run virtual synchronous services for
symmetric active/ active high availability. It also offers nec-
essary commit protocols for active/ hot-standby and asym-
metric active/ active high availability with multiple standby
services using coherent replication. Many (6 0 +) group com-
munication algorithms can be found in literature [4]. Our
pluggable component-based high availability framework pro-
vides an ex perimental platform for comparing ex isting solu-
tions and for developing new ones. Implementations with
various replication and control strategies using a common
AP I allow adaptation to system properties and application
needs. The modular architecture also enables ex ternal con-
tributions based on the common AP I.

5.3 Vir t u a l S y n c h r o n y L a y e r
The supported AP Is at the virtual synchrony layer are based
on application properties. Deterministic and fully symmet-
rically replicated applications may use replication interfaces
for memory, fi les, state-machines and databases. N ondeter-
ministic or asymmetrically replicated applications may use
more advanced replication interfaces for distributed control
and replicated remote procedure calls. These application
properties are entirely based on the group communication
systems point of view and its limited knowledge about the
application.

5.4 Ap p lic a t io n s
There are many, very different, applications for the high
availability framework. Typical single points of failure and
control involve critical system services on head and service
nodes mentioned earlier. Another application area is more

deeply involved with the OS itself. For ex ample, single
system image (SSI) solutions run one virtual OS across a
networked system. Memory page replication is needed for
a highly available SSI. Applications on compute nodes in-
clude: super-scalable diskless checkpointing [2 , 5], scalable
MP I recovery and coherent data caching and staging [2 3].

The framework is implemented as a set of shared and static
libraries. Depending on the application area, it may be used
within the application by direct linking or via a daemon
process by network access. A direct integration into an OS
kernel, such as L inux , is not planned.

5.5 P r o t o t y p e I m p le m e n t a t io n
An early prototype has been implemented using the light-
weight Harness runtime environment (RTE) [6] as a fl ex i-
ble and pluggable backbone for the described software com-
ponents. Harness is a pluggable heterogeneous Distributed
Virtual Machine (DVM) environment for parallel and dis-
tributed scientifi c computing. C onceptually, the Harness
software architecture consists of two major parts: a runtime
environment (RTE) and a set of plug-in software modules.
The multi-threaded user-space RTE manages the set of dy-
namically loadable plug-ins. While the RTE provides only
basic functions, plug-ins may provide a wide variety of ser-
vices needed in fault-tolerant parallel and distributed sci-
entifi c computing, such as messaging, scientifi c algorithms
and resource management. Multiple RTE instances can be
aggregated into a DVM.

P revious research in Harness already targeted a group com-
munication system to manage a symmetrically distributed
virtual machine environment (DVM) using distributed con-
trol [1 0] as a form of RP C -based virtual synchrony. The Har-
ness distributed control plug-in provides virtual synchrony
services to the Harness DVM plug-in, which maintains a
symmetrically replicated global state database for high avail-
ability. The accomplishments and limitations of Harness
and other group communication middleware projects were
the basis for the fl ex ible, pluggable and component-based
high availability framework.

6 . AC T I VE /AC T I VE R E P L I C AT I O N
Implementing symmetric active/ active high availability us-
ing virtual synchrony supported by a group communication
system implies event-based programming, where a service
only reacts to event messages using uninterruptible event
handler routines. More advanced programming models for
virtual synchrony, such as distributed control [1 1], use the
replicated remote procedure call abstraction to provide a
req uest/ response programming model. However, both pro-
gramming models assume that a service supplies the nec-
essary hooks to perform uninterruptible state transitions.
While this is typically the case for networked services, com-
mand line based HEC services, such as the batch job sched-
uler, and proprietary networked HEC services, such as data
storage and I/ O, do not necessarily offer these hooks.

As part of our MOL AR research, we developed two dis-
tinct replication methods [1 2] (Figure 5) for symmetric ac-
tive/ active high availability using virtual synchrony to al-
low adaptation of ex isting services to the event-based or
req uest/ response programming model either internally by

68

Node C

Adapter

Service

Adapter

Node B

Adapter

Service

Adapter

Node A

Adapter

Service

Adapter

O
u
tp
u
t

In
p
u
t

Send

Process

Receive

M
1
,
M
2
,
M
3

M
1
,
M
2
,
M
3

O
u
tp
u
t

In
p
u
t

Send

Process

Receive

M
1
,
M
2
,
M
3

M
1
,
M
2
,
M
3

O
u
tp
u
t

In
p
u
t

Send

Process

Receive

M
1
,
M
2
,
M
3

M
1
,
M
2
,
M
3

Group

Communication

Group

Communication

Group

Communication

Group

Communication

M
1

M
2

M
3

M
1
,
M
2
,
M
3

In
p
u
t

In
p
u
t

In
p
u
t

O
u
tp
u
tUser Interface User Interface

User Interface User Interface

(a) Internal

Node C

Interceptor

Service

Interceptor

Node B

Interceptor

Service

Interceptor

Node A

Interceptor

Service

Interceptor

Send

Process

Receive

M
1
,
M
2
,
M
3

M
1
,
M
2
,
M
3

Send

Process

Receive

M
1
,
M
2
,
M
3

M
1
,
M
2
,
M
3

Send

Process

Receive

M
1
,
M
2
,
M
3

M
1
,
M
2
,
M
3

Group

Communication

Group

Communication

Group

Communication

Group

Communication

M
1

M
2

M
3

M
1
,
M
2
,
M
3

User Interface User Interface

User Interface User Interface

User Interface User Interface

User Interface User Interface

O
u
tp
u
t

In
p
u
t

O
u
tp
u
t

In
p
u
t

O
u
tp
u
t

In
p
u
t

In
p
u
t

In
p
u
t

In
p
u
t

O
u
tp
u
t

(b) Ex ternal

Figure 5 : M eth ods for Sy m m etric A c tiv e/ A c tiv e
R ep lic a tion of Serv ices

modifying the service itself or ex ternally by wrapping it into
a virtually synchronous environment.

6.1 I n t e r n a l R e p lic a t io n
Internal replication (Figure 5 (a)) allows each active service
of a service group to accept ex ternal state change req uests
individually, while using a group communication system for
total message order and reliable message delivery to all mem-
bers of the service group. All state changes are performed
in the same order at all services, thus virtual synchrony is
given. Services may also choose fine-grain synchronization
using the group communication system to perform state
changes in multiple stages by splitting them into smaller
atomic operations. Since state changes are handled in an
uninterruptible fashion, splitting them up allows interleav-
ing in order to gain performance and reduce response la-
tency. However, only non-confl icting state changes may be
interleaved in order to maintain correctness.

6.2 E x t e r n a l R e p lic a t io n
Ex ternal replication (Figure 5 (b)) avoids modification of
ex isting code by wrapping a service into a virtually syn-
chronous environment. Interaction with other services or
with the user is intercepted, totally ordered and reliably
delivered to the service group using a group communication
system that mimics the service interface using separate event
handler routines. For ex ample, the command line interface
of a service is replaced with an interceptor command that
behaves like the original, but forwards all input to an inter-
ceptor group. Once totally ordered and reliably delivered,
each interceptor group member calls the original command
to perform operations at each service group member. Service
group output is routed through the interceptor group for at
most once delivery. Ex ternal replication implies coarse-grain
synchronization. Interleaving state changes is not possible,
since the interceptor group forces atomicity for all service
interface operations.

6.3 C o m p a r is o n
Internal replication req uires modification of code, which may
be unsuitable for complex services. T he amount of modifi-
cation necessary may result in a complete redesign. In con-
trast, ex ternal replication forces atomicity at the user-level
interface, which may be unsuitable for services with substan-
tially time consuming user interface operations. Another is-
sue emerges when considering live u pgra d es. Upgrading a
highly available service while it is running in a symmetric
active/ active fashion req uires removal, upgrade and rejoin
of each individual service group member, one at a time. A
strict prereq uisite is that the new version fully supports the
interface and semantics of the old one. Similar to live up-
grades, individual symmetric active/ active high availability
solutions may be reused for different service implementa-
tions with the same user interface, for ex ample, different re-
source management systems supporting the Open PB S [3 7]
interface. Maintaining a consistent interface over a signif-
icant period of time is easier using ex ternal replication as
it is based on the ex ternal user interface, while the internal
design is not affected and may change with a new version.

Our ongoing work focuses on providing symmetric active/ ac-
tive high availability for the T OR QUE [4 4] resource manage-
ment system using ex ternal replication and for the Parallel
V irtual File System (PV FS) [3 8] metadata server using in-
ternal replication. While we have not performed ex tensive
performance benchmarking, early results show that internal
replication offers higher performance with interleaved state
changes and slightly reduces the response latency introduced
by the group communication system. However, interleaving
state changes req uires substantial knowledge about the in-
ternal behavior of a service.

Overall, we recommend the internal replication method if
high throughput performance is needed, for ex ample, for file
system servers, ex cept where the prospect of ex tensive code
modification or foreseeable major service design changes pro-
hibits it. However, we recommend using ex ternal replication
if high throughput performance is not a major req uirement
and the symmetric active/ active high availability solution
should be reusable for other services that have ex actly the
same user interface.

69

7. FAU L T-TO L E R AN T M E M B E R S H I P

FO R M P I C O M M U N I C ATI O N

Fault-tolerance within the MP I runtime req uires that tasks
can be dynamically added and removed in response to false
if we want to support an environment that can dynamically
withstand node failures rather than restarting MP I jobs.

We have developed a scalable approach to reconfi g ure the
communication infrastructure after node failures suitable for
MP I runtime systems. A decentralized (peer-to-peer) pro-
tocol maintains membership knowledg e in the presence of
faults. Instead of a performance overhead of seconds for past
frameworks, our protocol shows response times in the order
of microseconds for reconfi g uration over TC P on FastE ther.
We also verify experimental results ag ainst a performance
model. The membership service is suitable for deployment
in the communication layer of MP I runtime systems, and we
are currently pursuing its integ ration into Open MP I.

Our alg orithm provides a new, consistent view (set) of active
nodes at very low overhead. The process of establishing a
new view is called tree sta biliza tio n in the following .

N odes participating in the membership services are inter-
nally represented in two data structures: a radix tree and
a linear array of nodes. The former provides an efficient
representation for collective communication while the latter
support point-to-point communication.

The radix tree provides a hierarchical representation that
implicitly encodes routing information in the node ID, which
reduces the overhead of alg orithms that exploit the member-
ship service. The radix encoding of a node ID can be used to
determine the routing path of messag es from the root to this
node or to determine its position in the tree structure. To
allow efficient decoding of routing information, the number
of children in the radix tree has to be a power of two.

The radix tree is duplicated on each node and kept up-to-
date with respect to a g lobal view in a decentralized manner
(consistent state with other nodes). At startup, all nodes
have the same initial view. When a failure is detected, e.g.,
by IP MI health monitoring , the root of the tree is informed.

The root node recalculates its tree structure by eliminating
the failed node from its list of nodes and updates corre-
sponding links to its children. It then sends a messag e to
its children to indicate that their views need to be updated
as well. This failure indicator transitively propag ates down
the tree followed by acknowledg ments up the tree structure.
Once the root has received all acknowledg ments, a new sta-
ble view has been established. The latency between the ini-
tial reception of a node failure at the root node and receiving
all acknowledg ments is called the stabilization time (Ts), a
performance metric used subseq uently in experiments. N ode
deletion can be handled in much the same way by eliminat-
ing one node and propag ating a messag e to instruct nodes
to exclude a failed node as part of the transitive notifi cation
process. Simultaneous insertions or deletions are supported
by parallel reconfi g uration facilitated by the static routing
of the radix tree. Root failures are handled by selecting the
closest operational node from the linear node list to reduce
the coordination overhead.

Figure 6 : S ta b iliz a tion Tim e (Ts) over TC P

To measure the tim e fo r sta biliza tio n (Ts), we evaluated our
protocol for a binary radix tree using TC P with a Fast-
E thernet switch. We also compared this metric to a model-
based on point-to-point latency (L), overhead for communi-
cation (Ocm) and computation (Ocp), and the heig ht (H)
of the tree [3]:

Ts = Ocm + Ocp ∗ H (1)

E xperiments were conducted under Red Hat 7.3 L inux (ker-
nel version 2.4 .18) on a 16 node dual-processor AMD Athlon
X P 18 00+ machines connected by a full-duplex FastE ther
switch over TC P / IP . Ocm was measured as 2.3 µsec.

The results of TC P are shown in Fig ure 6. The latency
for the E thernet connection was measured as 90 µsec. The
experimental results closely follow the theoretical results re-
sembling a step curve as the tree heig ht and, hence, the num-
ber of hops increases. Actual values in experiments were
slig htly hig her than those of the model, which can be at-
tributed to a constant system overhead that the model does
not accurately reflect. Overall, the experiments show that
the model closely follows the actually observed stabilization
overhead, which has a log arithmic complexity in the number
of nodes and, hence, is well suited for larg e-scale machines.
We are currently extending our experiments to larg er node
counts, and preliminary results indicate that our observa-
tions still hold in such environments.

8 . C O N C L U S I O N S

The MOL AR research we presented in this paper focuses
on advancing RAS for HE C in order to address the chal-
leng es that OS/ R solutions face on the next g eneration of
supercomputers. Our research targ ets the desig n and de-
velopment of core technolog ies and proof-of-concept proto-
types. In this paper, we described our ong oing efforts in
performance instrumentation for characteriz ing the deg ree
of computation-communication overlap in messag e-passing
systems, in devising an appropriate hig h availability tax-
onomy for hig h-end computing , in developing a reliability-
aware job and resource manag ement solution, in develop-
ing a flexible, adaptable, component-based hig h availabil-
ity framework, in eq uipping existing critical system services

70

