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Abstract

Caches have become invaluable for higher-end architec-
tures to hide, in part, the increasing gap between processor
speed and memory access times. While the effect of caches
on timing predictability of single real-time tasks has been
the focus of much research, bounding the overhead of cache
warm-ups after preemptions remains a challenging prob-
lem, particularly for data caches.

This paper makes multiple contributions. 1) We bound
the penalty of cache interference for real-time tasks by pro-
viding accurate predictions of data cache behavior across
preemptions, including instruction cache and pipeline ef-
fects. We show that, when considering cache preemption,
the critical instant does not occur upon simultaneous re-
lease of all tasks.

2) We develop analysis methods to calculate up-
per bounds on the number of possible preemption points
for each job of a task. To make these bounds tight, we con-
sider the entire range between the best-case and worst-case
execution times (BCET and WCET) of higher prior-
ity jobs. The effects of cache interference are integrated
into the WCET calculations by using a feedback mecha-
nism to interact with a static timing analyzer.

Significant improvements in tightening bounds of up to
an order of magnitude over two prior methods and up to half
a magnitude over a third prior method are obtained by ex-
periments for (a) the number of preemptions, (b) the WCET
and (c) the response time of a task. Overall, this work con-
tributes by calculating the worst-case preemption delay un-
der consideration of data caches.

1. Introduction

In most modern systems, data caches have become an
integral part of the architecture. While they provide consid-
erable savings in latency, they make the latency of mem-
ory references unpredictable. In real-time systems, timing
predictability is a central requirement. Hence, this unpre-
dictability due to data caches adds to analysis complexity.

Characterization of data cache behavior for a task is
complex and has been the focus of much research. In a pre-
emptive system, this complexity increases further. In such
a system, a task with higher priority may preempt a task
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with lower priority at any time. This implies that some
cache blocks that the lower priority task was using could
be evicted and later reloaded when the task resumes execu-
tion. In recent work [20], we propose a method to bound the
delay caused due to preemptions for data caches and to de-
rive an upper bound for the response time of a task.

The issues addressed in that work are similar to those
studied for instruction caches [21, 23], namely: Preemption
delay: Given the preempted task, the set of possible pre-
empting tasks and the preemption point, calculate the delay
incurred by preemptions. Number of preemptions: Calcu-
late n, the maximum number of times a task can be pre-
empted upon executed within a task set. Worst-case sce-
nario: Identify the placement of the n preemption points in
the iteration space such that the worst-case total delay / pre-
emption cost is obtained. In this paper, we first show that the
critical instant does not occur when all tasks are released si-
multaneously if we consider preemption delays. Second, we
propose a new method to tightly bound the maximum num-
ber of preemptions possible for a given task. Finally, we
propose a method to derive a realistic worst-case preemp-
tion scenario. The second and third contributions help us
significantly tighten the WCET estimate for a task by tight-
ening the preemption delay incurred by it.

In our work, we consider a periodic real-time task model
with period equal to the deadline of a task. The notation
used in the remainder of this paper is described here. A task
T; has characteristics represented by the 7 tuple (®;, P;, C;,
ci, By, Ri, Aj ;). @; represents the phase of the task, P; rep-
resents the period of the task (equal to deadline), C; repre-
sents the worst-case execution time of the task, c; represents
the best-case execution time of the task, B; represents the
blocking time of the task, R; represents the response time
of the task and A ; represents the preemption delay caused
on the task due to a higher priority task 7. J; ; represents
the jth instance (job) of task 7.

2. Related Work

Several methods have been proposed in the past to bound
data cache behavior for a single task without taking into ac-
count, the effects that other tasks may have on the behav-
ior ([13], [8], [12], [27], [15]). They use methods like data
flow analysis, static cache simulation, etc. for this purpose.

Analytical methods for predicting data cache behavior



have been proposed. They include the Cache Miss Equa-
tions by Ghosh et al. [7], a probabilistic analysis method
proposed by Fraguella et al. [6] and another analytical
method by Chatterjee et al. [5]. The common idea behind
these methods is to characterize data cache behavior by
means of a set of mathematical equations. In prior work
[19], we have extended the cache miss equations frame-
work to produce exact data cache patterns for references.
Techniques that make data caches more predictable and can
be applied in preemptive systems are cache partitioning and
cache locking [14, 18]. Both methods lead to a significant
loss in performance in order to gain predictability. Recent
work shows improvements in these methods for the case of
instruction caches [17]. However, since data caches stride
over large data sets, it is difficult to prevent loss in perfor-
mance.

Other techniques have been proposed specifically to cal-
culate preemption delay and analyze schedulability in a
multi-task preemptive system. These techniques do not
specifically analyze data cache behavior. Instead, they pro-
vide a more generic solution applicable to a cache including
specific solutions for instruction caches.

Early on, Basumallick et al. conducted a survey of cache
related issues in real-time systems [2]. This survey dis-
cussed some initial work related to the calculation of pre-
emption delay. Busquets-Mataix et al. proposed a method
to incorporate the effect of instruction caches on response
time analysis (RTA) [4]. They compared cached RTA with
cached Rate Monotonic Analysis (RMA) and concluded
that cached RTA outperforms cached RMA. Lee et al. pro-
posed and enhanced a method to calculate an upper bound
for cache related preemption delay in a real-time system
[9, 10]. They used cache states at basic block boundaries
and data flow analysis on the control flow graph of a task to
analyze cache behavior and calculate preemption delay.

Another approach by Tomiyama et al. calculates cache
related preemption delay for the program path that requires
the maximum number of cache blocks [24]. This path is de-
termined by an integer linear programming technique. In
this paper, an empty cache is assumed at the beginning of
every job and hence, each preemption is analyzed individ-
ually. Effects of multiple preemptions are not considered.
Negi et al. combined the techniques proposed by Tomiyama
et al. [24] and by Lee et al. [9, 10] to develop an enhanced
framework [16]. Once again, however, multiple preemp-
tions are not considered in their work since an empty cache
is assumed at the beginning of a task.

The work by Lee et al. was enhanced by Staschulat er
al. [21, 23]. The authors propose a complete framework for
the calculation of response time for tasks in a given task
set. They address the three issues enumerated in the Sec-
tion 1, namely calculation of the maximum number of pre-
emption points, identification of their placement and calcu-

lation of the delay at each point. However, their focus is not
on data caches, but on instruction caches.

In their work, Staschulat et al. discuss the concept of in-
direct preemptions [23]. Figure 1 illustrates the concept for
a task set closely resembling their example with phase @,
period P, WCET C' and preemption delay A for tasks 77 to
Ty. For simplicity, A is assumed to be fixed per task, i.e., in-
curred when inflicted by any higher priority task. Response
times are determined as R

Ri=Ci+Bi+ I ([5]1*C))+ A1)

j=1..i—1 P J

where the blocking time, B;, is not considered in the ex-
ample and A; ;(R;) is the overhead incurred by higher pri-
ority tasks preempting the current one. In Figure 1, exe-
cution is depicted by shaded boxes, the preemption delay
is shown black boxes. They argue that several indirect pre-
emptions affect lower priority tasks only once. For exam-
ple, in the figure, although 75 could be affected by every
invocation of T, T5 is actually only affected by the first in-
vocation shown since, after being preempted once, it is not
scheduled at all until 75 completes execution. Thus, the re-
sponse time of R3 is 10.5 units. However, we will show in
this work that the method employed by Staschulat et al. pro-
duces pessimistic results.

In more recent work [22], Staschulat et al. propose a tim-
ing framework that considers predictable and unpredictable
(input-dependent) data cache accesses. For unpredictable
accesses, a tight bound on the impact on predictable ac-
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cesses and a worst-case estimate of the number of additional
data cache misses is calculated. As such, their work consid-
ers any reused cache content to be replaced when a conflict-
ing range of accesses for unpredictable data references ex-
ists, up to the number of cache blocks in either set. Alterna-
tively, they handle cold misses for small arrays that entirely
fit into cache and do not suffer replacements at all. Our work
makes no assumption on the size of arrays. Furthermore, we
assume only predictable data accesses. Notice that for array
traversals exceeding cache size, their scheme breaks down
as they assume that the entire cache has been replaced. As
their and our schemes are complementary, it would be in-
teresting to study the compatibility of these methods.

3. Preemption Delay Affects Response Time

Prior work often assumes that the worst-case response
time occurs at the theoretical critical instant for fixed-
priority scheduling, i.e., upon simultaneous release of all
tasks. However, this is not necessarily the critical instant
when preemption delays are considered. Consider Figure 3.
The response time of 75 (11.375 units) exceeds that of prior
examples while the response time of T4 (12 units) is shorter
that that of Figure 2 with 12.25 units.

In general, the critical instant under preemption delay is
a schedule with releases in reverse priority order such that
the @, of task T is one unit of time (one cycle) short of the
preemption delay A; of the same task. This theoretic result
is, however, very restrictive. In practice, the hyperperiod of
tasks is often a relatively small number. Hence, releases of
tasks can occasionally coincide and are otherwise separated
by some minimum time interval (typically 1 ms). For this
reason, we consider in our work all jobs of a task within a
hyperperiod. We calculate the number of preemptions per
job and then determine the cache-related preemption delay
for the respective job and, subsequently, the response time
of this job. This also enables us to consider ranges of exe-
cution where preemption points can occur within the code.
Such job-level analysis can yield more accurate results than
calculation of preemption delays per task. This helps us pro-
vide a significantly tighter estimate of the number of pre-
emptions and, hence, the response times of jobs.

4. Prior Work

In previous work [19], we enhanced a method by Vera
et al. [25, 26] that statically analyzes data cache behavior
of a single task using Cache Miss Equations [7]. This data
cache analyzer was integrated into the static timing analysis
framework described in prior work. [20] The data cache an-
alyzer produces data cache access patterns, in terms of hits
and misses, for every scalar and non-scalar memory refer-
ence in a given task. It is applicable in loop nest oriented
code that adheres to certain constraints as specified else-
where [19]. These patterns provide an accurate estimate a
task’s data cache misses and their positions in the reference
stream. In this work, since we only dealt with a single task,

it was sufficient to provide the number of misses instead of
the actual pattern of misses and hits to the static timing an-
alyzer described in the earlier work [19].

While the above work analyzes single tasks with respect
to data caches, it does not take multi-task preemptive sys-
tems into account. In such a system, a task may be inter-
rupted by higher priority tasks at arbitrary points during its
execution. We consider non-partitioned data caches in our
work. Hence, cache lines may be shared across tasks result-
ing in the eviction of a subset of existing memory lines from
cache by preempting tasks. Assuming that all cache blocks
brought in by the preempted task are evicted from cache due
to preemption (i.e., the cache is effectively empty after ev-
ery preemption point) leads to a significant overestimation
of the data cache delay. Hence, schedulability of task sets
may be adversely affected so that deadlines may be missed.

In more recent work [20], we present a method to in-
corporate data cache delay during WCET calculation itself.
This includes a tight bound of the delay by considering only
the intersection of the cache blocks that are useful to the
preempted task once it is restarted and those that are po-
tentially used by preempting tasks. In this work, we use re-
sponse time analysis [11, 1] to determine the schedulabil-
ity of a task-set. We assume a fixed-priority periodic task
set where the deadline of a task is equal to its period.

The method we employ in this work has two phases.
First, every task in a given task set is individually analyzed
to produce data cache miss/hit patterns for its references.
The timing analyzer is used to calculate a base WCET for
every task (not including delay due to data caches). Sec-
ond, the data cache analyzer and the timing analyzer inter-
act to calculate the WCET of the task in a multi-task pre-
emptive system. This involves three fundamental calcula-
tions. 1. Calculation of the delay incurred by the task due to
preemption at a particular point; 2. Calculation of the maxi-
mum number of possible preemptions for a given task ; and
3. Identification of the positions of these preemption points.

For the second item, we calculate a pessimistic upper-
bound for the number of possible preemptions. To identify
preemption points and to calculate the preemption delay at
a point, we use a method that involves the construction of
data cache access chains.

All the data cache reference patterns of the task are
merged, maintaining the order of accesses. All memory ref-
erences in this consolidated pattern that access the same
cache set are connected together to form a chain. Since the
pattern maintains the access order, this chain accurately in-
dicates reuse. We identify points in the iteration space where
a preemption would result in the largest cost, i.e., by cutting
the maximum number of distinct cache line chains. The n
cuts with the largest cost are identified where n is the max-
imum number of preemption points incurred by the current
task, as calculated in phase 1. The delays at these points are



added to the WCET of the task and used in the response
time analysis equations for the task set.

5. Methodology

We have described the method for calculating the WCET
of a task with preemption delay in a multi-task preemptive
system in Section 4. In that work, for the second and third
steps, we use simplified methods that lead to overestimation
of the preemption delay and, hence, the WCET of tasks.

The formula used to calculate the maximum possible
number of preemptions for a task is based on the number
of jobs of higher priority tasks that are released in the pe-
riod of the lower priority task and the amounts of time they
each take to execute. This leads to the consideration of sev-
eral infeasible preemption points either because the lower
priority job has not been scheduled at all and, hence, can-
not be preempted, or because it has already finished execut-
ing. Further, we use the largest n preemption delays (where
n is the maximum number of preemption points for the task)
while calculating the WCET.

In this paper, we propose methods to calculate tight es-
timates of the maximum number of preemptions for a task
and a safe method to identify the worst-case placement of
the preemption points that is realistic.

5.1. A Tight Bound on Preemption Points

The WCET of a task is calculated with preemption de-
lay incorporated during its calculation. Since we showed in
Section 3 that the critical instant does not occur when all
tasks are released at the same time, we calculate the WCET
for each job of a task within a hyperperiod. Our approach
handles tasks with different phases. However, in the exam-
ples in this paper, the first job of every task is assumed to
be released at the same time due to current implementation
constraints, which will be lifted in the future.

For the above calculation, we require the WCET and the
BCET of all higher priority tasks. Further, for every task,
we first calculate a base WCET that does not consider pre-
emption delay. Since the highest priority task cannot be pre-
empted, WCET and BCET values are calculated by simply
using the static timing analyzer framework. For the other
tasks, preemptions have to be considered as well.

In this section, we explain the method to eliminate infea-
sible preemption points without explicitly adding the pre-
emption delay at every stage for the sake of simplicity. We
discuss the calculation of preemption delay and the place-
ment of preemption points in the iteration space of the task
under consideration in the next section. The methodology
to eliminate infeasible preemption points is explained in an
example. Consider a three-task set with characteristics as
shown in Table 1. For our calculations, we consider all jobs
within a hyperperiod, which in this case is 200.

The timeline for tasks 77 and 75 are shown in Figures 4
and 5, respectively. The arrows represent release points of
higher priority jobs and, hence, potential preemption points

for the jobs of task under consideration. Preemption points
are numbered consecutively. The preemption points that get
eliminated by the analysis below are circled. BCETs of
higher priority tasks (e.g., jobs of task Tj in the timeline for
task 7%) are laid out on top, and the WCETsSs of higher pri-
ority tasks are below the time axis. The dark and gray rect-
angles show jobs of tasks T and 7 respectively.

Consider the timeline for task 7. To check whether J
can execute before preemption point 1, we use the BCET of
Jo,0- Since there is idle time after placing the BCET of Jy o
(5 units), Jq,0 could be scheduled before point 1. Next, we
determine whether the execution of .J; ¢ may exceed point
1. For this purpose, we consider the sum of the WCETs of
Jo,0 and J1 o, namely, 7 and 12, respectively. Since this does
not exceed point 1, J; ¢ is guaranteed to finish in this inter-
val. Since J; o has completed, we determine that the maxi-
mum number of preemptions for the first job of 77 is 0.

For the next release of 71, i.e., job Jq 1, consider the in-
terval between preemption points 3 and 4. During this inter-
val, in the best case, we have to consider the entire execution
of the new job of T, namely J; 1, that is released at point
3. Hence, for this interval,we see that job J; ; could indeed
be scheduled. Further, we see that job J; ; is not guaran-
teed to finish before point 4 in the worst case. Hence, point
4 is a potential preemption point for .J; ;. Proceeding in this
way, we calculate the number of preemption points for Jy 1
to be 1. This example also shows that the response time for
the first job (which is released at the critical instant) is not
necessarily the worst possible one.

In a similar fashion, we calculate the number of preemp-
tions for jobs of task 75, the timeline for which is shown in
Figure 5. In the case of task 7% , there are two higher prior-
ity tasks to consider, namely T and 73 .

For J3 0, preemption point 1 is counted as a potential
preemption point since there is a possibility of Js ¢ being
scheduled before this point, yet it does not finish before
this point. For the interval between points 1 and 2, we have
to consider a new job of T, namely Jy 1, and, in the best
case, no execution of Ji o. Hence, once again, Js ¢ could be
scheduled between points 1 and 2. In the worst case, we re-
quire 7 units for Jp 1 during this interval. Hence, a maxi-
mum of 13 units may be used by J2 . Point 2 is therefore
a potential preemption point for J2 . Proceeding this way,
we consider every preemption point and test it for feasibil-
ity. We eliminate points 4 and 10 since they are not feasible
preemption points for job Js ¢. Since we have reached the
end of the hyperperiod of the task-set, we stop here. The up-

Task Period WCET | BCET
= deadline
To 20 7 5
T 50 12 10
Ts 200 30 25

Table 1. Task Set Characteristics
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n: number of tasks
release_points: array of release points
timeline: array of tasks released at every release point
interval: time interval between two preemption points
beet_rem, weet_rem: array 1..n of remaining BC/WCET (init val=0)
beet_sum, wecet_sum: var. to sum up BC/WCET in interval
done, no_work_done, no_count, restart: bool (init val=false)
current_task: calc. # preemptions for this task
num_p: max. # of preemptions calculated
task_num_p: array w/ max. # of preemptions
for every job of current task
job: task instance number (init val=0)
t_rem: WCET of the current task
for all rp in {release_points} up to hyper-period {
tasks «— timeline[release_points[rp]]
interval «— release_points[rp+1] - release_points[rp]
for all elements of array of tasks released at current point {
if (element = current_task) {
job «—job +1
t_rem «— wcet of current task
restart «<— true
}
beet_rem[task] < bcet[task]
wcet_rem|[task] «— wcet[task]
}
beet_sum «— 0
weet_sum «— 0
no_count «— false
no_work_done « false

for every higher priority task hptask in task set {
bcet_sum «— bcet_sum + bcet_rem[hptask]
if (bcet_sum > interval) {
no_count «— true
beet_rem[hptask] «— bcet_sum - interval

else beet_rem[hptask] < 0

wcet_sum «— wcet_sum + wcet_rem[hptask]

if (weet_sum > interval) {
weet_rem[hptask] < wcet_sum - interval
no_work_done «— true

}

else wcet_rem[hptask] < 0
if (restart and not no_work_done) {
// in the worst-case, part of curr job is executed
if (t_rem > (interval - wcet_sum))
t_rem <« t_rem - (interval - wcet_sum)

else {
trem =0
no_count «— true

if (not no_count and restart) // is preemption pt
num_p < num-p + 1
if (restart and t_rem = 0) { // exec of this job done
task_num_p[job] <— num_p
num_p < 0
restart «— false

b}

Figure 6. Algorithm to Eliminate Infeasible Preemption Points

per bound for 75, hence, is 7 preemptions. Using our origi-
nal method for calculation, we obtain a bound of 9.

In summary, the method is as follows. Consider a set of
tasks T, ..., T,,. Let J; o, ..., J; 1, represent the jobs of task
T;. Assume that task T{ has the highest priority and that task
T, has the lowest priority using a static priority scheme.

For every task T}, we construct a timeline starting from
0 up to the hyperperiod of the task-set. On this timeline, all
job releases of higher priority (instances of tasks 7 to T;_1)
are marked. Each of these points represents a potential pre-
emption point for jobs of 7.

In order to test the feasibility of a certain preemption



point (say point x) for a job J; ;, we use the BCETs of all
higher priority tasks. If the sum of these times exceeds the
interval of time between points x-1 and x, the job J; ; hasno
chance of being scheduled during this interval and, hence,
point x is not a feasible preemption point for J; ;.

If a point x is determined to be a feasible preemption
point for J; ;, we need to calculate the maximum time that
Ji,; can be scheduled for in the interval between x-1 and x
in order to determine the remaining execution time for J; ;.
For this purpose, to maintain safety of the analysis, we con-
sider the sum of the WCETs of all higher priority jobs. The
time remaining in the current interval after subtracting this
sum, if any, is the maximum time available for J; ;.

Similar calculations are performed for every interval be-
tween potential preemption points until a job completes and,
hence, infeasible preemption points are eliminated. This
calculation is performed for every job within a hyperpe-
riod. The algorithm is presented in Figure 6. The algorithm
is invoked for every task in a given task-set. It consists of
a loop that iterates over all job release points in the hyper-
period of a task-set. In every iteration, we consider an in-
terval between two preemption points. We accumulate the
BCETs and WCETs of all higher priority jobs executing
in this interval in the loop that traverses all higher prior-
ity tasks. Once the higher priority job executions are placed
in the interval, if we find idle time in the best case, we con-
sider the preemption point ending the interval as a potential
preemption point. If we determine that the current job will
not finish within the interval in the worst-case, we count the
preemption point for the job under consideration. The algo-
rithm proceeds to calculate the maximum number of feasi-
ble preemption points for every job of the current task in a
hyperperiod of the task-set.

5.2. Correctness of the Analysis

Consider a task set with n tasks, Ty, ..., Tj,_1. Assume
that the tasks are in decreasing order of priority. Let C, ...,
C,,_1 be the WCETs of the tasks and cg, ..., ¢,,_1 be their
BCETs. The WCET and BCET are safe upper and lower
bounds, respectively, on the longest and shortest possible
execution time of a task. Preemption of a task can only
occur when it is currently running. Furthermore, the po-
sitions of potential preemption points for a task are fixed
since they are the release points of a task with higher prior-
ity. Consider the interval between two consecutive preemp-
tion points, p_; and p. Assume that there are jobs Jy g, ...,
Ji .k, have been released at some prior point and have not
yet completed execution. Assume that J; , is the task for
which we need to calculate the maximum number of pre-
emptions possible.

Let x be the length of the interval between preemption
points p_; and p. We have three cases to consider. Case
1: Z;;B Cik, < T, Z;‘:o Cjr; > x. Assume J; , can-
not be preempted at p, i.e., it cannot be running at time p.

However, 3
j=0..i—1

- . .
p—1 + Z;‘:O ejk; < pandp_y + Z;’:O €jk; > D> L€,
Jik; 1s running at p. Contradiction. Hence, p is a feasible
preemption point.

pe .
Case 2: Z;:o Cik, <, Z}:o Cir, < x.~Assum.e Ji ks
can be preempted at p, i.e., it may be running at time p.
Hence, 3 ejkj St ¢k < ejr;, < Cjg; and
j=0..i—1

- .
p_1+ Z;ZO ejk, <pandp_i + E;‘;o ejk, > p. How-
ever, Z;IO Cjr; < ximplies p_; + Z;ZO €j,k; < p- Con-
tradiction. Hence, J; 1, cannot be running at p, and p is not
a feasible preemption point.
Case 3: Z;;B Cjk; > x. Assume J; i, can be preempted at
D, i.e., it may be running at time p. Hence, 3 €5, kj

j=0..i—1
i—1

s:tciky < €k < Oy and poy + 35 g ejr; < p and

€jkj St Gy < ek < Oy and

p—1+ Z;:o ejk; > p. However, E;;lo cjk; > T implies
p_1+ E;;B ejk; > p. Contradiction. Hence, J; x, cannot
be running at p, and p is not a feasible preemption point.
Hence, preemptions can only occur under Case 1, which
is the condition checked by our algorithm (see Figure 6)
with the summations of WCET and BCET in the for loop
and the check implemented in the subsequent conditions.

5.3. Calculation of the Preemption Delay

While the above method determines the potential pre-
emption points, nothing has been mentioned about the ac-
tual preemption delay that occurs at every point that is not
eliminated. This delay would, at every stage, be added to the
WCET of the current task and, hence, change the amount of
time remaining for the current task.

As an example, once again consider the task-set with
characteristics shown in Table 1. Consider the interval be-
tween points 0 and 1 on the timeline for task 75 shown in
Figure 5. To calculate the delay that J5 ¢ incurs due to pre-
emption at point 1, we need to translate the point in time
that the task gets preempted to a point in the program which
is reached at that time. In other words, we need to iden-
tify the iteration point within J5 ¢ that corresponds to the
time at which this preemption occurs. Iferation point refers
to the loop iteration number of a particular loop within the
task [19].

The static timing analyzer is capable of providing best-
case and worst-case execution time estimates for a program.
Furthermore, given a certain interval of time, it is capable
of providing information about what points in the program
may be reached at the end of that interval in the best and
the worst-case scenarios, respectively. Since we do not store
any information about cache state during timing analysis,
timing is always performed from the beginning of the pro-
gram. There is repeated interaction between the data cache
analyzer and the static timing analyzer in this phase.



Since we do not know the actual execution times of the
higher priority jobs (in this case, Jg,0 and Jq o), we cannot
be sure of exactly by how much the execution of J3 ¢ pro-
ceeds in this interval. However, we may obtain upper and
lower bounds for the time available for .J5 o by using the
BCETs and WCETs, respectively, of higher priority tasks
executing in this interval. In this example, subtracting the
BCETs of Jy¢ and Ji o, namely, 5 and 10 units, from the
interval time of 20 units, we get an upper bound of 5 units.
The lower bound, calculated by subtracting the WCETSs of
Jo,0 and J; o from the interval time, is 1 unit.

We provide each of these bounds as inputs to the static
timing analyzer framework, and, for each input, we obtain
two iteration points — one that represents the latest pos-
sible iteration point that may be reached in the given time
(obtained from the best-case timing analysis of the task) and
the other that represents the earliest iteration point that can
be reached in the given time (obtained from the worst-case
timing analysis of the task).

Among the four iteration points obtained above, we con-
sider the earliest and the latest points as marking the begin-
ning and end, respectively, of the range of iteration points
that the current task could be at while it is preempted. We
then choose the iteration point which would cause the high-
est preemption delay and take that as the worst-case delay at
the preemption point being considered. This delay is added
to the remainder of the execution time of the current task,
and the new value is used as the remaining WCET of the
current task. In the example, assume that task 75 has a loop
with 100 iterations. The static timing analyzer performs a
best-case analysis and determines that, in a time interval of
1 unit (lower bound of time available for J> (), J2,o can
reach at most iteration 7. By performing worst-case analy-
sis, it determines that J; g is sure to reach at least iteration 4
in 1 time unit. Similarly, it determines that J; o can reach at
most iteration 13 and at least iteration 9 in 5 time units (up-
per bound of time available for J> ). Hence, the range of it-
eration points that to consider is 4 to 13. Among these iter-
ation points, we choose the one that would produce highest
preemption delay and add this delay to the remaining exe-
cution time of Js .

We next describe an algorithm for the calculation of the
WCET bound by repeated interaction with the static timing
analyzer (see Figure 7). For every job, the preemption de-
lays at every point in the access chains is first calculated.
The number of preemptions for the current job is deter-
mined. The timing analyzer is then invoked to get the range
of iteration points that need to be considered for calcula-
tion of delay at a given preemption point and the maxi-
mum delay in the given range of iteration points is added
to the WCET of the current job. This process, starting from
the calculation of preemption delays for points in the ac-
cess chain, is repeated for the next preemption point until

there are no more preemption points to consider.

5.4. Complexity of the Analysis

For every task, the single task analysis is performed only
once. In this analysis, we walk through the iteration space
of the task in order to calculate the number and positions
of data cache misses. Hence, the time and space complex-
ity for every task is O(n) where n is the number of data ref-
erences of the task.

To calculate the worst-case execution time of a given task
including preemption delay, the complexity of our analysis
is O(J¢ * Jpp*n), where J; is the number of jobs of the cur-
rent task in a hyperperiod and Jj,, is the number of higher
priority jobs in the hyperperiod. This is explained as fol-
lows. Our analysis is a per-job analysis, thus including the
factor J; for every task. For each job, we need to calcu-
late the maximum number of preemptions possible in the
worst-case and the worst-case delay due to each of these
preemptions. To calculate the maximum number of preemp-
tions, we need to test every potential preemption point for
feasibility. Since the number of potential preemption points
is equal to the number of higher priority jobs, the factor
Jhp 18 included. Calculating the delay at a given preemption
point involves examining a range of iteration points in the
program to find the one with highest delay. Although this
adds a factor of n to the complexity, it is in reality a small
number since the range of iteration points is limited by the
largest interval between two consecutive potential preemp-

curr_job: current job being considered
done: bool // calculation of WCET complete?
curr_preempt_index: current preemption point considered
chain_info: array of delays due to preemption
at every point in the access chain
max_preempts: max. # preemptions for current job
min_iter_pt: earliest iteration point (IP) reached by
curr_job in a given time
max_iter_pt: latest IP reached by curr_job
in a given time
min_exec_time: BCET of curr_job
max_exec_time: WCET of curr_job
weet: array containing WCET of every job of a task
max_delay: preemption delay calculated at every stage
curr_preempt_index «— 0
while (done = false) {
chain_info < calcAccessChainWeights(curr_job)
max_preempts «— calcMaxNumOfPreemptions(curr_job)
min_iter_pt < getMinlterationPoint(min_exec_time)
max_iter_pt < getMaxlIterationPoint(max_exec_time)
max_delay « max_delay + calcWCDelayInRange(min_iter_pt,
max_iter_pt, chain_info, curr_job)
if (curr_preempt_index > max_preempts)
done « true
wecet[curr_job] <— wcet[curr_job] + max_delay

Figure 7. Bound WCET + Preemption Delays



tion points.

6. Results

In all our experiments, we use benchmarks from the
DSPStone benchmark suite [28], the details of which
are described in earlier work [20]. We conducted experi-
ments with several task sets constructed using the DSP-
Stone benchmarks with different data set sizes. We used
tasks sets that have a base utilization (utilization with-
out considering preemption delays) of 0.5, 0.6, 0.7
and 0.8. For each of these utilization values, we con-
structed task sets with 2, 4, 6 and 8 tasks. We also con-
structed a set with 10 tasks for 0.8 utilization. In all our ex-
periments, we use a direct-mapped 4KB data cache with
a hit penalty of 1 cycle and a miss penalty of 100 cy-
cles. For our current implementation, we use the Sim-
pleScalar processor model [3]. However, the concepts
presented in this paper are not dependent on the proces-
sor model.

For the sake of comparison, we calculate the maximum
number of preemptions (n) possible for a task using four dif-
ferent methods. 1) A higher-priority job bound (HJ Bound)
is determined by simply bounding n as the number of higher
priority jobs for a task. This method uses only the periods
of tasks. 2) We calculate a tighter bound for n using the old
method proposed in prior work [20]. This method uses the
periods and WCETs of tasks. 3) We calculate n by consid-
ering indirect preemption effects as proposed by Staschu-
lat ef al. This method uses the periods and response times
of tasks. [23]. 4) We calculate n using the range of execu-
tion times of higher priority jobs as proposed in this paper.
This new method uses the periods, WCETs and BCETs of
tasks. The first three methods of bounding n do not deter-
mine the actual placement of the preemption points. Hence,
we aggregate the n largest delays possible for a task to ob-
tain its worst-case data cache related preemption delay.

We present results of complete response time analysis
for task-sets using real benchmarks. The results of the ex-
periments for utilizations 0.5 and 0.8 shown in Figure 8.
Results for 0.6 and 0.7 are similar and have been omitted
due to space constraints. Each graph shows a different met-
ric, WCET with preemption delay, response time and max-
imum number of preemptions given a certain base utiliza-
tion. The x-axis shows the various task sets with 2, 4, 6 and
8 tasks. The plots exclude the highest priority task in ev-
ery task set since this task cannot be preempted.

In all results, the new method derives a much tighter esti-
mate of the maximum number of preemptions for a task and,
hence, significantly tighter estimates of the WCET with de-
lay and the response time of a task. In some of the results,
the methods used as comparison do not have response time
values in the graph (e.g., task sets 3, 4 and 5 for 0.8 base
utilization). This means that the response time was, in those
cases, greater than the period, hence making the task set un-

schedulable. Our method shows that, in reality, those task
sets are schedulable. This underlines the potentially signif-
icant benefit of our new method. Further, in the case of the
method proposed by Staschulat et al., we calculate the max-
imum number of preemptions for a task based on its re-
sponse time. Hence, if the response time turns out to be
greater than the period, we do not report the value for max-
imum number of preemptions for the task by this method.

We also observe that, within a task set, as we proceed to-
wards lower priority tasks, our method’s effectiveness im-
proves (up to an order of magnitude), indicated by a widen-
ing gap between our and the other methods. This is because
lower priority tasks are less likely to be scheduled in the ini-
tial intervals between preemptions points. Hence, more pre-
emption points are deemed infeasible by our method, which
tightens the bounds of the metrics.

The results with utilization 0.8 show a higher number of
preemptions than the one with utilization 0.5. At the higher
utilization, some tasks have a higher WCET and, hence, can
be preempted more frequently. Due to the increased num-
ber of preemptions, we also observe higher response times
in this case. Notice that the priority of a task is not signifi-
cant in terms of its WCET bound, even when including the
preemption delay, mostly because the base WCET domi-
nates the preemption delay cost. This is evident for task 6
in Figures 8(c) and 8(d), which has a lower WCET with de-
lay than its predecessor, task 5. In other words, the ordering
of tasks is rate-monotone, not necessary WCET-monotone.

From the results, we make several observations about
prior methods. For the task with second highest priority in
each task set, since there is only one task above it, we ob-
serve that the HJ bound, our old method and the method pro-
posed by Staschulat ef al. give the same result. However, as
we proceed towards lower priority tasks within a task set,
our old method gives tighter results when compared to the
HJ bound. This is because our old method takes into ac-
count the WCET of a task and not just the period as the
HJ bound method does. The method proposed by Staschu-
lat et al. produces tighter results when compared to both our
old method and the HJ bound. This is because the Staschu-
lat method considers the effects of indirect preemptions cor-
rectly. However, the new method proposed in this paper pro-
duces tighter results than all three prior methods.

In order to show the variation in the maximum number of
preemptions obtained by our new method between the var-
ious jobs of a task, we provide results for two task sets of
different sizes in Table 2.

We observe that the new method always produces a sig-
nificantly lower value than that produced by the previous
methods. As we proceed towards lower priority tasks, we
observe differences in the minimum, maximum and average
number of preemptions for different jobs. Further, it was ob-
served during experimentation (not indicated in tables) that
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Figure 8. Results for U=0.5 and U=

the maximum value for number of preemptions was not al-
ways obtained for the first job of the task (released at the
same time as all higher priority jobs). This proves the claim
we make in Section 3 about the critical instant not being the
instance at which jobs of all tasks are released at the same
time. Here again, in the case of 0.8 utilization, we do not re-
port the maximum number of preemptions obtained by the
Staschulat method for some tasks. This is because the task
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has a response time that is greater than its period and, hence,
we cannot calculate the maximum number of preemptions,
which is based on the response time.

Finally, we performed a series of experiments with syn-
thetic task sets where we vary the ratio of the WCET of a
task to its BCET, maintaining all other parameters. The re-
sults of these experiments for utilizations 0.5 and 0.8 are
shown in Table 3. We obtained results for ratios of 1, 1.5,



Benchmark Period | WCET | BCET | # Jobs # Preempts # Preempts | # Preempts | # Preempts
New Method HJ Bound | Old Method | Staschulat
avg | min | max
U=0.5
200convolution 100000 | 14191 | 14191 40 0 0 0 0 0 0
300convolution | 400000 | 20891 | 20891 10 0 0 0 4 4 1
500convolution | 500000 | 34291 | 34291 8 0 0 0 7 7 2
300n-real-updates | 800000 | 56538 | 47338 5 0.2 0 1 12 12 4
matrix 1 1000000 | 59896 | 54015 4 1 1 1 17 16 6
600fir 2000000 | 54837 | 52537 2 0.5 0 1 34 33 8
800convolution | 2000000 | 66191 | 54391 2 1.5 1 2 35 34 14
900Ims 4000000 | 158636 | 118536 1 4 4 4 71 67 20
U=0.8
n-real-updates 100000 | 16738 | 16838 50 0 0 0 0 0 0
900convolution | 625000 | 76391 | 61091 8 075 | 0 1 7 7 1
matrix 1 625000 | 59896 | 54015 8 1 1 1 8 8 3
1000convolution | 625000 | 87091 | 67791 8 0875 | 1 2 9 9 5
600convolution | 1000000 | 45291 | 40991 5 0.4 0 1 16 15 7
300n-real-updates | 1000000 | 56538 | 47338 5 0875 | 1 3 17 16 9
800fir 1250000 | 77037 | 69737 4 225 | 1 3 23 21 18
900Ims 1250000 | 158636 | 118536 4 4.5 5 7 24 22
1000fir 2500000 | 99237 | 86937 2 6 5 7 47 41
500fir 5000000 | 43937 | 43937 1 11 1 | 11 94 80
Table 2. Preemptions for Taskset with U=0.5 and 0.8
Task | Period | WCET # Preempts New Method (Min/Max/Avg) # Preempts | # Preempts |# Preempts
D W/B=1|W/B=15|W/B=2|W/B=2.5| WB=3| HJ Bound | Old Method | Staschulat
U=0.5
1 | 810000 | 16000 | 1/1/1 1/1/1 1/1/1 /171 1711 8 8 2
2 | 100000 | 5000 |0/1/0.25| 0/1/0.25 | 0/2/0.5 | 0/2/0.5 0/2/0.5 12 12 4
3 [200000 | 30000 | 3/3/3 3/4/3.5 3/5/4 3/5/4 3/5/4 25 25 8
U=0.8
1 | 80000 | 20000 | 2/2/2 21212 21212 21212 21272 8 8 3
2 | 100000 | 12000 | 1/2/1.5 | 1/3/1.75 | 1/3/1.75 1/4/2 1/472 12 12 6
3 [200000 | 50000 | 6/6/6 7/10/8.5 | 8/12/10 | 9/14/11.5 |9/14/11.5 25 25 19

Table 3. Preemptions for Taskset for Varying WCET/BCET (W/B) rations

2, 2.5 and 3 for each of the utilizations. The results indicate
that the number of preemptions calculated by our method
are significantly lower than for previous methods. Further-
more, for our new method this metric only varies for low
values of the WCET/BCET ratio. Ratios of 3 or higher settle
at a fixpoint for this task set, i.e., if the BCET decreases any
further, it does not affect our calculation of the maximum
number of preemptions. Hence, we could calculate maxi-
mum number of preemptions for various WCET/BCET ra-
tios for a given task set. Alternatively, if the preemption
bound saturates at a low ratio, there is no need to calcu-
late the BCET for a task at all. Instead, we could use a value
of BCET=0.

7. Conclusion

The contributions of this paper are: 1) Determination of
a new critical instant under cache preemption; 2) calcula-
tion of a significantly tighter bound for the maximum num-

ber of preemptions possible for a given task; and 3) con-
struction of a realistic worst-case scenario for the placement
of preemption points. A feedback mechanism provides the
means to interact with the timing analyzer, which subse-
quently times another interval of a task bounded by the next
preemption.

Our results show that a significant improvement (of up to
an order of magnitude over some prior methods and up to
half an order of magnitude over others) in bounds for (a) the
number of preemptions, (b) the WCET and (c) the response
time of a task are obtained. This work also contributes a
methodology to integrate data caches into preemption de-
lay determination under response-time analysis and, in this
context, considers a critical instants of staggered releases,
both of which are novel, to the best of our knowledge. Fu-
ture work will quantify the effect of phasing on bounding
feasible preemption points.
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