
Controller-Aware Memory Coloring for Multicore Real-Time Systems

Xing Pan, Frank Mueller
North Carolina State University, USA

mueller@cs.ncsu.edu

Abstract
Memory latencies vary in non-uniformmemory access (NUMA)
systems so that execution times may become unpredictable
in a multicore real-time system. This results in overly conser-
vative scheduling with low utilization due to loose bounds
on the worst-case execution time (WCET) of tasks. This
work contributes a controller/node-aware memory color-
ing (CAMC) allocator inside the Linux kernel for the entire
address space to reduce access conflicts and latencies by
isolating tasks from one another. CAMC improves timing
predictability and performance over Linux’ buddy alloca-
tor and prior coloring methods. It provides core isolation
with respect to banks and memory controllers for real-time
systems. To our knowledge, this work is first to consider
multiple memory controllers in real-time systems, combine
them with bank coloring, and assess its performance on a
NUMA architecture.

CCS Concepts • Computer systems organization →
Real-time systems;

Keywords memory access, NUMA, real-time predictability

1 Introduction
Modern NUMA multicore CPUs partition sets of cores into
a “node” with a local memory controller, where multiple
nodes comprise a chip (socket). Memory accesses may be
resolved locally (within the node) or via the network-on-chip
(NoC) interconnect (from a remote node and its memory).
Each core has a local and multiple remote memory nodes.
A so-called memory node consists of multi-level resources
called channel, rank, and bank. The banks are accessed in
parallel to increase memory throughput. When tasks on
different cores access memory concurrently, performance
varies significantly depending on which node data resides
and how banks are shared for two reasons. (1) The latency of
accessing a remote memory node is significantly longer than
that of a local memory node. Although operating systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SAC 2018, April 9–13, 2018, Pau, France
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5191-1/18/04. . . $15.00
https://doi.org/10.1145/3167132.3167196

generally allocate from the local memory node by default,
remote memory will be allocated when local memory space
runs out. (2) Even with a single memory node, conflicts be-
tween shared-bank accesses result in unpredictable memory
access latencies. As a result, system utilization may be low
as the execution time of tasks has to be conservatively (over-
)estimated in real-time systems.
The idea of making main memory accesses more pre-

dictable is subject of recent research. Palloc [22] exploits bank
coloring on DRAM to allocate memory to specific DRAM
banks. Kim et al. [6] propose an approach for bounding mem-
ory interference and use software DRAM bank partitioning
to reduce memory interference. Other approaches ensure
that cores can exclusively access their private DRAM banks
by hardware design [18, 21]. Unfortunately, none of these
approaches universally solve the problem of making mem-
ory accesses time predictable. Some of them require hard-
ware modifications while others do not consider NUMA as
a source of unpredictable behavior. Furthermore, program-
mers need carefully assign colors to each task and manually
set coloring policy for real-time task set.

In operating systems, standard buddy allocation provides
a “node local” memory policy, which requests allocations
from the memory node local to the core the code executes on.
Besides, The libnuma library offers a simple API to NUMA
policies under Linux with several policies: page interleaving,
preferred node allocation, local allocation, and allocation
only on specific nodes. However, neither buddy allocation
with local node policy nor libnuma library is bank aware.
Furthermore, the libnuma library is restricted to heap mem-
ory placement at the controller level, and it requires explicit
source code modifications to make libnuma calls.
This work contributes Controller-Aware Memory Color-

ing (CAMC), a memory allocator that automatically assigns
appropriate memory colors to each task while combining
controller- and bank-aware coloring for real-time systems
on NUMA architectures. An implementation of CAMC on
an AMD platform and its performance evaluation with real-
time tasks provides novel insights on opportunities and lim-
itations of NUMA architectures for time-critical systems.
Memory access latencies are measured, the impact of NUMA
on real-time execution is discussed, and the performance of
DRAMpartitioning is explored. To the best of our knowledge,
this is the first work to comprehensively evaluate memory
coloring performance for real-time NUMA systems.

Summary of Contributions: (1) CAMC colors the entire
memory space transparent to the application by considering
memory node and bank locality together — in contrast to

https://doi.org/10.1145/3167132.3167196

SAC 2018, April 9–13, 2018, Pau, France Xing Pan, Frank Mueller

prior work for non-NUMA allocations [22], or “local node”
policy in buddy allocation without bank awareness. Tasks
are automatically assigned to one (or more) colors for mem-
ory regions disjoint from colors of other tasks in the system.
CAMC follows the philosophy of single core equivalence [12].
It avoids (i) memory accesses to remote nodes and (ii) con-
flicts among banks in an effort to make task execution more
predictable via colored partitioning. We modified the Linux
kernel so that each task has its own memory policy. Heap,
stack, static, and instruction (text/code) segment allocations
return memory frames adhering to this policy upon task
creation as well as for expansions of stack or heap segments
dynamically for heap allocations or deeply nested calls.
(2) We compare CAMC with Linux’ standard buddy allocator
with “local node” policy and previous coloring techniques.
We assess the performance of CAMC for Parsec codes on a
standard x86 platform, with and without real-time task sets.
(3) Experiments quantify the non uniform latency between
nodes and indicate that (i) monotonically increasing alternat-
ing stride patterns result in worse performance than prior
access patterns believed to trigger the “worst” behavior; (ii)
CAMC increases the predictability of memory latencies; and
(iii) CAMC avoids inter-task conflicts. By comparison, CAMC
is the only policy to provide single core equivalence when the
number of concurrent real-time tasks is less than the number
of memory controllers. By coloring real-time tasks and non-
realtime tasks disjointly (with mappings to different memory
controllers), real-time tasks increase their level of isolation
from each other following the single core equivalence para-
digm, which is is essential for improving the schedulability
of real-time task sets and facilitate compositional analysis
based on single-task analyses.
(4) An algorithm for the mapping of physical address bits is
described for AMD processors. Its principles can be applied
universally to any documented mapping.
(5) Instead of manual configuration by programmer, CAMC
automatically assigns memory colors to tasks based on global
utilization of memory colors. CAMC does not require any
code modifications for applications. Invocation of a com-
mand line utility prior to real-time task creation suffices to
activate coloring in the kernel. The utility issues a single
mmap() system call with custom parameters for coloring.

2 Background
DRAM Organization: DRAM is organized as a group of mem-
ory controllers/nodes (Fig. 1), each associated with a set of
cores (e.g., four cores per controller). Each controller governs
multilevel resources, namely channel, rank, and bank. Each
rank consists of multiple banks, where different banks can
be accessed in parallel. Multiple channels further provide in-
terleaving of memory accesses to improve average through-
put. Each bank has a storage array of rows and columns
plus a row buffer. When the first memory request to a row
element is issued, a row of the array with the respective

data is loaded into the row buffer before it is relayed to the
processor/caches. Next, to serve this memory request, the
requested bytes of the data are returned using the column ID.
Repeated/adjacent references to this data in this row result
in “memory bank hits” — until the data is evicted from the
row buffer by other references, after which a “memory bank
miss” would be incurred again. The access latency for a bank
hit is much lower than for a bank miss. If multiple tasks
access the same bank, they contend for the row buffer. Data
loaded by one task may be evicted by other tasks, i.e., the
memory access time and bank miss ratios increase as access
latencies fluctuate on bank contention.

Fig. 1. 16 Cores, 4 Memory Controllers/Nodes
Memory Controller: The memory controller is a mediator

between the last-level cache (LLC) of a processor and the
DRAM devices. It translates read/write memory requests
into corresponding DRAM commands and schedules the
commands while satisfying the timing constraints of DRAM
banks and buses. When multiple memory controllers exist,
references experience the shortest memory latency when
the accessed memory is directly attached to the local con-
troller (node). A memory access from one node to memory
of another incurs additional cycles of load penalty compared
to local memory as it requires the traversal of the memory
interconnect between cores. Overall, it is beneficial to avoid
remote memory accesses not only for performance but also
predictability (uniform latencies), and proper placement of
data can increase the overall memory bandwidth which de-
creases its latency.
3 Controller-Aware Memory Coloring

(CAMC)
In a NUMA system, a running task is subject to varying
memory controller (node) access latencies and contention
on memory banks. As described in Sec. 2, DRAM memory
access latency is largely affected by: (1) where data is located,
i.e., local vs. remote memory node; (2) how memory banks
interleave; and (3) how much of the accesses contend.
In order to completely avoid remote memory node ac-

cesses and reduce bank contention, we design Controller-
Aware Memory Coloring (CAMC), which is realized inside
the Linux kernel (V2.6). It comprehensively considers mem-
ory node and bank locality to color the entire main memory
space (heap, stack, static, and instruction segments) without

Controller-Aware Memory Coloring for Multicore Real-Time Systems SAC 2018, April 9–13, 2018, Pau, France

requiring hardware or application software modifications.
The entire memory space is partitioned into different sets,
which we call “colors”. Each memory bank receives a differ-
ent color. CAMC forces an exact mapping for each active
virtual page to a physical frame of the CAMC-indicated color.
Such a color indicates a unique bank color (bc), which
translates a physical address to memory module locations:
node, channel, rank, bank, columns, and rows. Based on this
partition, CAMC optimizes the physical memory frame se-
lection process to provide a private memory space for each
task on their local memory node in order to make memory
access latency stable and predictable.

In practice, it is hard to completely avoid remote accesses
as tasks run concurrently and may incur complex memory
reference patterns, e.g., due to data sharing. But if one were
to conservatively assume remote references for all memory
accesses, bounds on the WCET would be very loose, so that
system utilization would be low. In contrast, we assume that
only shared reference latencies are bounded conservatively
(to be remote) as CAMC guarantees locality and absence of
controller/bank conflicts.

3.1 Address Mapping for Page Coloring
CAMC translates the physical address to a DRAM address
and maps it onto the physical structure of main memory as
described before (node, channel, rank, bank, columns, and
rows). Some vendors only release bit-level mapping infor-
mation under non-disclosure agreements (e.g., Intel — even
though some prior work has published mappings for certain
Intel processors) while others disclose this information in
their architecture manuals (e.g., AMD, ARM). This work is
based on the AMD Opteron hardware platform, but its prin-
ciples apply universally to any documented mapping. On the
AMD platform, we query PCI registers (documented in the
architecture manual) and determine the bits that translate
physical addresses to DRAM locations.
The memory controller/node of a frame is identified by

the range of its physical address. Channel and rank ID bits
are indicated by the “DRAM Controller Select Low Register”
and ‘DRAM CS Base Address Registers”, respectively. After
determining the frame’s memory controller, channel, and
rank information, we translate the physical address to the
DRAM bank address by removing masked bits and normaliz-
ing. Next, we identify the bank, row, and column bits based
on the “DRAM Bank Address Mapping Register”.

Upon boot-up, our coloring mechanism is triggered within
the OS. It scans all frames and calculates the color informa-
tion formemory controller, channel, rank and bank per frame
(and corresponding frame). Consider an AMD Opteron 6128
with four memory controllers, two channels per controller,
two ranks per channel, and eight banks per rank (128 banks
in total). After boot-up and page color initialization, the sys-
tem groups the entire memory space into 128 colors and
records which color a page belongs to in the page table.

3.2 CAMC User Interface
After boot-up, the system is ready for per-task CAMC alloca-
tion. Instead of manual configuration by the programmer in
prior works, the user only needs to trigger memory coloring
in CAMC. Subsequently, the coloring policy is applied au-
tomatically, i.e., all tasks are assigned appropriate memory
colors without a programmer’s manual selection. To turn
on/off memory coloring in CAMC, we designed a coloring
toggle capability, which is triggered via a single mmap() sys-
tem call exploiting a backwards-compatible mmap extension
to turn on/off and configure kernel coloring of memory pages
per task. The parameters of this coloring toggle call indicate
what kind of coloring action and how many colors should
be assigned to real-time tasks during initialization (and can
be changed by the programmer based on per-task memory
requirement, default: 1 color/task).
Our enhanced mmap() retains the calling convention of

standard mmap calls, which allocates pages by creating new
mappings in the virtual address space of the calling task.
The (third) “protection” parameter allows the distinction of
standard mmap vs. coloring mmap calls with full backwards
compatibility for the former while triggering our kernel ex-
tensions for the latter. Specifically, a set bit 30 of the mmap
third parameter (unused in Linux) triggers coloring; other-
wise, calls experience standard (legacy) behavior. For colored
mmap(), the first parameter indicates the color action (turn
it on/off) and the number of colors to assign per real-time
task. On the AMD Opteron platform, the color_num has a
value range of 0-127. A sample call for coloring is as follows:

char * A = (char*) mmap(color_action+color_num,
length, prot | (1<<30), flag, fd, offset);

3.3 Memory Policy Configuration
After CAMC is activated, an enhanced mmap() call registers
(adds) the current user_id to the coloring_user list in the ker-
nel. As there may be many other tasks running in the system,
one may quickly run out of colored memory resource if the
kernel assigns colored resources to every task. To avoid color-
ing for non real-time tasks and OS background processes, we
further check the execution path of new tasks to determine
whether this task should be colored. After CAMC activation,
the user_id and execution_path of tasks is checked as they
are spawned. If the user_id has been registered and the exe-
cution_path matches a user-specified configuration pattern,
the OS kernel will configure the memory policy for this task
to adhere to the supplied coloring constraints. In addition, a
coloring flag, using_color, is set in the task_struct by kernel.
Any subsequent memory allocation calls (including heap,
stack, static, and instruction segments) will return pages
based on memory policy and coloring requirements. Once
a coloring memory policy has been established, this task is
guaranteed to receive isolated (colored) memory pages in
terms of controller locality and bank arbitration. In CAMC,

SAC 2018, April 9–13, 2018, Pau, France Xing Pan, Frank Mueller

no software/application source code or hardware architec-
ture modifications are needed. The coloring memory policy
is configured as depicted in Fig. 2.

Fig. 2. Program Flow to configure memory coloring

CAMC maintains a table to record the utilization of global
memory colors and each task’s coloring allocation. Once a
new coloring task is created, CAMC automatically selects one
color (default 1, configurable to > 1) from memory regions
disjoint from colors of other tasks in the system. If a task
needs more memory space, CAMC assigns a new color after
this task’s pre-allocated colors have been exhausted.
Following the copy-on-write (COW) paradigm of Linux,

when a fork system call is issued, the parent process’ pages
are shared (with read-only permission) between the child and
parent processes. The memory space will not be copied for
the child process until the child begins to execute. Whenever
the child process calls the do_exec function, a separate copy
of that particular page is made (actually, on the first write
to such a page). The child process will then use the newly
copied page and no longer shares the original one, which has
now become exclusively owned by the parent. Under CAMC,
the coloring memory policy is configured in the do_exec
function so that the entire memory space is colored.
3.4 Page Allocation Design
CAMC is implemented by augmenting the Linux buddy allo-
cator. We only handle the order = 0 case while higher orders
are handled by the original buddy allocator, since user-level
memory allocations are eventually performed in the page
fault handler at page granularity (4KB, i.e.,order = 0). CAMC
thus handles the common kernel internal allocation requests
(getting a page frame).

Furthermore, CAMC supports channel interleaving for
multi-channel memory architectures. With channel inter-
leaving, one page is spread evenly across channels at cache
line granularity to increase the memory throughputs. The
interleaving boundary is related with the size of cache line
and determined by memory physical address, (6th bit of

physical address on our platform, where a cache line is 64B).
When channel interleaving is enabled, the color assigned
to each memory bank does not only represent its memory
location, but also indicates channel interleaving information,
i.e., one color contains multiple memory banks (but a sub-
set of the total number of banks). By assigning this color in
CAMC, one task can access those banks at same time though
multiple channels, while isolation and predictability are still
guaranteed by memory coloring.

Algorithm 1 Select colored page: find page of given
size,color
1: INPUT: order
2: OUTPUT: page
3: if order==0 and (current->using_color) then
4: for i = order ... MAX_ORDER do
5: Get a memory list ID, MEM_ID, that matches requirements
6: if Get Successful then
7: return page from color_list[MEM_ID]
8: else
9: if free_list[i] is empty then
10: continue //try next order
11: else
12: create_color_list (i, head page of the buddy set)
13: end if
14: end if
15: end for
16: return NULL /* no more pages of this color */
17: else
18: return page from normal_buddy_alloc
19: end if

Algorithm 2 Create color list: move page from buddy to
colored free_lists
1: INPUT: order, page
2: for i = 0 ... 2order−1 do
3: append page to color_list[page_color]
4: end for

After configuring the memory policy, we need to deter-
mine which page to select at a page fault. This process is
shown in Algorithms 1+2. Our approach instructs the ker-
nel to maintain a free list and m color lists, where m de-
notes the total number of banks in DRAM system. At first,
all color lists are empty and all free pages are in the non-
colored free list of the buddy allocator. Upon a page fault,
the returned page has to match memory coloring require-
ments if flag using_color is set. Orders greater than zero
default to the standard buddy allocator while order zero re-
quests traverse the corresponding colored free list to find
an available page. E.g., when a task requests a color 0 page,
the kernel traverses the color_list[0]. If free pages ex-
ist here, the kernel removes one such page and hands it to
the user. Otherwise, the kernel traverses the general buddy
free list and returns the first page with a matching color for
this task. Any pages with non-matching colors encountered
during the traversal are added to the corresponding color
lists by calling the create_color_list function. The call

Controller-Aware Memory Coloring for Multicore Real-Time Systems SAC 2018, April 9–13, 2018, Pau, France

to create_color_list causes a buddy (of size = 212+order)
to be separated into 2order single 4KB pages, which will be
added to the respective color lists. When the task frees a
memory space, the kernel adds each page to free lists corre-
sponding to their color. In addition, the colors assigned to a
task will be returned to the "coloring_pool" when this task
calls do_exit to terminate upon which memory coloring re-
sources are recycled. Thus, memory space can be configured
for a specific memory controller and bank per task.
4 Evaluation Framework and Results
4.1 Hardware Platform
The experimental platform is a two-socket SMP with AMD
Opteron 6128 (Magny Cours) processors with eight cores
per socket (16 cores altogether). The 6128 Opteron processor
has private 128KB L1 (I+D) caches per core, a private unified
512KB L2 cache, and a 12MB L3 cache shared across eight
cores. There are two nodes per socket (4 nodes and eight
memory controllers total), and nodes are connected via Hy-
perTransport. The core frequency is between 800MHz-2GHz
with a governor that selects 2GHz once a CPU-bound task
starts running. There are two channels per memory con-
troller, two ranks per channel, and eight banks per rank, i.e.,
128 banks altogether. All banks can be accessed in parallel.

4.2 CAMC vs. Buddy with Local Node Policy
We first investigate the memory performance impact of
CAMC with a synthetic benchmark. The synthetic bench-
mark represents a performance stress test close to the worst
possible case. In the experiment, a large memory space is
allocated for varying numbers of threads (tasks) with CAMC.
Each thread then performs many writes in this space. We
record the execution time of every 524,288 (512*1024) mem-
ory writes. Since the only work for each thread is to access
main memory, the execution time reflects the memory ac-
cess latency, i.e., total execution time divided by the 524,288
accesses. We report the average memory access latency over
multiple repeated experiments.

To assess the performance of memory controller coloring,
we use large strides to defeat hardware prefetching and al-
locate a large address space to inflict capacity misses in all
caches. Accesses follow a pattern where a thread writes to ad-
dresses with alternating (positive/negative) offsets increased
by a fixed step size of at least cache line size. Consider split
(64KB+64KB) I+D L1 caches with 64-byte caches lines. For
an integer array, we select a step size of 64 bytes to touch
each cache line exactly once. If a thread initially accesses the
256th array element, its next accesses are to the 272th (+16),
240th (-16), 288th (+32), 224th (-32) element etc.
We compared the cost of CAMC and buddy allocation

with “local node” policy. The synthetic benchmark executes
4 threads in parallel with 4 threads bound to cores 0-3, each
allocating colored/buddy memory and accessing it as before.
Table 1 depicts the average latency per access of all 4 threads

and the standard deviation for a sequence of 100 experi-
ments. The execution time (38ns) is shorter under CAMC
due to a reduction in worst-case latency compared to about
53ns (buddy) on average, a 28.3% reduction. More signifi-
cantly, the standard deviation of access times under CAMC
is much lower than buddy allocation, which indicates that
the memory access time becomes more predictable with col-
oring. Buddy shares memory controller and banks among
the threads while CAMC accesses disjoint private banks per
thread on the same controller.

Observation 1: Memory access time is reduced and becomes
more predictable with CAMC coloring.

Table 1. Cost of CMAC Normalized to Buddy
access latency norm. allocation cost during:

latency std.dev. computation initialization
buddy 53.21 ns 9.33 1 1
CAMC 38.22 ns 1.42 1 1.17

4.3 CAMC Overhead
Table 1 depicts allocation overheads normalized to standard
buddy allocation. CAMC imposes no overhead over buddy
allocation during regular program execution. But during
initialization, CMAC has a 17% overhead during allocations
over standard buddy allocation, which is explained as follows.
The color lists are empty at program start, and any coloring
request results in a traversal of the free_list until a page of
the requested color is found. Any pages encountered during
the free list traversal are further promoted to their respective
index in the color lists. Currently, this initial overhead can be
avoided by pre-allocating colored pages during initialization
(and optionally freeing them). Alternatively, this overhead
could be removed by reversing the design such that all pages
initially reside in color lists and are demoted into the free
list on demand.
To avoid the initial overhead, one can preallocate (and

then free) the maximum number of pages per color that will
ever be requested. Subsequent requests then become highly
predictable. Typically, a first coloring allocation suffices to
amortize the overhead of initialization.
Observation 2: CAMC imposes no overhead over buddy al-

location during periodic real-time task execution. Its initial-
ization overhead can be avoided by pre-allocating space for
real-time system.
4.4 System Performance
We next investigate performance and predictability for the
PARSEC benchmark suite featuringmultithreaded programs [2].
In the experiment, we create a multi-task workload where
several “memory attackers” run in the background to as-
sess their interference on memory latency for a foreground
task similar to prior work [6, 22]. We call these background
tasks the “memory attackers”, represented by instances of
the stream benchmark. E.g., consider 4 tasks in the experi-
ment, one (foreground task) is a Parsec benchmark , and the
others (background) are memory attackers (see Fig. 3).

SAC 2018, April 9–13, 2018, Pau, France Xing Pan, Frank Mueller

Fig. 3. Mixed: 1 Parsec code + up to 3 memory attackers
4.4.1 Performance
We compare the execution time of shared vs. private (iso-
lated) bank allocation (different controllers and different
banks). Since CAMC coloring occurs automatically after ac-
tivation, none of the benchmarks (neither any foreground
benchmark nor the memory attackers) need to be modified,
and each receives a disjoint colored space accessing only
local node memory in private banks without inter-thread
sharing. We deploy 3 memory attackers (Stream benchmark)
and measure the wall-clock execution time of the foreground
task to assess the impact of isolation via coloring. All tasks
(memory attackers and the Parsec benchmark) are bound
to different CPU cores. We also report results without back-
ground attackers for comparison.
We used 3 configurations: (1) In same_bank, the Parsec

benchmark and all 3 memory attackers are colored so that
they access the same bank. This configuration represents
the worst case for buddy allocation even with “local node”
policy. (2) In diff_bank, CAMC forces the foreground bench-
mark to share one memory controller/node (their local node)
with attackers. However, they each are assigned a private
bank/color. This is also called bank-level coloring. (3) In
diff_controller, CAMC ensures that foreground task and at-
tackers allocate pages from their private bank and private
local controller for full task isolation.

Fig. 4 depicts the experimentally determined WCET for all
Parsec benchmarks with background attackers (bars 1-3) and
without (bar 4). We observe that the WCET is reduced under
controller-aware coloring (private bank) in all experiments.
Both diff_bank and diff_controller obtain better performance
than same_bank. For bank-level coloring (diff_bank), the fer-
ret benchmark gets the largest performance enhancement
(28.9%) and the fluidanimate benchmark the smallest one
(6.2%). For controller-level coloring (diff_controller), the can-
neal benchmark gets the largest performance enhancement
(41.7%) and swaptions the smallest one (11.2%).

All 3 cases are relatively predictable in execution time
(small variance), yet diff_controller has the tightest range of
execution times of these methods, i.e., it is more predictable
and the only one that provides single-core equivalence as
it matches the last bar, single run (no attacker). Differences
between the last two bars of 0.1% for most, 2.73% for X264,

Fig. 4. Parsec: diff. controller/diff. bank/shared bank/single
and 2.54% for ferret, are due to increased LLC contention for
4 tasks, which would be removed by LCC coloring.

Observation 3: CAMC increases the predictability of memory
latencies by avoiding remote accesses and reducing inter-task
conflicts. It is the only policy to provide single-core equivalence
when one core per memory controller is used.
Not only foreground tasks (from the Parsec suite), back-

ground memory attackers (the Stream benchmark) also im-
prove in performance under CAMC. The results indicate that
diff_controller gets a 40% and diff_bank a 14.8% performance
enhancement over same_bank.
Since same_bank represents the worst case for standard

buddy allocation, real-time tasks should be scheduled con-
sidering the same_bank WCET for safety. Under CAMC, the
WCET of real-time tasks is much reduced compared to buddy.

4.4.2 Multiple Cores
We next executed a Parsec/X264 benchmark with multiple
memory attackers (Stream benchmark) in the background on
multiple cores. In 4 experiments, we ran Parsec/X264 with
0/3/7/15 memory attackers pinned to different cores. Fig. 5
depicts the runtime (left y-axis) of X264 (foreground) and
Stream (background) (right y-axis, avg. and min/max as error
bars) over the 3 allocation policies (x-axis).

We observe that the performance enhancement by CAMC
becomes smaller as the number of background tasks in-
creases. For 16 tasks, node-level coloring finally degrades to
bank-level coloring. Notice that the predictability of back-
ground tasks (stream) also degrades for 16 tasks (cores) with
CAMC matching that of the other allocators irrespective of
the number of active task. This is due to contention within
the shared queue of a memory controller before requests
enter bank-specific queues. Even for 16 tasks, our approach
still results in superior performance to normal buddy alloca-
tion (same_bank) where both controller and bank queues are
shared by all tasks. However, compared to just one core, only
the 4-core case under our policy provides single-core equiva-
lence as this is the only configuration to avoid memory con-
troller queue sharing. Furthermore, the 3 background Stream
benchmarks result in better performance under CAMC with
increasing variance under contention, which is uniformly
higher for the other schemes and also our 16-core case.

Controller-Aware Memory Coloring for Multicore Real-Time Systems SAC 2018, April 9–13, 2018, Pau, France

Observation 4: CAMC results in superior performance for
multi-core executions per controller, where both controller and
bank queues are shared across tasks, but can no longer provide
single core equivalence.
4.5 Real-Time Performance
We evaluated CAMC under rate-monotone scheduling for a
task set composed of 2 periodic hard real-time tasks, (1) syn-
thetic (alternating strides) and (2) IS_SER (NAS PB), sharing
core 0 (task parameters depicted in Table 2) plus three non-
real-time tasks (Stream) on cores 1,2,3 (omitted in the table).
These cores share the same memory controller. Real-time
tasks periodically execute jobs at a rate of 150 and 200ms
under an execution time C of 90/60ms for a task utilization
U of 0.6/0.3 for tasks 1 and 2, respectively.

Table 2. MC Tasks for Buddy Allocator
taski period Ci Ui

1: Synthetic 150 ms 90 ms 0.6
2: IS_SER 200 ms 60 ms 0.3

When tasks 1 and 2 execute together, CAMC isolates exe-
cution from background tasks (Stream) in diff-controller
mode so that no deadlines are missed. For the CAMC diff-
controller mode, all non-real-time tasks are mapped to dif-
ferent memory controllers via coloring than real-time tasks.
Although non-real-time task suffer more remote memory
accesses, CAMC guarantees strict memory isolation for real-
time tasks. Fig. 8 shows the corresponding Gantt chart from
one execution of this scenario: Tasks 1 and 2 are released
(arrays up) at time 0, synthetic has a shorter period and ex-
ecutes first followed by IS. Here, execution always results
in a feasible schedule and all deadlines (arrows down) are
met, which is what one would expect using response-time
analysis to verify schedulability.
In contrast, the same-bank configuration does not pro-

vide isolation between Tasks 1+2 and the background tasks
(Stream), which causes deadlines to be missed. Fig. 9 depicts
the same task set, but the executions of both synthetic and
IS are longer due to Stream’s interference. Task 1 executes
first for 107ms, then task 2 (IS) runs but is preempted by
the 2nd job of higher priority task 1 at 150, which was not
enough time to finish, so the deadline of IS is missed at 200.
The red box indicates this deadline miss. At the 2nd release
of IS at 200, task 1 is still running, and when IS starts at 257,
it only runs for 43ms before being preempted by the 3rd
job of task 1 (running for just 90ms here due to variations
in interference), but then continues at time 390 for another
10ms, which is again not enough to finish by its deadline
of 400 (red box). The 3rd job of task 2 finally has enough
time (50+37=87ms) to just finish by 594 since it is only pre-
empted by one job of task 1 (running for 107ms). Overall,
the interference of background tasks was sufficient to cause
deadline misses, which one would not have expected based
on calculated response times derived from isolated execu-
tions of tasks 1+2, i.e., interference causes schedulability

analysis to not be compositional anymore with respect to
single task executions. This also holds for buddy allocation
(not depicted due to space limitations) or any other policy
that causes interference.
Observation 5: Schedulability analysis for real-time tasks

remains compositional under CAMC, yet for other policies with
interference, compostionality cannot be guaranteed: Deadlines
of hard real-time tasks at higher priority can be missed if any
other tasks run on other cores (even if just in the background).

Tables 3+ 4 depict the observed execution times (avg. over
100 runs, min./max. and standard deviation) for tasks 1 and 2,
respectively, for the same 4 configurations as in previous ex-
periments. Notice that a single task run (without background
tasks) results in the smallest standard deviation, followed
by diff-controller (adding minimal overhead due to LLC
contention), and then others with higher interference at the
bank/NUMA node level. These execution times also reflect
the runtime behavior previously depicted in the Gantt chars.
Table 5 quantifies the deadline miss rates for same-bank and
diff-bank while the other policies always meet deadlines.

Table 3. Task 1: Synthetic Exec. Time
SameBank DiffBank DiffContr. SingleRun

avg. 90.6 ms 78.5 ms 62.5 ms 60.7 ms
max 107.1 ms 89.3 ms 75.8 ms 61.2 ms
min 80.4 ms 68.3 ms 61.5 ms 60 ms

std.dev. 4.88 4.33 2.46 0.44

Table 4. Task 2: IS_SER Exec. Time
SameBank DiffBank DiffContr. SingleRun

avg. 74.6 ms 67 ms 56.7 ms 54.3 ms
max 87.8 ms 74.4 ms 59.8 ms 56 ms
min 64.3 ms 58.8 ms 55.4 ms 53.7 ms

std.dev. 5.28 4.2 0.83 0.41

Table 5. Deadline Miss Rates
SameBank DiffBank DiffContr. SingleRun

deadline misses 82% 23% 0 0

4.6 Latency Comparison with Prior Work
We compared the performance of our approach with Pal-
loc [22], a DRAM bank-aware memory allocator that pro-
vides memory bank isolation on multicore platforms, but
not memory controller locality as it does not support NUMA
platforms. We utilize Palloc’s latency benchmark [22, 24],
which iterates through a randomly shuffled linked list whose
size is twice that of the last-level cache (LLC) size.
We run one instance of the latency benchmark on core 0

(the “foreground” load) and co-run up to 3 latency benchmark
instances in the background (cores 1-3). The actual number
of background tasks varies (0-3), just as in prior work [22].
We run experiments for the 3 memory settings of same_bank,
diff_bank, and diff_controller for allocations of pages from
different memory banks of disjoint memory nodes, where
the latter utilizes a different controller per task (banks 0, 32,
64, 96 on the Opteron platform).

SAC 2018, April 9–13, 2018, Pau, France Xing Pan, Frank Mueller

Fig. 5. Runtime of one X264 and
3/7/15 Stream Tasks

Fig. 6. Palloc: Avg. Memory Latency
for Controller/Bank/no Coloring

Fig. 7. Alternating Strides for Con-
troller/Bank/no Coloring

Fig. 8. Feasible Schedule: diff-controller

Fig. 9. Deadline Misses (red) for same-bank
Fig. 6 shows the execution time (y-axis) of the latency

benchmark over all memory accesses of the foreground task
(on core 0) for varying numbers of tasks (x-axis), i.e., the
aggregate number of background tasks plus one foreground
task. The (very small) error bars show the range of execu-
tion times of background latency tasks. We observe that the
execution time more than doubles for same_bank from 0 to
3 background tasks. This is due to significant bank-level con-
flicts as all tasks compete for accesses on the same memory
bank. The execution time for diff_bank slightly increases by
≈4% from 0 to 3 background tasks. References from each task
are isolated from one another as each task accesses a disjoint
memory bank, i.e., no inter-task bank conflicts occur. The
runtime for diff_controller is almost constant (slightly smaller
than diff_bank) from 2-3 background tasks. diff_controller
not only reduces bank conflicts but also avoids conflicts in
the shared controller queue. Also, error bars are the smallest
for diff_controller, i.e., CAMC provides higher predictability.

We next compare CAMCwith Palloc [22] utilizing our syn-
thetic benchmark (striding back and forth with increasing
offsets) under the same setup as for the Palloc latency bench-
mark. Fig. 7 uses the same x/y-axes as before. We observe
that the execution time is still constant under diff_controller
but increases steadily for same_bank and at a slope roughly
twice as steep as diff_bank. This shows that the synthetic
benchmark triggers a memory reference pattern that is worse
than that of the latency benchmark. More significantly, it
underlines the importance of controller-aware (and not just

bank-aware) coloring. Bank sharing is still subject to con-
flicts between references that enter the shared controller
queue before they are relayed to their bank queues. Only
controller-aware coloring provides uniform access latencies
in this observed worst case.
In comparison to the Palloc [22] results, CAMC obtains

similar performance for bank coloring (diff_bank), albeit on
a different platform (AMD) than their work (Intel). CAMC
goes beyond the capabilities of Palloc by further improving
performance (diff controller) and making coloring applicable
to NUMAmulticores, where address bit selection for coloring
is derived in a portable manner from PCI registers.

Observation 6: For single controller (UMA) platforms, CAMC
is comparable to Palloc in performance. For multi-controller
(NUMA), CAMC outperforms Palloc as the latter lacks NUMA
awareness, i.e.. only CAMC provides single-core equivalence.

5 Related Work
The performance of multithreaded programs on NUMA mul-
ticores system has been studied extensively [3, 7, 11, 13, 14,
17, 23]. Scheduling or page placement has been proposed to
solve the data sharing problem in NUMA system [5, 8, 10,
15, 20]. However, compared with CAMC, these approaches
introduce overhead and cannot eliminate the data sharing
problem completely.
The basic idea of using DRAM organization information

in allocating memory at the OS level is explored in recent
work [1, 4, 6, 9, 16, 22]. Awasthi et al. [1] examine the bene-
fits of data placement across multiple memory controllers in
NUMA systems. They introduce an adaptive first-touch page
placement policy and dynamic page-migration mechanisms
to reduce DRAM access delays in multiple memory con-
trollers system but do not consider bank effects, nor do they
provide task isolation. Pan et al. [16] contribute an allocator
that colors heap memory at LLC, bank, and controller level to
ensure locality per level and requires modifications to appli-
cations. In contrast, CAMC colors the whole memory space
(heap, stack, static, and instruction segments) without requir-
ing application changes. Liu et al. [9] modify the OS mem-
ory management subsystem to adopt a page-coloring based
bank-level partition mechanism (BPM), which allocates spe-
cific DRAM banks to specific cores (threads). Palloc [22] is a

Controller-Aware Memory Coloring for Multicore Real-Time Systems SAC 2018, April 9–13, 2018, Pau, France

DRAM bank-aware memory allocator that provides perfor-
mance isolation on multicore platforms by reducing conflicts
between interleaved banks. Our work differs from Palloc and
BPM in that we not only focus on bank isolation but also
consider memory controller locality, i.e., we avoid timing
unpredictability originating from remote memory node ac-
cesses. Our approach extends to multi-memory-controller
platforms commonly found in NUMA systems. It colors all
memory segments, not just the heap, and requires no code
changes in applications. Suzuki et al. [19] combine cache
and bank coloring to obtain tight timing predictions. Man-
cuso et al. [12] promote single core equivalence and combine
several techniques to address contention at different levels
of the memory, such as memory bandwidth (MemGuard),
cache and memory bank. Yet, sharing within the memory
controller results in varying of execution time depending
on the number of cores. In contrast to these, our approach
addresses both memory banks and memory controllers and
ensures single core equivalence up to as many cores as there
are memory controllers.
6 Conclusion
This work contributes the design and implementation of
CAMC, a controller-aware memory coloring allocator for
real-time systems. CAMC comprehensively considers mem-
ory node and bank locality to color the entire memory space
and eliminates accesses to remote memory nodes while re-
ducing bank conflicts. CAMC provides more predictable per-
formance than the standard buddy allocator and outperforms
previous work for the studied NUMA x86 platform. Experi-
mental results indicate that CAMC reduces memory latency,
avoids inter-task conflicts, and improves timing predictabil-
ity of real-time tasks even when attackers are present. Over-
all, this work is the first to assess the real-time predictability
of DRAM partitioning on NUMA architectures.

Acknowledgment
Thisworkwas supported in part byNSF grants 1239246,1329780,
and 1525609.

References
[1] Manu Awasthi, David W Nellans, Kshitij Sudan, Rajeev Balasubramo-

nian, and Al Davis. Handling the problems and opportunities posed
by multiple on-chip memory controllers. In International Conference
on Parallel Architectures and Compilation Techniques, 2010.

[2] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The
parsec benchmark suite: Characterization and architectural implica-
tions. In PACT, October 2008.

[3] Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali
Kamali. A case for numa-aware contention management on multicore
systems. In International Conference on Parallel Architectures and
Compilation Techniques, 2010.

[4] Micaiah Chisholm, Bryan C Ward, Namhoon Kim, and James H An-
derson. Cache sharing and isolation tradeoffs in multicore mixed-
criticality systems. In IEEE Real-Time Systems Symposium, 2015.

[5] Pengcheng Huang, Georgia Giannopoulou, Rehan Ahmed, Davide B.
Bartolini, and Lothar Thiele. An isolation scheduling model for multi-
cores. In IEEE Real-Time Systems Symposium, 2015.

[6] Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur
Mutlu, and Ragunathan Raj Rajkumar. Bounding memory interference
delay in cots-based multi-core systems. In IEEE Real-Time Embedded
Technology and Applications Symposium, 2014.

[7] Renaud Lachaize, Baptiste Lepers, Vivien Quéma, et al. Memprof:
A memory profiler for numa multicore systems. In USENIX Annual
Technical Conference, 2012.

[8] Hui Li, Sudarsan Tandri, Michael Stumm, and Kenneth C Sevcik. Lo-
cality and loop scheduling on numa multiprocessors. In International
Conference on Parallel Processing, 1993.

[9] Lei Liu, Zehan Cui, Mingjie Xing, Yungang Bao, Mingyu Chen, and
Chengyong Wu. A software memory partition approach for elimi-
nating bank-level interference in multicore systems. In International
Conference on Parallel Architectures and Compilation Techniques, 2012.

[10] Zoltan Majo and Thomas R Gross. Matching memory access patterns
and data placement for numa systems. In International Symposium on
Code Generation and Optimization, 2012.

[11] Zoltan Majo and Thomas R Gross. (mis) understanding the numa mem-
ory system performance of multithreaded workloads. In International
Symposium on Workload Characterization, 2013.

[12] Renato Mancuso, Rodolfo Pellizzoni, Caccamo Marco, Lui Sha, and
Heechul Yun. Wcet(m) estimation in multi-core systems using single
core equivalence. In Euromicro Conference on Real-Time Systems, 2015.

[13] Jaydeep Marathe, Vivek Thakkar, and Frank Mueller. Feedback-
directed page placement for ccnuma via hardware-generated memory
traces. Journal of Parallel and Distributed Computing, 2010.

[14] Collin McCurdy and Jeffrey Vetter. Memphis: Finding and fixing numa-
related performance problems onmulti-core platforms. In International
Symposium on Performance Analysis of Systems & Software, 2010.

[15] Takeshi Ogasawara. Numa-aware memory manager with dominant-
thread-based copying gc.

[16] Xing Pan, Yasaswini J. Gownivaripalli, and Frank Mueller. Tintmalloc:
Reducing memory access divergence via controller-aware coloring. In
International Parallel and Distributed Processing Symposium, 2016.

[17] Rodolfo Pellizzoni and Heechul Yun. Memory servers for multicore
systems. In IEEE Real-Time Embedded Technology and Applications
Symposium, 2016.

[18] Xiao Zhang Sandhya Dwarkadas Kai Shen. Hardware execution throt-
tling for multi-core resource management. InUSENIX Annual Technical
Conference, 2009.

[19] Noriaki Suzuki, Hyoseung Kim, Dionisio de Niz, Bjorn Andersson,
Lutz Wrage, Mark Klein, and Ragunathan Rajkumar. Coordinated
bank and cache coloring for temporal protection of memory accesses.
In International Conference on Computational Science and Engineering,
2013.

[20] Bryan C. Ward. Relaxing resource-sharing constraints for improved
hardware management and schedulability. In IEEE Real-Time Systems
Symposium, 2015.

[21] Zheng Pei Wu, Yogen Krish, and Rodolfo Pellizzoni. Worst case anal-
ysis of dram latency in multi-requestor systems. In IEEE Real-Time
Systems Symposium, 2013.

[22] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni.
Palloc: Dram bank-aware memory allocator for performance isolation
on multicore platforms. In IEEE Real-Time Embedded Technology and
Applications Symposium, 2014.

[23] Heechul Yun, Rodolfo Pellizzoni, and Prathap Valsan, Kumar.
Parallelism-aware memory interference delay analysis for cots multi-
core systems. In Euromicro Conference on Real-Time Systems, 2015.

[24] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui
Sha. Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms. In IEEE Real-Time
Embedded Technology and Applications Symposium, 2013.

	Abstract
	1 Introduction
	2 Background
	3 Controller-Aware Memory Coloring (CAMC)
	3.1 Address Mapping for Page Coloring
	3.2 CAMC User Interface
	3.3 Memory Policy Configuration
	3.4 Page Allocation Design

	4 Evaluation Framework and Results
	4.1 Hardware Platform
	4.2 CAMC vs. Buddy with Local Node Policy
	4.3 CAMC Overhead
	4.4 System Performance
	4.5 Real-Time Performance
	4.6 Latency Comparison with Prior Work

	5 Related Work
	6 Conclusion
	References

