
ar
X

iv
:1

40
1.

30
13

v1
 [

cs
.M

S]
 1

3
Ja

n
20

14

Resilience in Numerical Methods: A Position on

Fault Models and Methodologies

James Elliott1,2, Mark Hoemmen1, Frank Mueller2

1 Sandia National Laboratories
2 North Carolina State University

Abstract. Future extreme-scale computer systems may expose silent
data corruption (SDC) to applications, in order to save energy or in-
crease performance. However, resilience research struggles to come up
with useful abstract programming models for reasoning about SDC. Ex-
isting work randomly flips bits in running applications, but this only
shows average-case behavior for a low-level, artificial hardware model.
Algorithm developers need to understand worst-case behavior with the
higher-level data types they actually use, in order to make their algo-
rithms more resilient. Also, we know so little about how SDC may man-
ifest in future hardware, that it seems premature to draw conclusions
about the average case. We argue instead that numerical algorithms can
benefit from a numerical unreliability fault model, where faults manifest
as unbounded perturbations to floating-point data. Algorithms can use
inexpensive “sanity” checks that bound or exclude error in the results
of computations. Given a selective reliability programming model that
requires reliability only when and where needed, such checks can make
algorithms reliable despite unbounded faults. Sanity checks, and in gen-
eral a healthy skepticism about the correctness of subroutines, are wise
even if hardware is perfectly reliable.

1 Introduction

Much resilience research has focused on tolerating parallel process failures through
standard techniques like checkpoint/restart (C/R) or process replication. The
monster in the closet [12] is incorrect hardware behavior which does not cause
process failure. Faults like incorrect arithmetic or memory corruption may make
the application produce incorrect results or increase run time, with no indica-
tion from the system that something went wrong. We refer to this class of faults
as silent data corruption (SDC). If systems cannot correct these faults before
they affect applications’ behavior, then the burden of tolerating them shifts to
algorithms: either to detect abnormal behavior and correct it, or to “absorb” its
effects while still making progress towards the correct solution. SDC’s causes are
poorly understood. Moreover, this type of fault is rare enough that it is difficult
to observe [15].

Resilience approaches used in daily practice, such as C/R, are attractive
because they presume an abstract, minimal fault model. C/R assumes only that

http://arxiv.org/abs/1401.3013v1

checkpoints contain correct state, and are stored reliably to stable (shared, non-
volatile) storage. It does not care whether the application failed due to a crashed
node, network errors, a power outage, or the job running out of allocation time.
This abstract fault model lets C/R recover from many different kinds of faults.

SDC, by definition, does not trigger system actions like a restart. The silent
error can manifest in several ways, such as performance variation between par-
allel processes, convergence to a wrong solution, or even an application crash
sufficiently long after a checkpoint is written that contains the tainted state.
Given the success of C/R’s abstract fault model, why then has soft error re-
search focused so heavily on a low-level, fine-grained “bit flip” fault model? Bits
may go wrong if an error is introduced, but this does not help us design algo-
rithms which work at a much higher abstraction layer than bits. Applications
care about data types like floating-point values and integers, not about the bits
which compose them.

We argue that resilient numerical methods should be designed around an
abstract fault model of numerical unreliability, in much the same way C/R is
designed around an abstract model of system unreliability. We present a case for
a radically different research methodology that merges numerical analysis with
systems fault tolerance, and provides algorithm developers with programming
models they can use to ensure correctness despite SDC. We solicit this commu-
nity specifically, because this challenge requires researchers that are comfortable
bridging mathematics and computer science.

2 Bit Flips for Algorithm Analysis?

All prior work in fault-tolerant numerical methods, including some of ours, has
presumed a bit flip model of hardware faults. That is, faults occur randomly
(e.g., via a Poisson process), and manifest as one or more bits of one or more
words changing values (“flipping”). That word could store data of any type,
including floating-point values, integer indices, pointers, or even instructions.
A fault itself does not immediately cause the affected process to crash, except
through any resulting changes to application behavior, such as a segmentation
violation signal raised due to an illegal memory access caused by a corrupted
pointer.

This model is seductive, because it lets researchers apply a “computer sci-
ence” approach to numerical algorithms. In particular, it allows stochastic sam-

pling. That is, for a given problem, one either randomly [2–5,7,11,13,17,18,21]
or exhaustively [8, 10] flips bits and observes the effects on running codes. This
makes for reasonable papers: One picks some numerical algorithm (e.g., an iter-
ative linear solver), a set of test problems, and fires them off with some random
fault injection in the background. The authors may also engineer a technique
that detects and corrects the faults being injected.

We argue against this approach. First, we have no idea if real hardware faults
manifest in this way, either in current or future computers. Second, stochastic
sampling tends to reveal average-case behavior, but we are most interested in

worst-case behavior. Third, the bit flip model does not reflect what algorithms
actually need to know, in order to increase their resiliency. That is, simply point-
ing out that a bit flip can cause the algorithm to stagnate, produce a comically
wrong solution, or, if lucky, get the right answer does not enable us to design
algorithms any wiser than we did prior to the study. What this type of research
does accomplish, is that it shows that certain fault models can be addressed via
specific engineering approaches, e.g., checksums.

2.1 Bit Flip Model May Not Reflect Actual Hardware Behavior

Bit flips can manifest all sorts of problems, from corrupting arithmetic results or
storage to changing the instruction stream. There are too many ways in which
things could go wrong, so it’s not clear where to start predicting behavior. For
example, what happens if data in a cache are corrupted? It depends on whether
the algorithm reads or writes the corrupted data, as well as the cache eviction
policy. It is also not clear whether possible future hardware which lets faults
through to applications will behave according to our models. We barely even
know how to program future fault-free hardware.

Future architectures may need to expose more unreliability to save energy
or improve performance. The question is what level of unreliability a numerical
technique can handle. We can make progress towards this answer by focusing on
research on algorithms that bound error, rather than attempting to detect and
correct all errors. We explain this in the following sections.

2.2 Worst-Case Behavior: Adversarial vs. Practitioner

Stochastic sampling is a natural tool to use given the bit flip model. Random
sampling, in itself, is not bad, but as a means to justify the correctness of a
numerical method it is inadequate. Numerical methods typically have proven

behavior and correctness. If operations can be unreliable, then we need to iden-
tify the bounds in which a resilient algorithm is reliable. That is, we should
understand the smallest and largest errors we may commit. Relying on sampling
alone leaves us prone to a practitioner design pattern, where things are fixed
only when someone (or a sample) identifies there is a problem. We feel a more
adversarial approach is required, and this approach fits naturally with a bounded

error design methodology. For a given numerical kernel, we wish to know the
worst-case error that can be committed, and with this knowledge, we can em-
ploy pure and applied mathematicians to aid us in designing methods that can
tolerate such error bounds.

When developing an algorithm, we cannot ignore the extreme cases, because
if we do so, we have unstated assumptions about the way in which the algorithm
can be used. For numerical methods, unstated assumptions make the method
nearly worthless, given that we can never anticipate what combinations of data
the user will throw at the algorithm. For this reason we advocate moving from
a bit flip model to a more abstract model that evaluates algorithms based on
their ability to absorb unexpected numerical variability.

2.3 Large Perturbations and Boundedness

The “random bit flip” fault model does not reflect what algorithms actually need
to know. Algorithm developers do not care whether a network packet dumped
garbage into our reduction or a cosmic ray blasted 20 entries in an array. All
of these events can be modeled as numeric perturbations in the algorithm. Fur-
thermore, we can bound these errors by detecting their effects. Then we can
use numerical approaches that can tolerate “large” errors, where “large” means
“much larger than rounding error, but not large enough to detect.”

Our training leads us to restrict our consideration to numerical algorithms,
that is, approximations for the solution of continuous problems using floating-
point numbers. Other authors have studied ways to make discrete algorithms
(like sorting) more fault tolerant, by relaxing them into continuous problems [20].
Mathematics has a long history of analyzing the effects of perturbations to the
input or intermediate results of numerical algorithms. Usually, those perturba-
tions are small and represent the effects of rounding error or the limited accuracy
of experimental data. However, analysis has shown that some algorithms can tol-
erate errors of size comparable to the input data (see e.g., inexact Krylov [19]).
We are mainly interested in worst-case behavior, so we can exclude small errors,
because those are already covered by rounding error analysis.

Under our abstract model of numerical unreliability and in conjunction with
bounds, then we know the worst-case faults lie within our bounds. This approach
gives us a clear research direction that we feel will prove extremely useful. By
analyzing algorithm’s behavior to “large” perturbations within the algorithms
theoretical bounds, we can use analysis and experimentation to identify the
worst-case faults.

2.4 What About Metadata?

One might question whether it suffices just to consider floating-point arithmetic
and storage. Numerical algorithms do not only have data, they also have meta-

data: Pointers, indices, program counters, and even the instructions themselves.
We consider data to be the state required theoretically by the numerical method,
e.g., a Krylov subspace K, an input matrix A, a right-hand side vector. The
metadata is the information required to implement the method, like integer di-
mensions n, loop counters i, and sparse matrix indices. Some metadata may
occupy space proportional to the data. For example, with many sparse matrix
storage formats, indices take space proportional to that of the matrix’s values.
Does it make sense to consider data corruption, without including the metadata?

We should always apply research effort in the most extensible way possible. A
numerical algorithm like the method of conjugate gradients can be implemented
in many ways, but its theoretical foundation will remain the same. That is to
say, the data as well as certain invariant properties can be assumed a priori,
and we can harden the algorithms by devising mechanisms to assert that these
theoretical principals remain true. The metadata required to implement the al-
gorithm can change drastically based on who implements the algorithm, and

the language or libraries chosen to do so. We will expand this thought in the
subsequent section.

There are three possible effects of metadata corruption. First, it could man-
ifest as a floating-point data fault. For example, a corrupted array index would
result in a read of the wrong value. Second, it could crash the process, for ex-
ample due to a segmentation violation or an invalid instruction. Third, it could
be possible for metadata corruption to let the process keep running, but put it
in an undefined, unpredictable state.3 Experience suggests that the third option
is exceptionally unlikely. Furthermore, the second case reduces to the known
problem of process failure. An entire genre of research and practical software
exists to handle this case. Sometimes the first case gets turned into the second,
for example ECC memory when it detects an error it cannot correct.

We can only argue about what to do for data faults, not whether expos-
ing data faults is a good idea. If systems do expose faults to applications, the
metadata issue will arise.

3 Numerical Unreliability and Skeptical Programming

If we assume that operations are inherently unreliable, then we should anticipate
events such as 2 + 2 = 0. One approach to tolerate numerical unreliability,
is to detect and correct all errors. This is what traditional Application-Based
Fault Tolerance (ABFT) [14] has done. ABFT methods propagate checksums
throughout an algorithm and use these checksums to assert that computations
are correct. This approach is daunting, as the burden to detect and correct
all numerical errors is difficult and an open area for research, even for well
understood numerical methods such as LU decomposition [4]. We advocate a
different strategy.

Traditional ABFT attempts to preserve the illusion of an always reliable ma-
chine. Instead, we favor an approach more compatible with numerical analysis.
First, we bound the error that faults can introduce. Second, we identify methods
that can tolerate the largest error possible. This strategy is based entirely on
the algorithm theory and the data itself. That is, given specific inputs, we can
bound large portions of an algorithm using standard norm bounds and inner
product bounds. These bounds enforce that errors committed in intermediate
computations do not exceed the theoretical limit imposed by the algorithm in
conjunction with the data provided. We demonstrate this approach in [9] and a
similar approach is used in [22].

Because operations are unreliable (numerical unreliability), the bounds allow
us to be skeptical of key values. We use a bound on orthogonal projections in [9],
while Van Dam et al. use a bound on a crucial inner product [22]. These bounds
work as filters rather than error detectors. We make no promise to detect and
correct all errors, we merely promise bounded error. We refer to this approach
as Skeptical Programming.

3 See the “nasal demons” entry of [16].

Numerical research provides a continuous stream of results that could be used
in our Skeptical Programming strategy. The key factor is that these bounds be 1)
cheap to evaluate, and 2) be determined before the algorithm is run. We prefer to
determine these bounds a priori because numerical unreliability may affect any
bound computed inside the algorithm. That is, if we allow a bound to depend
on unreliable computation, then the bound becomes unreliable as well. We may
have to relax (2) in some cases, but we desire (1) to be true always. We clarify
this reasoning by introducing Selective Reliability.

4 Selective Reliability

Hoemmen and Heroux proposed a fault tolerance approach based on the concept
of isolating numerical operations that must be reliable, from those where reli-
ability can be relaxed [1]. They use this to develop a programming model that
“sandboxes” unreliable computations, and promises reliability on specific com-
putations. A realization of Selective Reliability is the two-level iterative solver
FT-GMRES. FT-GMRES preconditions Flexible GMRES (FGMRES) by GM-
RES, possibly with its own preconditioner. The outer FGMRES iteration is
identified as needing reliability, while the inner GMRES (and its preconditioner)
is marked as suitable for unreliability. In this setup, the outer iteration absorbs
the error introduced from numerical unreliability, while still making progress
towards the correct solution.

Skeptical Programming enhances Selective Reliability by bounding the error
that the inner (nested) GMRES solver can introduce. This approach allows the
inner solver to run without expensive fault tolerance checks, such as frequently
re-checking orthogonality or computing the explicit residual.

The key is that Selective Reliability does not describe what can be unre-
liable. Instead, it only declares what must be reliable. This approach enables
phenomenal flexibility. For example, a reliable FGMRES outer solver, can wrap
complicated (black box) preconditioners, while still promising that if a solu-
tion is obtained it will be correct. This approach is in stark contrast to current
trends in fault tolerant algorithms, where algorithm developers are attempting
to robustify every numerical method to handle faults.

5 Conclusions

The resilience community has almost no idea how SDC will manifest in fu-
ture computers. We just know that it may show up. Thus, we aim to suggest
models and best practices for algorithm developers, that assume as little as pos-
sible about how faults appear. Thinking of SDC as unbounded perturbations to
floating-point data, rather than bit flips, describes it in a way useful to numerical
analysts.

An easy way to start using this model, is to introduce inexpensive “sanity
checks” that help bound or exclude incorrect results. These checks are never
a bad idea, because they can protect code against many conditions other than

SDC. These include violated assumptions about the input (e.g., that the matrix is
nonsingular), rounding error that unexpectedly violates physical constraints such
as energy conservation, and software bugs. Algorithm experts are the right people
to design these checks. They should favor checks that can reduce error while
bounding or measuring it. This includes iterative refinement for solving linear
systems [6], along with other inner-outer iterations like FT-GMRES. Algorithms
with bounded error, such as regularized least squares instead of LU with partial
pivoting, make good building blocks for constructing more resilient applications.

Combining these recommendations with a selective reliability programming
model will let applications prove correctness. Even without selective reliability,
implementing these recommendations should increase their resilience to SDC, as
well as to other kinds of events that applications already encounter on today’s
hardware.

Acknowledgments

This work was supported partly by the RX-Solvers grant from the Advanced Sci-
entific Computing Research program of the U.S. Department of Energy’s (DOE)
Office of Science, and partly by the Consortium for Advanced Simulation of Light
Water Reactors under U.S. DOE Contract No. DE-AC05-00OR22725. Sandia
National Laboratories is a multiprogram laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. DOE’s National Nuclear Security Administration under Contract
DE-AC04-94AL85000.

References

1. P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen. Fault-tolerant
linear solvers via selective reliability. ArXiv e-prints, June 2012.

2. G. Bronevetsky and B. de Supinski. Soft error vulnerability of iterative linear
algebra methods. In Proceedings of the 22nd Annual International Conference on
Supercomputing, ICS ’08, pages 155–164, New York, NY, USA, 2008. ACM.

3. Z. Chen. Online-ABFT: An online algorithm based fault tolerance scheme for soft
error detection in iterative methods. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’13, pages
167–176, New York, NY, USA, 2013. ACM.

4. T. Davies and Z. Chen. Correcting soft errors online in LU factorization. In
Proceedings of the 22nd International Symposium on High-Performance Parallel
and Distributed Computing, HPDC ’13, pages 167–178, New York, NY, USA, 2013.
ACM.

5. T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen. High performance LINPACK
benchmark: A fault tolerant implementation without checkpointing. In Proceedings
of the 25th Annual International Conference on Supercomputing, pages 162–171,
May 2011.

6. J. Demmel, Y. Hida, W. Kahan, X. S. Li, S. Mukherjee, and E. J. Riedy. Error
bounds from extra-precise iterative refinement. ACM Transactions on Mathmatical
Software, 32(2):325–351, 2006.

7. P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Dongarra. Algorithm-based
fault tolerance for dense matrix factorizations. SIGPLAN Not., 47(8):225–234,
February 2012.

8. J. Elliott, M. Hoemmen, and F. Mueller. Exploiting Data Representation for Fault
Tolerance. ArXiv e-prints, December 2013.

9. J. Elliott, M. Hoemmen, and F. Mueller. Evaluating the impact of SDC on the GM-
RES iterative solver. In 28th IEEE International Parallel & Distributed Processing
Symposium (IEEE IPDPS 2014), Phoenix, USA, May 2014.

10. J. Elliott, F. Mueller, M. Stoyanov, and C. Webster. Quantifying the impact of
single bit flips on floating point arithmetic. Technical Report TR 2013-2, Dept. of
Computer Science, North Carolina State University, March 2013.

11. D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell.
Detection and correction of silent data corruption for large-scale high-performance
computing. In Supercomputing, pages 78:1–78:12, November 2012.

12. A. Geist. What is the monster in the closet? Invited Talk at Workshop on Archi-
tectures I: Exascale and Beyond: Gaps in Research, Gaps in our Thinking, August
2011.

13. V. Howle, P. Hough, M. Heroux, and E. Durant. Soft errors in linear solvers
as integrated components of a simulation. Invited talk at the Copper Mountain
Conference on Iterative Methods, April 2010.

14. Kuang-Hua Huang and Jacob A. Abraham. Algorithm-based fault tolerance for
matrix operations. IEEE Transactions on Computers, C-33(6):518–528, June 1984.

15. S.E. Michalak, A.J. Dubois, C.B. Storlie, H.M. Quinn, W.N. Rust, D.H. DuBois,
D.G. Modl, A. Manuzzato, and S.P. Blanchard. Assessment of the impact of cosmic-
ray-induced neutrons on hardware in the Roadrunner supercomputer. Device and
Materials Reliability, IEEE Transactions on, 12(2):445–454, 2012.

16. E. S. Raymond. The New Hacker’s Dictionary. MIT Press, 3rd edition, 1996.
17. M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Characterizing the impact

of soft errors on iterative methods in scientific computing. In Proceedings of the
25th International Conference on Supercomputing, ICS ’11, pages 152–161, New
York, NY, USA, 2011. ACM.

18. M. Shantharam, S. Srinivasmurthy, and P. Raghavan. Fault tolerant preconditioned
conjugate gradient for sparse linear system solution. In Proceedings of the 26th
ACM International Conference on Supercomputing, ICS ’12, pages 69–78, New
York, NY, USA, 2012. ACM.

19. V. Simoncini and D. B. Szyld. Theory of inexact Krylov subspace methods and ap-
plications to scientific computing. SIAM J. Sci. Comput., 25(2):454–477, February
2003.

20. J. Sloan. A numerical optimization-based methodology for application robustifica-
tion: Transforming applications for error tolerance. Master’s thesis, University of
Illinois Urbana-Champaign, Urbana, IL, 2011.

21. J. Sloan, R. Kumar, and G. Bronevetsky. Algorithmic approaches to low overhead
fault detection for sparse linear algebra. In Proceedings of the 2012 42nd An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), DSN ’12, pages 1–12, Washington, DC, USA, 2012. IEEE Computer Soci-
ety.

22. H. J. J. van Dam, A. Vishnu, and W. A. de Jong. A case for soft error detec-
tion and correction in computational chemistry. Journal of Chemical Theory and
Computation, 9(9):3995–4005, 2013.

	Resilience in Numerical Methods: A Position on Fault Models and Methodologies
	James Elliott, Mark Hoemmen, Frank Mueller

