
Doomsday: Predicting Which Node Will Fail When
on Supercomputers

Anwesha Das, Frank Mueller
North Carolina State University
{adas4,fmuelle}@ncsu.edu

Paul Hargrove, Eric Roman, Scott Baden
Lawrence Berkeley National Laboratory
{phhargrove,ERoman,baden}@lbl.gov

Abstract—Predicting which node will fail and how soon re-
mains a challenge for HPC resilience, yet may pave the way to ex-
ploiting proactive remedies before jobs fail. Not only for increas-
ing scalability up to exascale systems but even for contemporary
supercomputer architectures does it require substantial efforts
to distill anomalous events from noisy raw logs. To this end, we
propose a novel phrase extraction mechanism called TBP (time-
based phrases) to pin-point node failures, which is unprecedented.
Our study, based on real system data and statistical machine
learning, demonstrates the feasibility to predict which specific
node will fail in Cray systems. TBP achieves no less than 83%
recall rates with lead times as high as 2 minutes. This opens up
the door for enhancing prediction lead times for supercomputing
systems in general, thereby facilitating efficient usage of both
computing capacity and power in large scale production systems.

Index Terms—Machine Learning, HPC, Failure Analysis

I. INTRODUCTION

Significant efforts have been made to improve the re-
silience of HPC systems in recent times. Existing health check
monitors and techniques such as root cause diagnosis and
failure detection use diverse log sources to combat failures.
However, they still fall short of strong means to handle node
failures proactively in complex, large scale computing systems.
First, supercomputing systems are constantly changing due to
novel architectures, design, upgraded applications and logging
mechanisms. Prior techniques of automated fault diagnosis do
not suffice for the evolving changes [1].

Second, existing HPC infrastructures with their increasing
component count required for exascale (≈ 106 nodes) make
accurate fault prediction hard. Aborted jobs due to node
failures inflict significant energy costs [2]. More than 20%
of the compute capacity is wasted in failures and recovery,
as reported by DARPA [3]. With increasing number of nodes,
the mean time between failures (MTBF) reduces for a node,
making fault identification and resolution even more difficult.
Increasing complexity in emerging next generation systems
obviates the need for adaptive fault aware solutions to address
this critical reliability challenge.

To address this challenge, we present a fault-tolerant so-
lution to pin-point potential node failures in HPC systems.
Our study on Cray system data with an automated machine
learning technique suggests that careful time series analysis
of log phrases can be used to predict node failures. Recov-
ery techniques such as checkpoint/restart (CR) and redun-

dancy/replication incur additional costs [4]. Our methodology
to identify which nodes are likely to fail (location information)
prior to actual fail-stop behavior can reduce the overhead of
failure recovery.

As of November 2017, 29% of the top 100 and 40% of
the top 10 supercomputers (e.g., Titan, Cori, Trinity) [5] were
Cray machines. It is important to investigate Cray machines
more closely to explore techniques that increase reliability.
This paper discusses the inherent challenges of Cray systems
and proposes a mechanism to predict node failures.

Motivation: From log data analysis to root cause diag-
nosis across various levels (hardware, system, application)
researchers have studied failure manifestations in HPC systems
and devised ways to improve recall rates [6]. In spite of such
a large body of work on resilience, further investigation is
required for the following reasons:

• Existing work performs prediction and diagnosis with-
out sufficient emphasis on lead time requirements. Pin-
pointing which nodes will fail well ahead in time to
proactively counter performance disruptions still remains
a challenge. Optimal learning window interval selection
and determining appropriate lead times are important
considerations for successful prediction of node failures.

• Most prior studies [7]–[9] use the same training data for
future predictions over a long time frame. Gainaru et
al. [6] found that correlations determined off-line when
are dynamically adapted result in limitations for short
training sets applied to a long future time window. This
makes prediction impractical on production systems. Dy-
namic learning and scalable online prediction techniques
need to be investigated to improve prediction efficiency.

• Prior resilience work [7]–[12] studied rich BlueGene
logs of decommissioned systems. Time sensitive failure
prediction in contemporary systems (e.g., Cray) with
lower-level Linux-style raw logs need further exploration
to better understand the requirements of resilience.

We focus on the 1st and 3rd aspects in this paper.
Contributions: This paper shows a novel way to extract

failure messages indicative of compute node failures for Cray
systems. First, we provide an analysis of Cray system logs and
job logs and show how failure prediction in such systems poses
additional challenges compared to systems such as BlueGene.

Second, we discuss what node failure exactly means in the
context of Cray systems, what traits govern normal shutdowns

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 ©2018 IEEE

and abnormal reboots and how we can avoid trivial pitfalls
in node failure detection. We provide frequency estimates of
compute and service node failures highlighting their potential
consequences on systems and user applications.

Finally, we propose a novel prediction scheme, TBP (time-
based phrase), to extract relevant log messages indicative of
node failures from noisy data. This scheme relies on phrase
likelihood estimation considering continuous time-series data
to elicit out useful messages. These events help forecast future
failures with lead times ranging from 20 secs to 2 minutes.

II. BACKGROUND

Let us provide a brief overview of the system logs studied
highlighting the main components of such logs used for
analysis. Table I summarizes the system and job logs collected
from three contemporary systems, namely: SC1, SC2 and SC3.
Size refers to the log data size and scale indicates the cluster
size in terms of the number of compute and service nodes.
These systems have been widely deployed and typically run
more than 1,400,000 jobs/year.

TABLE I: System Details
System Duration Size Scale Type
SC1 14 months 573GB 5600 nodes Cray XC30
SC2 18 months 450GB 6400 nodes Cray XE6
SC3 8 months 39GB 2100 nodes Cray XC40

Cray System Architecture: Figure 1 shows a high-level
overview of a Cray system. A job scheduler distributes user
jobs on the allocated compute nodes. Production jobs are
executed on the compute nodes and external clients access
the cluster through the login nodes. The parallel file system
(e.g. Lustre) and a network server (e.g., Aries implementation
of the generic network interface (GNI)) communicate with the
service nodes and compute nodes. The System Management
Workstation (SMW) administers and logs various cluster com-
ponents and monitors resource usage. The Service Database
Node (SDB) stores information of all the service nodes. The
boot node manages the shared file system with service nodes.
Login, boot and SDB are some of the service nodes of the
system in addition to syslog, I/O and networking nodes. The
Application Level Placement Scheduler (ALPS) processes
such as aprun, apbridge, apshed, apinit etc. are
responsible for user application submission and monitoring
and run on both service and compute nodes.

Fig. 1: Overview of a Cray System

Table II indicates the major log sources. From these archived
logs, we consulted p0-directories that contain comprehensive

logs of the entire system with information pertaining to the
internals of compute nodes including system and environment
data. We use the acronym id to refer to node or job identi-
fiers. The files (console/message) in these directories contain
timestamped event logs including node ids (cX-cYcCsSnN)
per line. We track the node ids per log line (event) while
correlating and integrating data. Logs can contain sequential
decimal numbering of nodes (nids), which can be converted to
the physical id, i.e., cX-cYcCsSnN format to identify a node’s
physical location such as blade (S), chassis (C), cabinet (XY)
and the node (N). Additional references to boot messages and
job logs aid the prediction scheme since they provide the status
of nodes and jobs over time.

TABLE II: Data Details
Source Content
p0 directory Internals of compute nodes
Boot Manager Boot node messages
Log System rsyslog messages
Power/State Logs Component power and state information
Event Messages Event router records
SMW Messages System Management Workstation messages
HSN Stats High Speed Network Interconnect logs
Job Logs Batch job/application scheduler messages

We found that noisy information pertaining to power man-
agement, SMW, the log system, network interconnect logs,
events, and the state manager did not reveal significant textual
indicators related to node failures and, hence, have not been
considered. Manuals/system administrators help to understand
logs, but even then post-mortem analysis for unsupervised
information extraction remains non-trivial from such data.

Technical Challenges: The challenges of data diversity,
system complexity, and overwhelming logging volume have
been investigated in the context of failure detection [8], [13].
Furthermore, Cray systems specifically have the following
additional challenges:

• BlueGene systems have Node Card, Service Card, Link
Card and Clock Card components, each of which provide
current, voltage, temperature data etc. In Crays, failure
needs to be discovered by integrating a distributed set of
events in space and time, coming from different system
components, some of which are replicated. Feature iden-
tification even before dimensionality reduction is hard.

• Binary or numeric values (normalized or mapped) of
features (see [7], [14]) do not suffice. Simple absence or
presence of an event is not enough. Which event, when
did it happen, is it related to the node under consideration
and similar factors are also of importance here.

• RAS logs in some HPC systems contain fatal and warning
flags indicating the severity levels with the log mes-
sages [15]–[17] aiding researchers to segregate between
failures and benign events. Critical and warning flags are
present in Crays as well pertaining to certain compo-
nents such as netwatch, pcimon etc. However, direct
classification of log messages based on occasionally
appearing flags is ineffective [16] for long-term time
sensitive data since several non-critical messages could be
a better indicator of failures over time. Besides, seemingly

benign events in one context may lead to fatal events in
another, which means past system (BlueGene) logs may
result in shorter lead times. Hence, we consider phrases
irrespective of flags/severity-levels.

• The unsteadiness in timestamps between service nodes,
job schedulers (Slurm/Torque) and compute nodes makes
time-based correlation non-trivial. Time-series analysis
handles this and allows us to study lead time sensitivity.

Node Failure Definition: Not every node unavailability
indicates an anomaly. If nodes shut down in bulk (multiple
blades) within a few seconds, the root cause tends to be
maintenance. Such shutdowns often are massive (e.g., 98 or
126 nodes going down at once). But even in case of single
compute node failures, the culprit could be either external or
internal events (see Table III). Internal events are compute
node specific, either caused by applications running on that
node or hardware/software problems related to memory, kernel
etc. pertaining to that node. External events occur outside a
specific compute node such as Lustre server-related errors, a
Link Control Block (LCB) failure, or a network interconnect
failure causing multiple chassis to shutdown. Cabinet- or
blade-controller problems can also manifest as massive node
failures. Such cases are defined as node failures since they are
unintended, manifesting as anomalies (see Notes in Appendix).

TABLE III: Node Shutdown Events
Internal Failures External Failures Normal Shutdowns
Application Bugs Blade or Cabinet

Controller Issues
Massive shutdown

Node System Bugs File system or Net-
work Server Issues

Maintenance Reboots

Node Hardware
Issues

Router or other
Hardware Issues

Periodic Node Reboots

Counts of node failures do not consider unique nodes since
a specific node can fail multiple times at different timestamps.
We have timestamped logs, and based on the time and scale of
shutdowns, we segregate failures. In many instances, service
node failures impact compute node failures (see Sec. V-A).

It should be noted that this work aims to correctly predict
node failures. The goal is not to identify the exact root
cause that provoked fault manifestation. In other words, the
methodology is to identify chains of time-based events, which
eventually led to a failed node. The actual cause and the
location of a root cause may not be indicated by our prediction
methodology. E.g., in Table IV column 1 (bit flips), after re-
peated soft errors a Link Control Block (LCB) went down. The
cause of CRC error messages may range from hardware
(link/NIC) problems to silent data corruption, but this cause
is of no concern for our analysis.

Illustrative Examples: Table IV shows three cases of node
failures. The first column shows a case of a failure caused by
soft errors (bit flips) detected by the LCB. Due to too many
errors the LCB went down after which 2 nodes of a blade
went down within 12 minutes. The second column shows the
case of a hardware error caused by the network interconnect.
This triggered Lnet and Lustre errors followed by memory
problems, and the node went down within 11 minutes. The
third column shows an application (Matlab) failure caused

by excessive memory allocation. This killed several tasks,
followed by a kernel panic, failing this specific node. In these
cases, if prediction happens a few minutes before the actual
shutdown, some proactive measures can be taken.

TABLE IV: Examples of Node Failures
bit flips caused failure hardware caused failure app. caused failure
4.25.30 pm 8.44.12 pm 2:44:49 am
LCB on and Ready Hardware Overflow Error Matlab invoked oomkiller
4.30.33 pm 8.46.09 pm 2:54:14 am
Micropacket CRC Error
Messages

Lnet errors Recvd down
event

Out of memory: Kill pro-
cess

4.35.29 pm 8.47.45 pm 2:58:14 am
Network chip failed due
to too many soft errors

Lustre Errors Binary
changed

Killed process

4.36.42 pm 8.48.06 pm 2:59:40 am
Aries LCB operating
badly, will be shutdown

Bad RX packet error Kernel panic not sync-
ing:

4.37.31 pm 8.52.37 pm 3:00:00 am
Failed LCB components Out of memory/Killed

processes
page fault+0x1f/0x30

4.37.39 pm 8.55.13 pm 3:00:03 am
2 nodes unavailable Node unavailable Node unavailable
Failed within 12 min. Failed within 11 min. Failed within 16 min.

III. PREDICTOR DESIGN

Our study shows that Topics over Time (TOT) [18] (an
LDA-style [19] unsupervised topic model) based learning can
help identify rare compute node failures.

Job Logs and Data Integration: Figure 2 demonstrates
how jobs scheduled on allocated nodes are identified in the
ALPS logs inside the p0-directories. The job server (e.g.,
Torque) provides information about job id, the allocated nodes
for that job and the status. These can be referenced in the
ALPS logs through a mapping conversion. The job ids map
to batch ids. The job information is referenced using res,
app and pagg like tags added by ALPS. The timestamp is
considered for correlation by checking the amount of time lag
in logs from different sources (job, server/compute node). If
it is within a given threshold (≈15 seconds), it is considered.
This did not cause any correlation errors since the ids were
matched correctly over time. In our experience, missing data
in log archives and MOM (machine-oriented miniserver) node
failures (see Figure 1) affecting job data complicates this
correlation across the available logs. This arises due to stopped
daemons/logging, with or without upgrades. Upgrades in job
schedulers (ALPS-Torque, ALPS-Slurm) can create inconsis-
tencies in the available data. But this does not hamper the
prediction mechanism since the correlation has been confirmed
by prior offline manual validation with system administrators,
and only complete and consistent data is used for evaluation.

After successful correlation, a text document with times-
tamps, node ids and filtered log messages is formed to generate
a viable input for our model (Figure 4). We do not use
any environmental data, such as System Environment Data
Collection (SEDC) logs, since such information predominantly
does not aid in phrase extraction. Temperature and voltage
values may indicate an anomaly but our work intends to
discover salient phrases providing symptoms of abnormalities.

Fig. 2: Correlation with Job Logs

Fig. 3: TBP Framework
Fig. 4: Time Correlation and Data Integration

Phrase Likelihood Estimation: One primary tendency
observed in the available logs is the recurrence of failure
messages and changing patterns that continuously evolve over
time. A phrase is defined as an event log message correspond-
ing to a specific node at a certain timestamp. This trend of
time-based evolution prompted us to leverage a well known
machine learning technique called Latent Dirichlit Allocation
(LDA) [19], a probabilistic model on discrete data. One impor-
tant factor for log analysis targeting prediction is time. Hence,
continuous time series-based evolution is required to extract
patterns from the integrated document. To address this, we
utilize the Topics over Time (TOT) [18] algorithm to identify
the top N topics (i.e., phrases or log messages) over a period of
time and track how the topics change over time. TOT employs
Gibbs Sampling and is useful for dynamic co-occurrence of
patterns when an upsurge and downfall of phrases exists over
time. Since TOT models time in conjunction with frequency
of phrases, which is analogous to the case in temporal logs,
TOT is a good choice for our study in contrast to other existing
competitive approaches such as [16], [17], [20]–[22].

TABLE V: Topic Assignment
Event Phrase Topic
1 Lnet: waiting for hardware.. Lnet
2 Lnet: Quiesce start.. Lnet
3 Debug NMI detected NMI
4 DVS: uwrite2: returning error DVSBug
5 Kernel panic/not syncing/Fatal Machine check Panic
6 MCE threshold of fff.. MCE

On similar grounds, discrete-time Dynamic Topic Modeling
(dDTM) [23] is inappropriate since there is a significant varia-
tion in occurrence of events (at the granularity of milliseconds)
so that several chunks of logs cannot be clustered under a
single time instance. Coarse-level time discretization fails to
capture short-term time variations. The ability to identify a
known delta time difference between two known messages is
critical here. The main idea is that every phrase is assigned
a topic. Multiple phrases can be assigned the same topic (see
Table V). We have finite number of topics for an integrated

document. During the training phase, TOT learns top N topics
referring to phrases. TBP forms sequences of phrases that
correspond to failures in the past referring to the data. We use
them to forecast future failures when those phrases reappear
in the test data. Once we know the significant phrases, we
denormalize their timestamps and refer to the nodes associated
with them to identify nodes subject to future failures. We name
our prediction mechanism “time-based phrases” (TBP).

IV. TBP FRAMEWORK

Figure 3 shows the work-flow diagram of our approach.
After job and system data correlation and formation of an
integrated document, we obtain the top ranked phrases over
time and determine the nodes corresponding to them (Box A).
Then, TBP obtains a chain of messages leading to the node
failures. We use them on test data to compute recall rates and
lead times (Box B). Let us clarify that we do not want to
determine the distribution of node failures over time/space or
failure characteristics on the susceptibility of a specific node
to future failures [24]–[26].

Time Correlation: Figure 4 illustrates the idea of time
correlation. The job log indicates that at 00:18 a job with id
9747167 is allocated 42 nodes. This job is correlated with
its corresponding ALPS message apid 57760959, resId
6175422, pagg 0x15f5000010c2 logged at 00:20, just
2 seconds later. Since 2 seconds are within the threshold (15
seconds), these become correlated. Simultaneously, we obtain
the ids of nodes allocated to this job by converting from nid
(decimal node id) to the cX-cYcCsSnN format. These node
ids and job ids can be time correlated to the rest of the logs
(e.g., console logs) in a similar fashion as shown in Figure 4.

TBP Learning: TBP uses TOT to learn the failure chains
from the training data. Topic assignment assigns a relevant
topic to every phrase pertaining to that topic as shown in
Table V. We have used more than 100 topics in our training
data. Multiple phrases can be assigned the same topic if

Fig. 5: TBP Prediction: Topic Modeling for Node Failure Prediction

the content of that phrase is not anomalous or if they have
similar system event context (e.g., 1 & 2). A distinct phrase
can also be assigned a topic if it indicates a unique event
(e.g., 3 & 5). TOT chooses top N topics (i.e., phrases) as
follows (also see Figure 5): Phrases chosen are localized in
time. As the distribution of phrases changes over a continuous
time frame, top phrases evolve since the phrase co-occurrence
changes [18]. The 8 topics (firmware bug, ec node info,
Lustre, DVS, LNet, hwerr, apic timer irqs and krsip) shown
in Figure 5 (box 1) pertain to phrases containing that topic.
TBP uses the top picked phrases over time to formulate the
failure chains. Topic-based training helps to extract only the
significant phrases relevant to failures (boxes 2+3).

We varied the value of N in different data sets to ensure that
we are not missing relevant phrases. In our experiments, N
ranges from 50 to 80 based on the amount of data considered.
We manually inspected the output of TOT while choosing a
subset of N considering time and space constraints. To clarify,
N has been varied but it is impractical and inefficient to inspect
too large of an N value. TBP has chosen a smaller subset
(smaller N) at times to effectively collect indicative phrases.

Node Failure Prediction: Figure 5 illustrates the key idea
of prediction. T denotes timestamps, N stands for node ids, and
P for phrase ids (for brevity we omitted job ids in the figure).
The integrated document (Figure 4) is trained using TOT. We
know the terminal node shutdown messages from sysadmins
(e.g., System halted, cb_node_unavailable, see
Table X, last 10 phrases). TBP forms failure chains linking
phrases among the top N with time-stamps and node-ids
referring to the data. From the filtered phrases (box 3), TBP
obtains the node failure chains as shown by C1, C2 and C3.
During testing, no top phrases are generated. TBP compares
the incoming phrases with those in the failure chains. If chains
with at least 50% similarity in log messages are formed, the
corresponding node is likely to fail in the future. E.g., p98
and p36 are rejected since these were not seen in the training
data, and the remaining phrases match with C1 till P78. In the
test data, before N12 fails, we compare and predict it to be a
potential failure. From N12 (i.e., cX-cYcCsSnN) we derive

the node’s exact location (blade S, chassis C, cabinet XY) to
potentially trigger proactive resilience actions before it fails at
a future timestamp (T44). About 1 month’s data is used for
training. The test data is comprised of a moving time window
of 3 days to 1 week for generating better lead times.

V. EXPERIMENTAL EVALUATION

We have implemented a prototype of the TBP predictor
using the factorie [27] library and python. We use TBP on
3 datasets from SC1, SC2 and SC3 supercomputers (Table I)
for evaluation. TBP achieves as high as 86% recall rates with
acceptable lead times in predictive fault localization of nodes.

A. Average Node Failure Estimation

Figure 6 shows an estimate of service and compute node
failures over 4 months of the data in Table I for SC1, SC2 and
SC3. SC2 had the highest overall number of failures but SC3
had a slightly higher frequency of failures (failures/month).
The compute node failure count is higher than the number of
service node failures. Our observation indicates that both ser-
vice and compute node failures are randomly distributed over
time. Hence, this could be misleading in terms of estimating
failure rates over longer periods of time. E.g., over a period
of 3 weeks, SC3 encountered 10 service node failures, but the
subsequent time periods of 9 days and 2 weeks had 0 and
1 service node failures, respectively. There exists sufficient
variability of failures over time across the three systems. This
explains the standard deviation of the frequency ranging from
±6 to ±11. Nonetheless, this gives us an idea of the number
of failures encountered in such systems.

One might argue, if node failure events are relatively rare
compared to the overall scale of anomalies in the system, why
do we need to predict them and take proactive actions? In this
regard, we have summarized two main takeaways:

• The number of compute node failures increases dra-
matically with an increase in service node failures. On
multiple occasions, time periods with high service node
failures have affected a large number of compute nodes
around the same time due to external failures. We did

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

SC1 SC2 SC3

#
N

o
d

e
 F

a
ilu

re
s

Systems

Failures/Mon
Std. Dev

Service
Compute

Fig. 6: Estimate of Node Failures

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
p11

p12
p13

p14
p15

P
ro

b
a
b
ili

ty

Phrases from Logs

6 hours
12 hours

8 days
21 days

Fig. 7: Phrase Likelihood

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
p11

p12
p13

p14
p15

M
e

a
n

 P
ro

b
a

b
ili

ty

Phrases from Logs

Standard Deviation
Mean

Fig. 8: Mean and Std. Deviation

not investigate further the exact root cause of each failed
compute node, but in addition to maintenance related
shutdowns, controlled service node failures can definitely
prevent compute node failures, which benefits jobs of
users running on them.

• Rescheduling a job after a node failure delays the overall
job execution time and utilizes additional resources. A
single job, on average, is generally allocated to many
compute nodes (up to tens of thousands for peta-/exascale
capability jobs). If blades fail repeatedly, the effect is
logged as independent job failures, which are resched-
uled. Past work has observed that a significant fraction
of applications fail due to system problems apart from
user-related errors [2]. If user application disruptions are
a concern and system-wide outages are to be reduced,
node failure prediction is of paramount importance.

B. Phrase Distribution

Table VI shows a sample snippet of 10 phrases over a
time window of 2 weeks with their probability distributions
depicting a compute node failure case caused by Lustre server-
based errors. The table shows that Lustre, Lnet and filesystem-
related messages are produced by TBP with higher probability
than other system messages. These phrases are related to
filesystem problems impacting the node. We do not care about
individual probabilities as long as the top n phrases are of
interest in the context of node failures.

Observation 1: Significant phrase variation exists over
short time intervals. HPC logs indicate event changes at a high
frequency, which calls for continuous-time statistical models
that can handle this variability prior to identifying phrase
relevance for node resilience.

Figure 7 and Table VII illustrate the variation in probability
of occurrence for the same 15 phrases over four continuous
time intervals (6 hours, 12 hours, 8 days and 21 days) for
SC3 data. The 4 disjoint time frames have been selected
from over 3 months of data and illustrate the lack of a
uniform distribution. Table VII depicts frequently occurring
system log messages pertaining to Lustre, Lnet etc. Figure 7
shows the fluctuations of phrase probabilities over different
time intervals. We provide a quantitative analysis of such
variations to signify the lack of discernible features. Pattern
extraction with such non-uniform distribution of unstructured
log messages but without clearly flagged errors is hard.

Figure 8 quantifies this variance through mean (curve) and
standard deviation (indicated by error bars). The standard
deviation for most phrases is high (e.g., for p7, p8 and p11),
except for p5. Example: Message p7 is emitted by Lustre for
an unmounted device with a higher probability distribution
in the 2nd (12 hours) and 4th (21 days) time intervals, but
the device was mounted and the message occurred less in
the 1st (6 hours) and 3rd (8 days) time intervals. Similarly,
p11 indicates a Data Virtualization Service (DVS) server
failure, which is unmounted. The failover event occurred with
a different magnitude over the intervals for multiple nodes.
Message p5 related to the LDAP server had less deviation
since the LDAP connection was successful after a few attempts
in those time intervals. Discrete-time statistical methods [17]
are ineffective under such variability.

C. Prediction and Lead Time Analysis

Phrases detected during the learning phase of around 4
weeks help in node failure prediction on new test data.
TBP checks the test data for phrase similarity relative to
the training data (Figure 5). If similar, we obtain the node
ids corresponding to those phrases and compute recall rates.
N-fold cross validation is less effective for time-series data.
Our train and test data split respects temporal event ordering,
(lower-order time-series training, higher-order testing).

TBP uses the standard evaluation metrics of Recall and Pre-
cision to estimate prediction efficacy. Table VIII enumerates
their formulae and the implications in the context of node
failure prediction. The recall rate is defined as the fraction of
node failures that are correctly predicted by TBP, and precision
rate as the total fraction of node failures predicted by TBP
(need not be correct). The FP rate is the false alarm rate, the
ratio of actual failures missed by TBP.

Validation is performed by manually checking the logs with
the timestamps of actual failures. In the test phase, we consider
3 days’ to 1 week’s data, and compare the phrases with the
obtained trained data. We re-train (4 weeks data) and move
the test data time interval with shifts of 1 week to predict
impeding failures and procure lead times. The base lead times
(without phrase reduction) in Figure 9 are in the range of 20
to 60 seconds. We have optimized TBP’s lead time sensitivity
further through phrase pruning (see Section V-D).

Observation 2: TBP achieves > 83% recall and > 98%
precision with a modest number of false negatives (16.66%)
and as high as 1 minute base lead time.

TABLE VI: Phrase Extraction
Phrases Prob.
1 Ensure file system is mounted on the

server and then restart DVS
0.0214

2 LNET: waiting for hardware quiesce flag
to clear

0.0145

3 nscd: nss ldap: failed to bind to LDAP
server

0.0167

4 LustreError: *:*:........unable to mount 0.0298
5 startproc: nss ldap: failed to

bind/reconnecting to LDAP server
0.0302

6 Error: No data from cname 0.0178
7 Lustre: skipped * previous similar mes-

sages
0.0119

8 Lustre:*:*:vvp io.c:*: vvp io fault start 0.0176
9 reconnected to LDAP server 0.0247
10 Lnet: * Dropping PUT from * 0.0218

TABLE VII: Recurring Phrases
No. Phrases
P1 crms wait for linux boot: nodelist: *
P2 Lnet: Quiesce start: hardware quiesce
P3 Wait4Boot: JUMP:KernelStart *
P4 krsip:RSIP server * not responding
P5 startproc: nss ldap: failed to bind
P6 checking on pid *
P7 LustreError: *:*:.....can’t find the device name
P8 GNII SMSG SEND + *
P9 Nobios settings file found
P10 Lnet: Added LNI *
P11 DVS: file node down: removing *
P12 Lustre: skipped * previous similar messages
P13 Lnet: skipped
P14 <node health:*> RESID* xtnhc FAILURES
P15 Bad RX packet error

TABLE VIII: Evaluation Metrics
Metric Formula & Implication
Recall TP/(TP+FN) # Node failures, TBP

correctly predicted
Precision TP/(TP+FP) # Total node failures,

TBP predicted
FP Rate FP/(FP+TN) # False Positive Rate
True Positive
(TP)

Actual node failures, TBP success-
fully predicted

True Negative
(TN)

Nodes actually didn’t fail, TBP did
not predict as failure

False Positive
(FP)

Nodes actually didn’t fail, TBP
predicted as failure

False Negative
(FN)

Actual node failures, TBP failed to
predict

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

L
e
a
d
 T

im
e
 i
n
 S

e
c
o
n
d
s

Node Failures

20% Reduction

30% Reduction

Base Lead Time

Fig. 9: Sensitivity of Lead Times

 0

 20

 40

 60

 80

 100

 120

SC1 SC2 SC3

P
e

rc
e

n
ta

g
e

 (
%

)

Systems

Recall
Precision

False Negative

Fig. 10: Recall/Precision/FNR Rates Fig. 11: Phrase Reduction and Order

Figure 10 shows the recall, precision and false negative
rates. We observe a precision rate of up to 99%, which
indicates a low rate of false positives. This indicates that
the trained failure chains were indeed indicative of node
failures. The recall rates are 86% or lower. TBP aims not
to miss actual node failures irrespective of the causes and
correlations between them. Even if correlated failures are
removed, precision and recall exceed 80%. Across all the 3
systems the false negative rate is as high as 16.66%. This is
partly because of the new phrases seen while testing and partly
due to the corner cases where phrase extraction is difficult.
SC2 has a relatively low false negative rate since failure events
learned during training were mostly seen during testing with
similar failure types (e.g., networking problems). Figure 10
rates correspond to the base lead time (no phrase reduction).

Observation 3: Hardware errors, MCEs and kernel panics
often cause node failures. Minor causes are failed components
in the network interconnect, bit errors, filesystem caused errors
and application based errors.

Figure 12 shows the proportion of different types of failures
observed in the data, namely Kernel panic, MCE (Machine
Check Exceptions), FS (filesystem errors), SWERR (Software
errors), Soft (bit/packet/protocol related soft errors), App
(application errors), and HWERR (hardware node heartbeat
faults), respectively. Table IX lists the major classes of anoma-
lies manifesting in node disruption. While 15 to 20% of the
nodes fail due to H/W errors, MCEs and kernel panics, bit
errors and App caused errors are minor contributors. Our
observations conform to failures reported by Gupta et al. [28].

We predict node failures on average a minute in advance;

this is an improvement over scenarios where nodes fail within
20-30 seconds of the occurrence of the first reported event
that can be linked to a later failure by system administrators.
However, certain failures such as NMI faults cause instant
failures without a chance to communicate anymore. It is
impossible to take proactive actions in those cases.

D. Lead Time Improvements
Starting from the last phrase considered from prior learning,

we prune backwards to increase lead times and assess the
impact on false positives. Figure 11 (left) depicts backward
pruning as an example. Suppose 10 phrases are considered
named P1, P2...P10 with increasing timestamps T1, T2,..T10.
A node failure occurred at TF. When 20% phrases are pruned,
the last 2 phrases with ordered timestamps are removed from
consideration, i.e., those phrases are not checked in the test
data to qualify as a failure chain. The percentage of reduction
is increased to gain longer lead times. The earlier correct
failures are flagged, the higher the lead time will be. Lead
times improve from (TF-T10) to (TF-T7) with 30% phrase
reduction as shown in Figure 11 (left). In reality, the number
of phrases considered are higher than 10 (30-50). Figure 11
(right) depicts cases of phrase mismatches. Observed phrases
in the test data may not be in the same order as the trained
phrase set under consideration. E.g., P2 & P3 or unseen
phrases (e.g., P12) may be present or a phrase seen in the
trained chain earlier is missing (e.g., P4) in the test data
interval. In such cases, TBP ensures a similarity of 50% or
higher and otherwise discards phrases as unmatched.

Figure 9 illustrates the increased lead times with 20% and
30% phrase reduction for each of the 26 node failures across

 0

 5

 10

 15

 20

 25

Kernel

M
C
E

FS SW
ER

R

Soft
App

H
W

ER
R

P
e

rc
e

n
ta

g
e

 (
%

)

Failure Types

Failures

Fig. 12: Failure Categories

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

Lead Times (mins)

False Postive Rate

Fig. 13: Lead Times+False Positives

TABLE IX: Major Failure Categories
Failure Type Class
1 Trap invalid opcode/Segfaults, File System

Bugs
Software

2 cb hw error: failed component, Firmware
Bugs, NMI Faults

Hardware

3 [hwerr]: Machine Check Exception (MCEs),
Memory faults

Hardware

4 RCU CPU Stalls/Hangs, Kernel Panic/Fatal
Exception, Stack Trace

Software

5 Bit/Packet Errors (dla overflow error. Msg
protocol error)

Soft Errors

6 Machine Check Events (Node heartbeat
faults)

Hardware

7 Job Server/Task related errors Application
TABLE X: Lead Time Improvement

Timestamp Event Phrase Lead Time
21:13:01.60 slurm load partitions: Unable to contact 10min 25secs
21:14:30.83 Lustre:(ptlrpc expire one request... 8min 56secs
21:17:10.37 Unloading nic compatibility device ≈6min
21:19:10.37 bpmcd exit: No local access to power statistics.. 4min 16secs
21:20:15.48 Invoking ..slurm stop ..stopping slurmd: 3 min 11secs
21:21:19.01 slurmd is stopped.. 2 min 7secs
21:21:17.01 Unmounting /dsl/.shared/..
21:22:18.06 Shutting down... 1 min 17secs
21:23:20.10 rpcbind: cannot save any registration.. 6 seconds
21:23:21.63 Shutting down DBus daemon..
21:23:21.63 Removing... SLURM.Failed..
21:23:21.63 umount /dsl/var/run 1 ...
21:23:21.63 Unloading XPMEM driver..
21:23:23.15 Stopping DVS service:
21:23:23.15 Could not unmount /dsl...
21:23:26.22 System halted Node Down
21:23:35.47 cb node unavailable
21:23:35.49 RCADSVCS : shutdown

different machines. (The rest of the failures have similar lead
times.) With phrase pruning lead times increase. Correspond-
ing to a specific average lead time, we calculate the false
positive rate from the data set.

Observation 4: In general, lead times are as high as 2
minutes, with most of them higher than 1 minute after a 20%
reduction, not exceeding a 23% false positive rate.

With a 30% reduction, a few lead times exceed 2 minutes.
After phrase reduction, few sequences of phrases were incor-
rectly identified as failures. Figure 13 illustrates the rise in
average false positive rate as average lead times prior to node
failures increase. The average lead times of 0.5, 1.1, 1.6, 4.2
minutes are calculated for the cases of no phrase reduction,
20%, 30% and 40% phrase reduction, respectively. Figure 14
shows an increase in the false positive rate in the test data
as the amount of phrases reduced is increased from 20% to
40%. Since the false positive rate is more than 30% with 40%
tail reduction, even though we could procure lead times as
high as 4 minutes, we restricted our experiments to 30% tail
reduction. Most indicative logs appear just prior to the failure,
and backward pruning increases the false positives by 5%.

Table X shows a partial example where 3 min. 11 sec. lead
time could be procured before the node failed at 21:23:26. This
is because none of the previous messages were indicative of
a failure w.r.t. the learned failure chains. If we aggressively
prune more than 30% phrases, TBP can procure as high as 10
minutes lead time in this case.

E. Feasible Proactive Measures in 2 minutes

We have found that lead times ranging from 20 seconds
to 2 minutes can be obtained with an average lead time of
more than 1 minute. Live job migration, process cloning,
lazy checkpointing [26], and quarantine technique are some
relevant actions that can be taken based on node failure infor-
mation. Wang et al. [29] report that proactive live migration
of jobs can range between 0.29 to 24.4 seconds. Rezaei et
al. [30] demonstrate node cloning duration within 200 seconds
to aid redundant execution during failures. Gupta et al. [24]
quantify that 5% to 9% of future failures can be avoided
if blades/cabinets are quarantined (no jobs scheduled on the
nodes) for some node-hours after a failure is observed on them.

Such proactive recovery based prior work shows that 2
minutes often suffice. Incorrect predictions (FPs/FNs) require
a combination of suitable proactive (migrations) and reactive
actions (CR) after careful analysis of cost trade-offs [31].
If the unhealthy nodes are known ahead of time, jobs can
be delegated on the existing healthy nodes (spare nodes are
helpful but not necessary). Future job scheduling can be
delayed in case no nodes are available. Additional root cause
diagnosis could further increase the lead time confidence.
However, a low false positive rate is also a necessity. Further
details of proactive actions are beyond the scope of this paper.

F. Case Studies

We assess a case of node failure to highlight TBP’s strength
and show rare instances where correlation extraction is hard.

1) A True Positive Case: TBP captured an excerpt of
messages, two of which are out of memory and killed process
errors. These indicate a node failure correlated to memory
errors. This node failure was caused by a CPU group running
out of memory. On further investigation we found that the
Slurm node had caused the memory crisis. Subsequently, all
the processes sharing that cgroup were killed. This caused a
machine hang followed by a few Lustre errors. The compute
node went down and was rebooted later. In this case, the co-
located phrases in the test data were less frequent than the
relevant phrases indicative of the failure, thus TBP identified
them. Other compute node failures in the cabinet followed due
to this Slurm caused hang. This is a true positive case.

2) Difficult Correlation Extraction: TBP missed certain
node failures, which do not conform to past seen failures. In
those cases, phrase extraction to indicate future failures is hard.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

SC1 SC2 SC3

P
e

rc
e

n
ta

g
e

Systems

No reduction
20% Reduction

30% Reduction
40% Reduction

Fig. 14: False Positive Rate

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

0.1 128K 320M 800M 1G 2G

T
im

e
 (

s
e
c
s
)

lo
g
 s

c
a
le

Size of Text Document

Phrase Extraction time

Fig. 15: TBP Scalability

TABLE XI: TBP Impact Assessment
Features HPC Sys. Distr. Sys.

TBP [9] [21] [22] [32] [33]
No Source Code X X X X × X
Lead Time X × X × × ×
Location X × X × × ×
Prediction X X X × × ×
Scalability X × × X × X
Unsupervised X X × X X X

They possess similar probabilities for errors that are not fatal.
TBP detected some hardware errors (e.g., correctable
aer_bad_tlp) failed to predict failures related to messages
in Table XII. The job-related errors are less frequent but
certain errors have probabilities similar to benign messages.
We verified one case where the correctable MCEs was
ranked low so that any n ≤ 150 excluded it, i.e., TBP
discarded it. More research is needed to address these cases.

TABLE XII: Difficult Correlation Extraction
Error Description
1 Console interrupt took X ns
2 Console DVS: lnet mapuvm: page count mismatch
3 Job Node id has a different configuration
4 Console logged... correctable MCEs

G. TBP Performance

TBP takes more time to train as the size of the document
increases. This is normally the case for any data mining solu-
tion. One reason for this is that our logs were not preprocessed,
which has the potential to reduce the size of data slightly.
Another aspect is the unsupervised learning model of TBP,
which operates on unlabeled data. However, text processing
(looking for topics in the phrases) takes longer than analysis of
just numerical RAS logs of environment data or other features.

Observation 5: TBP is scalable, taking ≈ 50 msecs to flag
a node failure, and below 2 mins to process 320 MB data.

Figure 15 shows that the phrase extraction time (y-axis, on
a logarithmic scale) grows with increasing data sizes. This
is due to the complexity of TBP but does not present a
problem in practice as TBP would eventually be deployed to
process log events within a time-limited window below 320
MB representing 6 or more hours, i.e., its cost would be below
2 minutes. TBP takes ≈ 30 to 50 msecs to detect a node
failure during testing. In real-time, even if data gets large too
quickly, parallel message filtering approaches can aid rapid
failure prediction, which is subject to future work.

H. TBP Comparison

To the best of our knowledge, this work is the first of its kind
for node failure prediction on Crays. Table XIII shows some
of the proposed failure prediction techniques. TBP achieves
as high as 4 minutes lead time with higher false positive and
lower recall rate (≈80%). Hence, we chose to restrict ourselves
to 30% phrase reduction. Hora [34], Zheng et al. [21], Li et
al. [7] and hPrefects [9] do not predict node failures, procuring

no or 10 mins lead time with lower or no recall rates. Hacker
et al. [17], Nakka et al. [20] and Klinkenberg et al. [35] predict
node failures either without lead time and FP rate analysis or
using less scalable methods (e.g., supervised classifiers).

TABLE XIII: TBP Comparison
Solutions Lead Recall

Method Time System Location
Hora [34] Bayesian Networks 10 mins 18% Dist. RSS

Feed Reader
Component
specific

Zheng+
[21]

Genetic
Algorithms

10 mins 60% Blue Gene/P Rack-level

Li+ [7] SVM, KMeans 10 mins N/A Blue Gene/P,
Glory

Component
with sensor

hPrefects
[9]

Stochastic Model,
Clustering

N/A N/A 256 node
HPC cluster

H/W, S/W
components

[20] Decision Tree (DT) N/A 80% HPC (LANL) Node-level
[17] Neural-gas [36] N/A N/A Blue Gene Node-level
[35] SVM/DT/MLP etc. 17, 22 mins 91.34% HPC cluster Node-level

TBP Topic Modeling 2 mins 86% Cray Node-level

Observation 6: TBP is effective in pin-pointing potential
node failures with acceptable lead times and, in contrast to
other state-of-the art approaches, without fault injection or
source-code reference.

We further assess the overall impact of TBP in Table XI by
highlighting its traits amongst log mining solutions proposed
in both HPC systems and distributed systems. We observe
that failure diagnosis in distributed systems may refer to
the source code [32], and even though some solutions are
scalable and unsupervised, they lack location and timing
information of anomalies for practical usage. Also, logging
practices in distributed systems and software engineering often
modify or even add log messages in the source code, and
their performance diagnosis is very application- and problem
focused. In contrast, we do not augment logging messages
as such modifications can only be performed by the vendor
at the runtime/operating system layers of HPC systems. Even
without such augmentation, we show that predicting failure
locations is feasible, in practice.

Discussion: How generic is TBP? TBP has been evaluated
on Cray systems, but we believe TBP to be applicable for most
contemporary HPC systems. Before developing TBP, we went
through BlueGene logs of two different systems. These logs,
as researched in the past, are comparatively more structured,
have easier to detect failure indicators such that the existing
approaches suffice. In contrast, TBP handles more complicated
logs in an unsupervised manner. With appropriate integration

and pre-processing, TBP can certainly be adapted to non-Cray
systems with simpler logs or generic Linux logs (as Cray logs
are mostly a superset of those). The recall rates and accuracy
will depend on the quality of data and the failure diversity.

VI. RELATED WORK

Several facets of resilience have been studied in the recent
past. We present them categorically and subsequently mention
how TBP enhances or compliments them.

Log mining tools and failure characterization: [16], [37]–
[41] propose useful log mining tools such as HELO, ELSA,
LogDiver, LogMine, and LogAider. These aid in studying
event pattern-based correlations, spatial/temporal event anal-
ysis, and application-level resilience [2] on HPC logs. [42]
characterize node failures through temporal and spatial cor-
relations with no anomaly detection. TBP, unlike any event-
correlation framework, exhibits efficient failure prediction.

[7], [10], [43] propose data preprocessing mechanisms to
extract salient features and show symmetry in system and
job logs, to improve fault prediction. [25], [44] study envi-
ronmental effects on HPC nodes and, analyze memory errors
showing their unpredictability and instability in face of scale
change. [24] find that the application mean time to interruption
(MTTI) can be improved exploiting both spatial and temporal
locality by quarantining locations on the Titan supercomputer
(Cray XK7). [45] propose a dynamic checkpointing scheme
adapting to regime changes based on fault events. [46] show
that hardware contributes to only 23% of system downtime,
software being the main culprit (74% contribution) of system-
wide outages on Cray systems. [28] discuss insights to non-
uniform spatial distribution of failures and the fact that tem-
poral recurrence is significantly different for diverse failure
types but similar across systems. These are field-data based
failure characterization studies and do not perform timely
prediction like TBP. [1] study the Trinity platform (Cray
XC40) and highlights how understanding system behavioral
characteristics is a challenge because of unclear logging and
new system features. Hence, even if prior work has shown
solutions to similar goals in different systems, they may be
invalid on new systems. This reinforces our motivation.

Anomaly detection and prediction: [47] propose a tax-
onomy of prevalent failure prediction approaches for system
reliability. [6], [48], [49] discuss the impact of fault prediction
strategies and propose an approach to mathematically model
the optimal value of check-pointing. [12], [13], [50] propose
techniques to find abnormal nodes employing dynamic training
to find changing patterns that improve prediction accuracy.
[9], [11], [51] propose online/offline failure prediction frame-
works using ideas of principal component analysis (PCA), co-
variance modeling and void search (indicating scarce faults).
[17], [20], [52] apply the gossip protocol, neural-gas method
and decision tree classifiers in the context of node failures.
These either deal with more structured logs or lack timing
analysis, combined with less scalable solutions, unlike TBP.
DeepLog [53] uses stacked LSTM for anomaly detection
without any lead time analysis, and flags any log key not in

top g as an anomaly. In contrast, TBP identifies anomalies in
failure chains. [54] design a proactive memory management
system analyzing memory logs, successfully preventing 63%
of the memory-driven failures. Hora [34] models architecture
dependency for component failure prediction through fault
injection, unlike TBP. Moreover, TBP’s recall rates (83%)
are higher than Hora’s (73%). [35] study node soft lockups
using supervised classifiers, leveraging the node lock/unlock
information from the batch history, unlike TBP. They obtain
average lead times of 17 and 22 minutes without discussing
false positive rates. We also cover more general node failures.

Recovery methods and log mining in distributed systems:
[4], [26], [30], [31] propose efficient methods of checkpoint-
ing. [29], [55] leverage techniques of process migration for
predictable failures. [8], [56] perform root cause diagnosis.
These either focus on improving known recovery techniques
like migration and checkpoint/restart or have limitations in root
cause diagnosis (e.g., assuming that non-fatal events may not
manifest as faults in the future) and are complementary to TBP.
[22], [32], [33], [57], [58] mine logs in cloud-based distributed
systems (e.g., Hadoop, OpenStack) using application console
logs adhering to data center concerns. They either refer to the
application source code or lack lead time analysis. Moreover,
these studies target smaller systems and, unlike TBP, do not
address the problem of predicting node failures.

VII. CONCLUSION

A novel, time-based phrase (TBP) model for node failure
prediction is developed leveraging topic modeling for text min-
ing. Our scheme achieves no less than 83% recall rates, 98%
precision and as much as 2 minutes of lead time. The paper
shows valuable insights to Cray data revealing that service and
compute node failures affect user applications considerably.
Node failure classification segregates abnormal failures to
address significant variations observed in phrases over short
time intervals. Continuous time series-based temporal phrase
mining approaches are effective in handling unstructured Cray
logs and obtain lead times suitable for proactive actions.

ACKNOWLEDGMENT

The authors thank the shepherd and the anonymous review-
ers for suggested improvements. This research was supported
in part by subcontracts from Lawrence Berkeley and Sandia
National Laboratories as well as NSF grant 1217748. This
work used resources of NERSC and was supported by the
Director, Office of Science, Office of Advanced Scientific
Computing Research, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

This manuscript has three authors of Lawrence Berkeley Na-
tional Laboratory under Contract No. DE-AC02-05CH11231
with the U.S. Department of Energy. The U.S. Government
retains, and the publisher, by accepting the article for publica-
tion, acknowledges, that the U.S. Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow
others to do so, for U.S. Government purposes.

REFERENCES

[1] J. Brandt, A. Gentile, C. Martin, J. Repik, and N. Taerat, “New systems,
new behaviors, new patterns: Monitoring insights from system standup,”
in IEEE CLUSTER, 2015, pp. 658–665.

[2] C. D. Martino, W. Kramer, Z. Kalbarczyk, and R. K. Iyer, “Measuring
and understanding extreme-scale application resilience: A field study of
5, 000, 000 HPC application runs,” in IEEE/IFIP DSN, 2015, pp. 25–36.

[3] E. Elnozahy, R. Bianchini, T. El-Ghazawi, A. Fox, F. Godfrey, A. Hoisie,
K. McKinley, R. Melhem, J. Plank, P. Ranganathan et al., “System
resilience at extreme scale,” Defense Advanced Research Project Agency,
Tech. Rep, 2008.

[4] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. B. Ferreira, and C. En-
gelmann, “Combining partial redundancy and checkpointing for HPC,”
in IEEE ICDCS, 2012, pp. 615–626.

[5] Top 500 List. [Online]. Available: https://www.top500.org/list/2017/11/
[6] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Failure prediction

for hpc systems and applications current situation and open issues,”
IJHPCA, vol. 27, no. 3, pp. 273–282, 2013.

[7] L. Yu, Z. Zheng, Z. Lan, T. Jones, J. M. Brandt, and A. C. Gentile,
“Filtering log data: Finding the needles in the haystack,” in IEEE/IFIP
DSN, 2012, pp. 1–12.

[8] Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-dimensional root cause
diagnosis via co-analysis,” in ACM ICAC, 2012, pp. 181–190.

[9] S. Fu and C. Xu, “Exploring event correlation for failure prediction in
coalitions of clusters,” in ACM/IEEE SC, 2007, p. 41.

[10] X. Fu, R. Ren, S. A. McKee, J. Zhan, and N. Sun, “Digging deeper into
cluster system logs for failure prediction and root cause diagnosis,” in
IEEE CLUSTER, 2014, pp. 103–112.

[11] E. Berrocal, L. Yu, S. Wallace, M. E. Papka, and Z. Lan, “Exploring void
search for fault detection on extreme scale systems,” in IEEE CLUSTER,
2014, pp. 1–9.

[12] Z. Lan, J. Gu, Z. Zheng, R. Thakur, and S. Coghlan, “A study of dynamic
meta-learning for failure prediction in large-scale systems,” J. Parallel
Distrib. Comput., vol. 70, no. 6, pp. 630–643, 2010.

[13] Z. Lan, Z. Zheng, and Y. Li, “Toward automated anomaly identification
in large-scale systems,” IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 2,
pp. 174–187, 2010.

[14] L. Yu, Z. Zheng, Z. Lan, and S. Coghlan, “Practical online failure
prediction for blue gene/p: Period-based vs event-driven,” in IEEE/IFIP
DSN- Workshop, 2011, pp. 259–264.

[15] Z. Zheng, L. Yu, W. Tang, Z. Lan, R. Gupta, N. Desai, S. Coghlan, and
D. Buettner, “Co-analysis of RAS log and job log on blue gene/p,” in
IEEE IPDPS, 2011, pp. 840–851.

[16] Z. Zheng, Z. Lan, B. H. Park, and A. Geist, “System log pre-processing
to improve failure prediction,” in IEEE/IFIP DSN, 2009, pp. 572–577.

[17] T. J. Hacker, F. Romero, and C. D. Carothers, “An analysis of clustered
failures on large supercomputing systems,” J. Parallel Distrib. Comput.,
vol. 69, no. 7, pp. 652–665, 2009.

[18] X. Wang and A. McCallum, “Topics over time: a non-markov
continuous-time model of topical trends,” in ACM SIGKDD, 2006, pp.
424–433.

[19] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” in
NIPS, 2001, pp. 601–608.

[20] N. Nakka, A. Agrawal, and A. N. Choudhary, “Predicting node failure
in high performance computing systems from failure and usage logs,”
in IEEE IPDPS Workshop, 2011, pp. 1557–1566.

[21] Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, and P. Beckman, “A practical
failure prediction with location and lead time for blue gene/p,” in
IEEE/IFIP DSN-Workshop, 2010, pp. 15–22.

[22] X. Yu, P. Joshi, J. Xu, G. Jin, H. Zhang, and G. Jiang, “Cloudseer:
Workflow monitoring of cloud infrastructures via interleaved logs,” in
ACM ASPLOS, 2016, pp. 489–502.

[23] D. M. Blei and J. D. Lafferty, “Dynamic topic models,” in ICML, 2006,
pp. 113–120.

[24] S. Gupta, D. Tiwari, C. Jantzi, J. H. Rogers, and D. Maxwell, “Under-
standing and exploiting spatial properties of system failures on extreme-
scale HPC systems,” in IEEE/IFIP DSN, 2015, pp. 37–44.

[25] N. El-Sayed and B. Schroeder, “Reading between the lines of failure
logs: Understanding how HPC systems fail,” in IEEE/IFIP DSN, 2013,
pp. 1–12.

[26] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing: Exploit-
ing temporal locality in failures to mitigate checkpointing overheads on
extreme-scale systems,” in IEEE/IFIP DSN, 2014, pp. 25–36.

[27] A. McCallum, K. Schultz, and S. Singh, “Factorie: Probabilistic pro-
gramming via imperatively defined factor graphs,” in NIPS, 2009, pp.
1249–1257.

[28] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large
scale systems: long-term measurement, analysis, and implications,” in
ACM/IEEE SC, 2017, pp. 44:1–44:12.

[29] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive process-
level live migration in HPC environments,” in ACM/IEEE SC, 2008,
p. 43.

[30] A. Rezaei and F. Mueller, “Dino: Divergent node cloning for sustained
redundancy in hpc,” in IEEE CLUSTER, 2015, pp. 180–183.

[31] M. Bouguerra, A. Gainaru, L. A. Bautista-Gomez, F. Cappello, S. Mat-
suoka, and N. Maruyama, “Improving the computing efficiency of HPC
systems using a combination of proactive and preventive checkpointing,”
in IEEE IPDPS, 2013, pp. 501–512.

[32] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in ACM SOSP,
2009, pp. 117–132.

[33] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm, “Non-intrusive
performance profiling for entire software stacks based on the flow
reconstruction principle.” in Usenix OSDI, 2016, pp. 603–618.

[34] T. Pitakrat, D. Okanovic, A. van Hoorn, and L. Grunske, “Hora:
Architecture-aware online failure prediction,” Journal of Systems and
Software, vol. 137, pp. 669–685, 2018.

[35] J. Klinkenberg, C. Terboven, S. Lankes, and M. S. Müller, “Data mining-
based analysis of HPC center operations,” in IEEE CLUSTER, 2017, pp.
766–773.

[36] T. Martinetz, S. G. Berkovich, and K. Schulten, “’neural-gas’ network
for vector quantization and its application to time-series prediction,”
IEEE Trans. Neural Networks, vol. 4, no. 4, pp. 558–569, 1993.

[37] A. Gainaru, F. Cappello, S. Trausan-Matu, and B. Kramer, “Event log
mining tool for large scale hpc systems,” in Euro-Par, 2011, pp. 52–64.

[38] A. Gainaru, F. Cappello, and W. Kramer, “Taming of the shrew:
Modeling the normal and faulty behaviour of large-scale HPC systems,”
in IEEE IPDPS, 2012, pp. 1168–1179.

[39] C. D. Martino, S. Jha, W. Kramer, Z. Kalbarczyk, and R. K. Iyer,
“Logdiver: A tool for measuring resilience of extreme-scale systems
and applications,” in Workshop on Fault Tolerance for HPC at eXtreme
Scale, FTXS, 2015, pp. 11–18.

[40] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and A. Mueen,
“Logmine: Fast pattern recognition for log analytics,” in ACM CIKM,
2016, pp. 1573–1582.

[41] S. Di, R. Gupta, M. Snir, E. Pershey, and F. Cappello, “Logaider: A
tool for mining potential correlations of hpc log events,” in IEEE/ACM
CCGRID, 2017, pp. 442–451.

[42] S. Ghiasvand, F. M. Ciorba, R. Tschüter, and W. E. Nagel, “Lessons
learned from spatial and temporal correlation of node failures in high
performance computers,” in Euromicro PDP, 2016, pp. 377–381.

[43] J. Stearley and A. J. Oliner, “Bad words: Finding faults in spirit’s
syslogs,” in IEEE CCGrid, 2008, pp. 765–770.

[44] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems: The
good, the bad, and the ugly,” in ASPLOS, 2015, pp. 297–310.

[45] L. A. Bautista-Gomez, A. Gainaru, S. Perarnau, D. Tiwari, S. Gupta,
C. Engelmann, F. Cappello, and M. Snir, “Reducing waste in extreme
scale systems through introspective analysis,” in IEEE IPDPS, 2016, pp.
212–221.

[46] C. D. Martino, Z. T. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop,
and W. Kramer, “Lessons learned from the analysis of system failures
at petascale: The case of blue waters,” in IEEE/IFIP DSN, 2014, pp.
610–621.

[47] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure prediction
methods,” ACM Computing Surveys (CSUR), vol. 42, no. 3, p. 10, 2010.

[48] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault prediction
under the microscope: a closer look into HPC systems,” in ACM/IEEE
SC, 2012, p. 77.

[49] G. Aupy, Y. Robert, F. Vivien, and D. Zaidouni, “Impact of fault
prediction on checkpointing strategies,” CoRR, vol. abs/1207.6936,
2012. [Online]. Available: http://arxiv.org/abs/1207.6936

[50] L. Yu and Z. Lan, “A scalable, non-parametric method for detecting
performance anomaly in large scale computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 7, pp. 1902–1914, 2016.

[51] R. Jia, S. Abdelwahed, and A. Erradi, “Towards proactive fault manage-
ment of enterprise systems,” in IEEE ICCAC, 2015, pp. 21–32.

https://www.top500.org/list/2017/11/
http://arxiv.org/abs/1207.6936

[52] G. Bosilca, A. Bouteiller, A. Guermouche, T. Hérault, Y. Robert, P. Sens,
and J. J. Dongarra, “Failure detection and propagation in HPC systems,”
in ACM/IEEE SC, 2016, pp. 312–322.

[53] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in ACM CCS,
2017, pp. 1285–1298.

[54] C. H. A. Costa, Y. Park, B. S. Rosenburg, C. Cher, and K. D. Ryu,
“A system software approach to proactive memory-error avoidance,” in
ACM/IEEE SC, 2014, pp. 707–718.

[55] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott, “Proactive
fault tolerance for HPC with xen virtualization,” in ACM ICS, 2007, pp.
23–32.

[56] E. Chuah, A. Jhumka, S. Narasimhamurthy, J. Hammond, J. C. Browne,
and B. Barth, “Linking resource usage anomalies with system failures
from cluster log data,” in IEEE SRDS, 2013, pp. 111–120.

[57] Z. Chothia, J. Liagouris, D. Dimitrova, and T. Roscoe, “Online recon-
struction of structural information from datacenter logs,” in EuroSys,
2017, pp. 344–358.

[58] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis
of systems logs to diagnose performance problems,” in Usenix NSDI,
2012, pp. 26–26.

ARTIFACT DESCRIPTION APPENDIX: [DOOMSDAY:
PREDICTING WHICH NODE WILL FAIL WHEN ON

SUPERCOMPUTERS]

A. Abstract

Let us describe the major steps required to run the TBP
framework and conduct experiments with it. We illustrate how
the data is processed, integrated, topics are assigned, node
failures chains are learned through training, and data is tested
to calculate lead times. The step by step process of generating
results clarify the predictor design described in the paper.

B. Description

The artifact description enumerates major packages, soft-
ware components and language used to formulate the method-
ology of predicting node failures. In addition, we describe the
inputs and outputs of each step.

1) Check-list (artifact meta information):
• Algorithm: Time, threshold, node identifier based data

integration, Time Based Phrase (TBP) Predictor
• Program: Factorie, Python, Bash Scripts
• Compilation: Maven, No special compilation required
• Transformations: Used Topics Over Time API
• Binary: Jar executable
• Data set: Production logs obtained from real HPC Clusters
• Run-time environment: Linux 4.10.13-1.el7.elrepo.x86 64
• Hardware: Intel processors
• Run-time state: Unused compute nodes
• Execution: Command line, Bash Shell
• Output: Timestamped events (from the input) pertaining to

a node indicating if a failure is probable
• Experiment workflow: Job and node data correlation, in-

tegration with system logs, selection of topics, training,
formulation of failure chains, testing, phrase pruning

• Experiment customization: Selection of topics, varying the
count of top N topics, training with one set of data and
testing with another set

• Publicly available: Framework upon request, Anonymized
excerpts can be accessed from http://moss.csc.ncsu.edu/
∼mueller/cray/Anonymized Excerpts/.

2) How software can be obtained (if available): If ac-
cepted, the code can be made available on request via email.

3) Hardware dependencies: Any Intel platform
4) Software dependencies: Python ≥3.4.5, Java ≥1.7,

Apache Maven ≥3.0, Scala, Maven should install the correct
prerequisite dependencies for Factorie to run.

5) Datasets: Real production datasets, job logs and system
logs, were obtained from well used Cray Supercomputing
clusters. Representative samples can be seen here.

C. Installation

Install Factorie, python, and run the modules with the
correct format of data. Use mvn compile to install factorie
on which timebasedphrase is built.

D. Experiment workflow

In Section III we describe the predictor design. The major
steps are as follows:

1) Consider the training data. Enlist all the distinct node
ids found in the data, name it “Nodes.txt”

TABLE XIV: Event Phrases
Event Phrases
1 DVS: file node down: *
2 mce notify irq:*
3 [Hardware Error]: Machine check events logged
4 Corrected memory errors *
5 SOCKET:* CHANNEL:* DIMM:
6 HWERR* HAL Completion with Invalid Tag Error
7 LNet: Quiesce start: critical hardware error
8 [gsockets] debug: critical hardware error: *
9 cpu * apic timer irqs=*
10 Stop NMI detected on CPU *

2) From job logs of the same time frame, run:
sh correlate.sh Nodes.txt
Input: Job logs and Alps logs
Output: Correlated document of node ids and the job ids
scheduled on them

3) Integrate the correlated document with rest of the con-
sole logs. Run: sh integrate.sh
Input: Output of previous step, console/messages in p0-
directories
Output: Timestamped integrated document of node ids
and event phrases

4) Go over the data and select the list of topics, name it
“Topics.txt”

5) Train the data, run:
java -classpath factorie.jar
TimeBasedPhrase training_data
Input: Topics.txt, output of previous step
Output: Top N topics referring to event phrases

6) Formulate failure chain, referring to the data:
python failure_chain.py
Input: Output of previous step, training data, terminal
messages leading to node failures
Output: Node Failure Chains

7) Consider the test data. To detect failures in the test data,
run: python detect.py
Input: Test data
Output: Whether a sequence is a failure or not

8) To experiment with different tail reduction lengths of
failure chains, choose the % reduction (say A) and run:
python pruning.py A
Input: Node Failure Chains
Output: Reduced Failure Chains

9) Repeat Step 7, for experimentation.
10) Compute lead time, recall and precision. The test data

contains the terminal messages, if any. This helps the
lead time calculation.

E. Evaluation and expected result

TBP has been experimented with log sets whose results are
explained in the evaluation section V.

1) Let us consider Table XIV, depicting the sequence of
events pertaining to a node before forming the failure
chain (Section D, Step 3).

2) The top topics selected are MCE, HWERR, MEM
ERRORS, Lnet, and NMI.

http://moss.csc.ncsu.edu/~mueller/cray/Anonymized_Excerpts/
http://moss.csc.ncsu.edu/~mueller/cray/Anonymized_Excerpts/
http://moss.csc.ncsu.edu/~mueller/cray/Anonymized_Excerpts/

TABLE XV: Failure Chains
Node Failure Chain 1 Node Failure Chain 2
1 [Firmware Bug]: powernow-k8: No compatible ACPI PSS objects found mce notify irq:*
2 DVS: verify filesystem: file system magic value * [Hardware Error]: Machine check events logged
3 DVS: file node down: removing * from list of available servers Corrected memory errors *
4 Lustre: * HWERR* HAL Completion with Invalid Tag Error
5 krsip: RSIP server * not responding; * LNet: Quiesce start: critical hardware error
6 cb node unavailable Stop NMI detected on CPU *

3) After training, the failure chain looks like Table XV,
Node Failure Chain 2 (Section D, Step 6).

4) As seen from both the tables, phrases #1, #5, #8 and #9
got eliminated.

5) For failure detection, these chains are matched with the
test data and compared as described in Figure 5 and
Table X.

6) The lead time calculation is performed as per the de-
scription in the paper (see Section V-D).

F. Experiment customization

1) Vary the list of topics. The top selected topics over time
may change. Accordingly, the accuracy of failure chains
will change.

2) Vary N, for the top phrases. The number of phrases
referred for formulating failure chains will get affected.
This will affect the false positives and, hence, the
precision. It is observed that most indicative anomalous
phrases are within 10 minutes of the failure. If we
consider phrases too far from the failure manifestation,
it does not help in obtaining better lead times, especially
in phrase pruning.

3) The % tail reduction of phrases during phrase pruning
to increase lead times can be varied. This affects the
false positive rate as mentioned in Section V. Even if
more lead times can be procured by phrase pruning, the
amount of false positives possible in the considered test
data needs to be minimized for choosing the percentage
of tail reduction.

G. Notes

Node Failures: The boot log reveals several clustered node
failures caused by problems ranging from communication

failures, network-interconnect and application-based errors,
resource-contention, file system or hardware errors. Further
study revealed certain patterns in the context of node failures
as discussed in Section II, Node Failure Definition.

Power outages, maintenance and deliberate shutdowns have
been eliminated in our study. Periodic service reboots are
common in Cray nodes. Nodes are rebooted several times
before they come up as part of regular maintenance. Such
spurious cases are not counted as node failures since these are
not caused by any faults in the system. Unresponsive nodes,
stress testing, and changing power cooling conditions manifest
in log messages and have been considered in our study; a
failed heartbeat indicates failure with unknown root cause
(network/OS/hardware failures resulting in lost connection)
and are indistinguishable from anomalous node failures in
terms of manifestation.

For validation, the normal node shutdowns are segregated
using bash scripts from those that are anomalous node shut-
downs. Run: sh anomalous_failures.sh

The timestamps in the document can be normalized while
training. They can be denormalized after obtaining the top
N Phrases. While formulating failure chains, we perform
per node analysis. E.g., consider node c0-0c2s0n2. We
refer to the integrated document with phrases pertaining to
c0-0c2s0n2. Next, we select those phrases from this doc-
ument which match the top N topics. This aids in forming
a timestamped chain of failures. We discard the phrases that
did not show up in top N. The terminal messages are known
a priori in consultation with the system administrators. The
failure chains are then formed. Table XV shows failure chains
of two distinct node failures. Failure Chain 1 is caused by a
firmware bug while Failure Chain 2 is caused by hardware
errors and MCEs (machine check exceptions).

