
Policies for Migration of Real-Time Tasks in Embedded Multi-Core Systems
Kedar M. Katre1, Harini Ramaprasad1, Abhik Sarkar2, Frank Mueller2

kedarked@siu.edu, harinir@siu.edu, asarkar@ncsu.edu, mueller@cs.ncsu.edu
1Southern Illinois University Carbondale, 2North Carolina State University

Abstract
The increasing computational and power demands of

embedded systems today are being met by deploying multi-
core architectures. Several embedded systems have real-time
requirements that necessitate offline temporal guarantees.
The use of multicores in such systems poses a challenge
in terms of timing predictability, specifically when real-time
tasks are permitted to migrate among the different cores.
The aim of this paper is to put forth novel policies

to guide migration decisions on time-critical and safety-
critical embedded systems that use multicore architectures.
Migration decisions are based on the cache usage of tasks,
the migration mechanisms available and the characteristics
of the network-on-chip (NoC) that is used to provide com-
munication among cores.

1. Introduction
Increasing computational demands over the years have

been addressed by increasing the operating clock frequencies
of microprocessors as required. However, these designs have
reached a clock frequency wall due to area and power
considerations, leading to designs with multiple processors
on a single chip, known as chip multiprocessors (CMPs)
or simply multicore processors. The invention of multicore
processors has, to a great extent, ensured that the rate of
increase in performance of computing systems is maintained,
thereby making multicores ubiquitous these days.
The electronics industry has been experiencing an upsurge

with the advent of embedded systems. Embedded systems
have been a major contributor in reducing the cost, power
and area requirements of computing systems. Until recently,
embedded systems worked on single-core microprocessors.
However, due to increasing computational demands even on
such systems, multicore architectures have already found
their place in the embedded systems domain.
Prediction of timing behavior to ensure that real-time

task deadlines are met is becoming increasingly difficult
with the use of multicore platforms in embedded systems.
While several real-time multicore scheduling strategies have
been and are being proposed to address this issue, their
reliance on task migration remains a major challenge. Task
migration among cores reduces timing predictability due to
cache warm-up overheads while increasing traffic on the
Network-on-Chip (NoC) interconnect.

This work was supported in part by NSF grants CNS-0905212, CNS-
0905181 and CNS-0720496.

In this paper, we present novel policies to guide migration
decisions on embedded multicore systems that require tem-
poral guarantees. Migration decisions are based on cache
usage of tasks, the migration mechanisms available and
characteristics of the NoC used for communication among
cores. We assume that a task may be migrated only between
jobs, or, in other words, at the end of the execution of one
job and before the next job begins. The core that a task is
executing on just before it is migrated is called the source
core for the migration and the core that the task is migrated
to is called the target core.
The rest of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 presents relevant
background information and motivates the problem further.
Section 4 describes the methodology used to make migration
decisions. Finally, we present our conclusions in Section 5.

2. Related Work
Choffnes et al. propose migration policies for multicore

fair-share scheduling in the context of soft real-time systems
[8]. Their technique minimizes migration costs while ensur-
ing fairness among tasks by maintaining balanced scheduling
queues as new tasks are activated. In contrast, our work
targets hard real-time systems.
Li et al. present migration policies that facilitate efficient

operating system scheduling in asymmetric multicore archi-
tectures [11], [12]. Their work focuses on fault-and-migrate
techniques to handle resource-related faults in heterogeneous
cores and does not operate in the context of real-time
systems. In contrast, our work focuses on homogeneous
cores and strives to improve system utilization by allowing
migrations while providing timeliness guarantees for real-
time systems.
Yan and Zhang have proposed techniques to calculate

the worst-case execution time (WCET) of real-time tasks
executing on multicores [19], [18], [20]. Other approaches
develop WCET and cache analysis techniques for multi-level
caches [14], [10]. All these approaches are limited to shared
L2 instruction caches in WCET calculation and they do not
consider task migration.
Calandrino et al. propose scheduling techniques to ac-

count for co-schedulability of tasks with respect to cache
behavior [1], [7]. Their approach organizes tasks with the
same period into groups of cooperating tasks. While their
method improves cache performance in soft real-time sys-
tems, they do not specifically address issues related to task
migration.



Ramaprasad et al. propose techniques to bound the data
cache-related preemption delay (D-CRPD) of tasks in the
context of periodic, hard real-time systems [15]. We use the
results of this work for offline calculation of migration delay
bounds (Section 4.1).

3. Motivation and Prior Work
In this section, we present some background information

related to task scheduling on multicore systems and further
motivate a systematic assessment of migration policies in
real-time multicore systems.

3.1. Multicore Scheduling
Scheduling of tasks on cores is an important factor of con-

sideration on multicore systems. Researchers have proposed
several schemes for scheduling tasks on multicore systems.
They may be broadly classified as partitioned and global
scheduling policies.
In partitioned scheduling ([9], [6]), tasks are assigned

to cores statically and are not allowed to migrate between
cores. The advantage of using partitioned scheduling is
that there is no migration overhead. However, partitioned
scheduling suffers from two main disadvantages. First,
such schemes are inflexible and cannot easily accommodate
dynamic tasks without a complete re-partition. The re-
partitioning problemmay be resolved by allocating incoming
dynamic tasks to the first available core, but this may not
be optimal in terms of overall system utilization. Second,
optimal assignment of tasks to cores is an NP-hard problem
for which polynomial-time solutions result in sub-optimal
partitions.
In global scheduling policies, tasks are allowed to migrate

between cores as required. Recently, several optimal global
scheduling policies have been proposed ([5], [13], [2], [3],
[17], [4]). While these schemes strive to overcome the
limitations of partitioned scheduling, they add migration
overheads to tasks. In the context of real-time systems,
the addition of migration overheads changes the timing
behavior of tasks, thereby affecting the timing predictability
of the system. This necessitates the incorporation of task
migration overheads in analysis techniques, thus providing
the motivation for, and demonstrating the importance of, the
work presented in this paper.

3.2. Reasons for Migration
As discussed in Section 3.1, global real-time scheduling

policies on multicores permit task migration among cores.
There may be several reasons to do this despite the fact
that migration introduces overheads on task execution time.
Some of the reasons are listed below.
Capitalize on early task completion: Actual execution

time of a real-time task is often significantly less than the
worst-case execution time estimate. Early completion of a
task on a particular core may be used to an advantage by
migrating waiting tasks on a busy core to the newly idle core.

This enables earlier start/resumption of the waiting task and
improves utilization by minimizing idle time.
Facilitate aperiodic job admission: Task migration may

be used to increase admissibility of sporadic jobs (aperiodic
jobs with hard deadlines) into the system and to improve
response times of aperiodic jobs with soft deadlines.
Avoid costly preemptions: A task potentially preempting

a lower-priority task executing on a particular core may be
migrated to a different core to allow significant reduction in
the preemption delay that would otherwise be incurred by
the lower-priority task.
Improve cache performance: If two or more tasks

scheduled on the same core overlap significantly in their
cache footprint, one or more of them may be migrated to a
different core to reduce cache interference.
Balance load, power and thermal characteristics: Task

migration may be used to balance the load on cores to ensure
that no single core gets overheated while another core is idle.

3.3. Migration Mechanisms
Architectural and hardware support for actual migration

may be provided in different ways. In prior work [16], we
presented several mechanisms to facilitate task migration
among cores. The basics of the mechanisms we use in the
current work are described below.
3.3.1. Pull-based model (Conventional warm-up). No
specific support for migration is provided in this case. Once
the migrated task starts executing on the target core, any
cache accesses that result in misses are resolved one at a time
using the coherence protocol in effect within the system,
either from the shared L3 cache or from the L1/L2 caches
of the source core.
3.3.2. Push-based model. In this scheme, cache lines of the
task to be migrated are proactively pushed from the source
core cache to the target core cache. We currently consider
two push models, as described below.
Whole Cache Migration: In this scheme, every line of

the source core cache is consulted to identify lines belonging
to the task to be migrated that have to be pushed to the target
core.
Regional Cache Migration: In this scheme, programmers

are allowed to define regions that correspond to a particular
cache and only these regions are considered while migrating
cache lines.

4. Methodology
In this section, we describe the methodology used to

determine when and what task to migrate and where to
migrate the task to. For this purpose, we develop a cost-
benefit analysis technique that considers several factors to
determine the feasibility and usefulness of a given migration.

4.1. Offline Analysis: Migration Delay Bounds
An offline component is employed for calculating the

worst-case possible delays introduced into the system due
to task migrations. Migration delay bounds include:



• Worst-case Migration Related Preemption Delay
(MRPD) experienced by the tasks on the source core
due to migration;

• Worst-case MRPD experienced by the existing tasks on
the target core due to migration;

• Worst-case Migration Related Cache Delay (MRCD)
experienced by the migrated task;

• Worst-case Communication Delay (WCCD) between
the source and target cores.

In order to calculate the first three of the four bounds
above, we employ static analysis techniques that were de-
veloped in prior work to calculate upper bounds on the
worst-case cache related preemption delay (CRPD) of tasks
[15]. For the calculation of WCCD, we use the worst-case
number of hops between the source and target cores and the
available network bandwidth as metrics. Further detail about
the offline analysis of migration delay bounds is out of the
scope of the current paper. Instead, we focus on the online
policies to guide migration decisions.

4.2. Online Analysis: Choosing the Best Migration
In Section 3.2, we discussed several reasons that might

trigger task migrations. In the current work, we focus on
a subset of these triggers. Specifically, migration decisions
are made a) when a periodic job is released and b) when
a periodic job finishes execution. At the point where a
migration decision needs to be made, offline migration delay
bounds are first employed to determine whether a possible
migration is feasible or not.
A migration is said to be feasible if the system remains

schedulable in spite of the migration overhead introduced.
In other words, a migration is feasible if and only if no task
misses its deadline due to the migration. At a given time,
there may be more than one feasible migration possible.
In this section, we present techniques to choose a suitable
migration candidate among a given set of feasible migration
candidates. Since we only consider feasible migration can-
didates for comparison, safety of the system is guaranteed.

4.2.1. Comparing Feasible Migrations: Greedy Ap-
proach. Although migration delay bounds are necessary to
determine the feasibility of a migration, they are pessimistic
bounds due to the fact that they depend entirely on statically
available information. In order to identify which of a set of
feasible migrations is the least expensive, we present a set
of online calculations that may be used to compare feasible
migrations.
Migration overheads depend on several metrics. A

weighted migration cost for a given migration candidate
is calculated based on these metrics. Employing a greedy
approach, the candidate with the lowest weighted cost is
chosen for migration. It is to be noted that the weighted
migration cost is a relative cost used to compare multiple
feasible migrations. In the current work, we make a simpli-
fying assumption that the target core of a migration is empty.

In future work, we will consider the effects of a proposed
migration on the tasks already allocated to the target core.
The metrics considered in this work are described below.

1. Number of Cache Lines. When a task migrates,
its cache lines have to be transferred to the intended target
core. The worst-case number of cache lines that must be
migrated, derived using offline MRCD values for the task
under consideration, is a metric used in the calculation of
the weighted migration cost.

2. Effect of Migration Mechanism. In Section 3.3,
we briefly described the migration mechanisms developed
in prior work [16]. The cost of migrating a given task to a
specific target core depends on the underlying mechanism
that facilitates the migration.

3. Time Until Next Release. As mentioned earlier, in
the current work, we only migrate tasks at the end of a job
so that the next job may start on the target core. Hence,
the time available before the release of the next job of the
migrated task is an important consideration while comparing
multiple feasible migrations.

4. Distance to Target Core. This metric constitutes
the worst-case number of hops between the source and
target cores. In the current work, we assume that routes
between cores are assigned statically, thereby simplifying
the calculation of the number of hops. In future work, we
intend to relax this assumption.

5. Quality of Service (QoS). The QoS factor of
the network for communication among cores (NoC) is the
minimum network bandwidth/latency that is guaranteed to
be available along a route at a given point of time. The time
taken for transfer of a set of cache lines along a given route
is affected by this QoS factor.

4.2.2. Weighted Migration Cost. In this section, we present
a method for calculating the weighted cost of a migration
relative to other migrations. Equation 1 shows the calculation
to determine the overhead of a migration with respect to the
release time of the next job of the migration candidate. It is
to be noted that migration time that overlaps with the time
available before the release of the next job does not count
as overhead as far as the response time of the migration
candidate is concerned, although it affects the traffic on the
NoC.

WMCtsm
i = ((nci ∗ mi) ∗ nht

s ∗ q) − (trel
i − tsm) (1)

Here, i is the task number of the migration candidate T i

and tsm is the start time of the potential migration. nci is the
worst-case number of cache lines that need to be transferred
between the source and target cores and nh t

s is the worst-
case number of hops between the source core (s) and the
target core (t). mi represents the effect of the migration
mechanism used. q is the time required for the transfer of
one cache line along one hop and represents the global QoS
parameter for the NoC bandwidth and latency. t rel

i is the
release time of the next job of the migration candidate.



The effect of different migration mechanisms on the
weighted migration cost is a comparative term among the
mechanisms. It takes into consideration, the advantages and
limitations of each mechanism. The less overhead a certain
mechanism imposes on the transfer of cache lines between
the source and target cores, the lower the value of the factor
mi. The subscript i is used here because the mechanisms
affect different tasks in a different manner based on their
cache access patterns.
As mentioned in Section 3.3, we assume migration of

tasks uses one of three mechanisms, namely 1) Pull-based
model (conventional warm-up, CW), 2) Whole Cache Migra-
tion (WCM) and 3) Regional Cache Migration (RCM). We
also introduce the concept of an Ideal Migration Mechanism
that assumes the migrated task’s cache lines from the source
cache are replicated on the target cache with zero overhead.
In other words, it is as though there was no migration at all.
It is to be noted that this ideal mechanism is not a realistic
one, but rather serves as a point of reference for comparison.
For ideal migration, we assume that mi = 0 for all tasks.
At the other end of the spectrum, we have conventional
warm-up that imposes the maximum possible migration
overhead since there is no explicit support for migration. For
conventional warm-up, we assume that m i = 1 for all tasks.
For all other mechanisms, the value of mi lies in between
0 and 1.

5. Conclusions
This paper presents greedy policies to guide migration de-

cisions on a real-time multicore system. The policy considers
the number of cache lines to be migrated, the mechanism
being used for migration and characteristics of the NoC
to choose the migration with the least overhead at any
given time. It is expected that using such a policy to
guide migrations will result in reduced response times for
tasks and improved overall utilization of the system while
guaranteeing real-time deadlines.

References

[1] J. Anderson, J. Calandrino, and U. Devi. Real-time scheduling
on multicore platforms. In IEEE Real-Time Embedded Tech-
nology and Applications Symposium, pages 179–190, Apr.
2006.

[2] J. Anderson and A. Srinivasan. Early-release fair scheduling.
In Euromicro Conference on Real-Time Systems, pages 35–43,
June 2000.

[3] J. Anderson and A. Srinivasan. Mixed pfair/erfair scheduling
of asynchronous periodic tasks. In Euromicro Conference on
Real-Time Systems, pages 76–85, June 2001.

[4] S. Baruah. Techniques for multiprocessor global schedulabil-
ity analysis. In IEEE Real-Time Systems Symposium, pages
119–128, 2007.

[5] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Propor-
tionate progress: A notion of fairness in resource allocation.
Algorithmica, 15:600–625, 1996.

[6] A. Burchard, J. Liebeherr, Y. Oh, and S. Son. New strategies
for assigning real-time tasks to multiprocessor systems. IEEE
Trans. on Computers, 44(12):1429–1442, 1995.

[7] J. Calandrino and J. Anderson. Cache-aware real-time
scheduling on multicore platforms: Heuristics and a case
study. In Euromicro Conference on Real-Time Systems, pages
209–308, July 2008.

[8] D. Choffnes, M. Astley, and M. J. Ward. Migration policies
for multi-core fair-share scheduling. ACM SIGOPS Operating
Systems Review, 42:92–93, 2008.

[9] S. Dhall and C. Liu. On a real-time scheduling problem.
Operations Research, 26(1):127–140, 1978.

[10] D. Hardy and I. Puaut. Wcet analysis of multi-level non-
inclusive set-associative instruction caches. In IEEE Real-
Time Systems Symposium, Dec. 2008.

[11] T. Li, D. Baumberger, D. Koufaty, and S. Hahn. Efficient op-
erating system scheduling for performance-asymmetric multi-
core architectures. In ACM/IEEE Conference on Supercom-
puting, Nov. 2007.

[12] T. Li, P. Brett, B. Hohlt, R. Knauerhase, S. McElderry, and
S. Hahn. Operating system support for shared-isa asymmetric
multi-core architectures. In Workshop on the Interaction
between Operating Systems and Computer Architecture, June
2008.

[13] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and
migrating periodic tasks on multiple resources. In IEEE Real-
Time Systems Symposium, pages 294–303, Dec. 1999.

[14] F. Mueller. Timing predictions for multi-level caches. In
ACM SIGPLAN Workshop on Language, Compiler, and Tool
Support for Real-Time Systems, pages 29–36, June 1997.

[15] H. Ramaprasad and F. Mueller. Tightening the bounds
on feasible preemptions. ACM Transactions on Embedded
Computing Systems, page (accepted), Mar. 2008.

[16] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan. Push-
assisted migration of real-time tasks in multi-core processors.
In ACM SIGPLAN Conference on Language, Compiler, and
Tool Support for Embedded Systems, pages 80–89, June 2009.

[17] A. Srinivasan and J. Anderson. Optimal rate-based scheduling
on multiprocessors. In ACM Symposium on Theory of
Computing, pages 189–198, May 2002.

[18] J. Yan and W. Zhang. Time-predictable l2 caches for real-
time multi-core processors. In Work in Progress session of
IEEE Real-Time Systems Symposium, Dec. 2007.

[19] J. Yan and W. Zhang. Wcet analysis of multi-core processors.
In Work in Progress session of IEEE Real-Time Systems
Symposium, Dec. 2007.

[20] J. Yan and W. Zhang. Wcet analysis of multi-core processors
with shared l2 instruction caches. In IEEE Real-Time Em-
bedded Technology and Applications Symposium, Apr. 2008.


