
WCET Code Positioning

Wankang Zhao1, David Whalley1, Christopher Healy2, Frank Mueller3

1Computer Science Dept., Florida State University, Tallahassee, FL 32306-4530; e-mail: whalley@cs.fsu.edu
2Computer Science Dept., Furman University, Greenville, SC 29613; e-mail: chris.healy@fur man.edu

3Computer Science Dept., North Carolina State University, Raleigh, NC 27695; e-mail: mueller@cs.ncsu.edu

Abstract

Some processors incur a pipeline delay whenever an
instruction transfers control to a target that is not the next
sequential instruction. Compiler writers attempt to reduce
these delays by positioning the basic blocks within a func-
tion to minimize the number of unconditional jumps and
taken conditional branches that occur. Such a code posi-
tioning algorithm is traditionally driven by profile data
representing typical program executions where pairs of
blocks are placed in contiguous order when the transitions
between these blocks occur most frequently. In this paper
we describe an approach to perform code positioning
without profiling in an attempt to reduce WCET instead of
ACET. Our compiler interacts with a timing analyzer to
obtain WCET path information to guide the block posi-
tioning. The results show over a 9% average reduction in
WCET is achieved after code positioning is performed and
our greedy WCET code positioning algorithm always
achieves optimal results for our benchmark suite.

1. Introduction

Generating acceptable code for applications residing on
embedded systems is challenging. Unlike most general-
purpose applications, embedded applications often have to
meet various stringent constraints, such as time, space, and
power. Constraints on time are commonly formulated as
worst-case (WC) constraints. If these timing constraints
are not met, even only occasionally in a hard real-time
system, then the system may not be considered functional.

The worst-case execution time (WCET) must be calcu-
lated to determine if a timing constraint will always be
met. Accurate and safe WCET predictions can only be
obtained by a tool that statically analyzes an application to
calculate an estimated WCET. Such a tool is called a tim-
ing analyzer, and the process of performing this calcula-
tion is called timing analysis.

It is desirable to not only accurately predict the WCET,
but to also improve it. Improving the WCET of a task
may enable an embedded system to meet its timing

constraints that were previously infeasible. Improving the
WCET may also allow an embedded system developer to
use a lower clock rate (still meeting the timing constraints)
and save power, which is valuable for mobile applications.

One type of compiler optimization is to reorder or posi-
tion the basic blocks within a function. The benefits of
such a transformation include improving instruction cache
locality and reducing misfetch penalties. In recent years
instruction cache performance has become less of a con-
cern as instruction caches have increased in size. In fact,
many embedded processors have no instruction cache and
an embedded application is instead often placed in ROM.
However, some processors still incur a pipeline delay
associated with each transfer of control. Such delays are
more common for embedded machines where branch pre-
diction and target buffers may not exist in order to reduce
the complexity of the processor. Compiler writers attempt
to reduce these delays by ordering the basic blocks to min-
imize the number of unconditional jumps and taken
branches that occur. The optimization phase that performs
this transformation in a compiler is typically referred to as
a code positioning or branch alignment optimization.
Existing code positioning algorithms weight the directed
edges (transitions) between the nodes (basic blocks) of a
control-flow graph by the number of times the edge was
traversed at run-time [1, 2, 3, 4, 5]. In general, these algo-
rithms order basic blocks by attempting to make the most
frequently traversed edges contiguous in memory.

Unfortunately, traditional code positioning algorithms
are not guaranteed to reduce the WCET of an application
since the most frequently executed edges may not be con-
tained in the WC paths. Even if WCET path information
were used by the code positioning algorithm, a change in
the positioning may result in a different path becoming the
WC path in a loop or a function. In contrast, the fre-
quency of the edges based on profile data, which is used in
traditional code positioning, does not change regardless of
how the basic blocks are ordered. Thus, WCET code
positioning is inherently more challenging than ACET
(average case execution time) code positioning.

-1-

In this paper we describe an approach for improving
the WCET of an application by code positioning. We
have integrated a timing analyzer with a compiler where
the WCET of the application and the current function can
be calculated on demand. After each edge is selected for
positioning, the timing analyzer is invoked and up-to-date
WCET path information is obtained. After positioning all
of the edges in a function, we also align the blocks which
are targets of transfers of control to further reduce WCET
by minimizing target misalignment penalties.

2. Related Work

A timing analyzer is a tool that can statically analyze a
program and predict its WCET. There have been a num-
ber of general approaches that have been used to develop
timing analyzers. One approach to predict WCET uses
ILP (integer linear programming). An ILP based approach
examines the control flow of a program and derives con-
straints that can be input to an ILP solver to predict the
WCET [6]. This approach is appealing since constraints
due to the structure of the control flow graph (structural)
and program values (functional) can both be provided to
the same solver. Howev er, the result of the ILP analysis is
a single WCET prediction for the entire task, which means
that it does not provide the detailed information needed by
a compiler that is attempting to optimize for WCET. The
ILP approach can also become more time consuming as
the size of the program and the corresponding number of
constraints increase. Other researchers have used a sym-
bolic-execution approach to calculate the WCET [9, 10].
This approach symbolically simulates the program instruc-
tions by allowing the values of variables to be unknown.
Symbolic execution can provide a very accurate WCET
estimate since it can implicitly handle most functional
constraints. However, the analysis time is proportional to
the WC number of instructions that would be executed.
Thus, the analysis can be prohibitively slow, which is not
ideal for interfacing with a compiler. In contrast, we use a
path-based approach for timing analysis, where each path
at each function and loop level is analyzed for its WCET
[11, 12, 13, 14, 15, 16, 17, 18, 19]. Our timing analyzer
also calculates WCET predictions very quickly [19],
which means performing timing analysis during compila-
tion would not significantly increase compilation time.
Thus, it is feasible to use a path-based timing analysis
approach to supply WCET path information to a compiler
in an attempt to reduce the WCET of a function.

While there has been much work on developing com-
piler optimizations to reduce execution time and, to a
lesser extent, to reduce space and power consumption,
there has been very little work to reduce WCET. Marlowe

and Masticola outlined how a variety of standard compiler
optimizations could potentially affect timing constraints of
critical portions in a task. However, no implementation
was described [20]. Hong and Gerber developed a pro-
gramming language with timing constructs and used a
trace scheduling approach to improve code in what they
deemed to be critical sections of the program. However,
no empirical results were given since the implementation
did not interface with a timing analyzer to evaluate the
impact on reducing WCET [21]. Both of these papers out-
lined strategies to move code outside of critical sections
within an application that have been designated to contain
timing constraints. However, most real-time systems use
the WCET of entire tasks to determine if a schedule can
be met. Lee et al. used WCET information to select how
to generate code on a dual instruction set processor for the
ARM and the Thumb [22]. ARM code is generated for a
selected subset of basic blocks that can impact the WCET.
Thumb code is generated for the remaining blocks to min-
imize code size. In contrast, we have dev eloped a com-
piler optimization to reduce the WCET of an application
on a single instruction set processor. Finally, a genetic
algorithm has been used to search for an effective opti-
mization phase sequence that best reduces WCET for an
application [23]. This approach uses standard compiler
optimizations, whereas we have dev eloped optimizations
that are driven by WCET path information.

There have been several code positioning (basic block
reordering) approaches that have been developed. Some
algorithms have the goal of improving instruction cache
performance [1, 2, 3]. Other algorithms have the primary
goal of reducing the number of dynamic transfers of con-
trol (e.g. unconditional jumps and taken branches) and the
associated pipeline penalty on specific processors [4, 5].
All of these approaches use profile information to obtain a
weight for each directed edge in a control-flow graph by
counting the number of times the edge was traversed at
run-time. Thus, these approaches attempt to improve
ACET. In contrast, we describe a code positioning algo-
rithm in this paper to improve WCET. Other approaches
have performed code positioning in combination with
code duplication to avoid the execution of unconditional
jumps and branches [24, 25]. The benefit of these
approaches comes at the expense of increased code size,
which may not be appropriate for embedded applications.

3. Experimental Environment

In this section we provide a brief description of the
experimental environment in which this research was per-
formed. We giv e an overview of the compiler and timing
analyzer that we use and how they interact. We also

-2-

describe the processor for which the compiler generates
code and the timing analyzer calculates the WCET.

We hav e developed a system where a compiler can
obtain WCET information from a timing analyzer upon
demand [23]. Figure 1 shows an overview of the flow of
information. The compiler will send information about
the control flow and the current instructions that have been
generated to the timing analyzer. WCET predictions will
be sent back to the compiler. The compiler we use is
VPO, which performs its optimizations on a low lev el rep-
resentation that is equivalent to machine instructions [26].
This level is appropriate for interfacing with a timing ana-
lyzer so that accurate WCETs can be obtained.

Timing

Analyzer

control flow and
instruction info

WCET predictions
CompilerSource

Files
Assembly

Files

Figure 1: Overview of the Worst-Case
Aware Compilation Process

The timing analyzer we use for this study calculates the
WCET for each path, loop, and function in the program.
It performs this analysis in a bottom up fashion, where the
WCET for an inner loop (or called function) is calculated
before determining the WCET for an outer loop (or calling
function). Our timing analyzer has been used in the past
to predict WCETs for applications that execute on
machines with an instruction cache [11, 15], a pipeline
[12, 15], and a data cache [13, 17]. In addition, it can
automatically calculate the maximum number of iterations
of many loops, including those involving nonrectangular
loop nests [14, 18]. Finally, the timing analyzer can also
detect many constraints on branches that restrict the set of
paths that can be taken in a program [16, 19].

We hav e ported both the VPO compiler and our timing
analyzer to the StarCore SC100 processor [27]. This pro-
cessor has neither a memory hierarchy (no caches or vir-
tual memory system) nor an OS, which facilitates obtain-
ing tight WCET predictions [23]. It has no architectural
support for floating-point operations since it is a digital
signal processor and was designed instead for fixed-point
arithmetic. It has 16 data registers and 16 address regis-
ters. The SC100 also has a simple five stage pipeline,
where most instructions can perform its execution in a sin-
gle stage. There are no pipeline interlocks and it is the
responsibility of the compiler to schedule instructions and
to insert noops when a subsequent instruction uses the
result of a preceding instruction that will not be available
in the pipeline. The size of the instructions can vary from
one word (two bytes) to five words (ten bytes) depending
on the instruction type, addressing modes used, and

register numbers that are referenced.

The most relevant feature of the SC100 for WCET code
positioning is that all transfers of control (taken branches,
unconditional jumps, calls, and returns) result in a one to
three cycle penalty depending on the addressing mode
used and if a transfer of control uses a delay slot. We hav e
found that transfers of control penalties can lead to nonin-
tuitive WCET results. Consider the flow graph in Figure
2. A superficial inspection of the corresponding function
might lead one to believe that the path 1→2→3 is the
WCET path since it results in more instructions being
executed than in the path 1→3. However, if the taken
branch penalty in path 1→3 outweighs the cost of execut-
ing the instructions in block 2, then path 1→3 would be
the WCET path. This simple example illustrates the
importance of using a timing analyzer to calculate the
WCET. Measuring the execution time is not safe since it
is very difficult to manually determine both the WC paths
and the input data to drive the execution of these paths.

block 1 insts

block 2 insts

block 3 insts

Figure 2: Example Control-Flow Graph

Another particularly relevant feature of the SC100 for
WCET code positioning is that SC100 instructions are
grouped into fetch sets, which are four words (eight bytes)
in size and are aligned on eight byte boundaries. When a
transfer of control occurs to an instruction in a new fetch
set and the target instruction spans more than one fetch
set, then the processor stalls for an additional cycle. This
situation is illustrated in Figure 3, where the target instruc-
tion spans fetch sets n+1 and n+2.

instruction
target

control
transfer of

fetch set n+2fetch set n+1fetch set n

Figure 3: Example of a Misaligned Target Instruction

4. WCET Code Positioning

The goal of most code positioning algorithms is to
reduce the ACET by positioning the basic blocks within
the frequent flow of control contiguously in memory.
Code positioning is essentially an attempt to find the most
efficient permutation of the basic blocks in a function.
Exhaustive approaches are not typically feasible except

-3-

when the number of blocks is small since there are n! pos-
sible permutations, where n is the number of basic blocks
in the function. Thus, most approaches use a greedy algo-
rithm to avoid excessive increases in compilation time.

The goal of a WCET positioning algorithm is to select
edges between blocks to be contiguous that will minimize
the WCET. A directed edge connecting two basic blocks
is contiguous if the source block is immediately followed
by the target block in memory. Howev er, not all edges can
be contiguous. Consider the portion of a control-flow
graph shown in Figure 4. If edge b (shown as a solid line)
is selected to be contiguous, then no other edges to the
same target can be contiguous. For example, edge a can
no longer be contiguous since its source block 4 cannot be
positioned immediately before its target block 2. Like-
wise, only a single edge among the set that share the same
source block can contiguous. For instance, selecting edge
b to be contiguous will make edge c noncontiguous since
the target block 3 cannot be positioned immediately after
source block 1.

cba

2 3

14

Figure 4: Selecting an Edge to Be Contiguous

WCET code positioning needs to be driven by WCET
path information. Our timing analyzer calculates all paths
within each loop and the outer level of a function. A path
consists of nodes that are basic blocks and edges that are
control-flow transitions. Each loop path starts with the
entry block in the loop and is terminated by a block that
has a transition back to the entry block or outside the loop.
A function path starts with the entry block to the function
and is terminated by a block containing a return. If a path
enters a nested loop, then the entire nested loop is consid-
ered a single node along that path.

Our compiler obtains the WCET for each path in the
function from the timing analyzer. If the timing analyzer
calculates the WCET path information on the original
positioned code, then changing the order of the basic
blocks may result in unanticipated increases in the WCET
for other paths since previously contiguous edges may
become noncontiguous. We decided instead to treat the
basic blocks as being initially unpositioned. Thus, we
actually modify the code so that all transitions between
blocks are accomplished using a transfer of control and
will result in a transfer of control penalty. This means an
unconditional jump is added after each basic block that
does not already end with an unconditional transfer of
control (i.e., unconditional jump or return).

Consider the source code in Figure 5, which is a con-
trived example to illustrate the algorithm. Figure 6 shows
the corresponding control flow that is generated by the
compiler. While the control flow in the figure is repre-
sented at the source code level to simplify its presentation,
the analysis is performed by the compiler at the assembly
instruction level after compiler optimizations are applied
to allow more accurate timing predictions. Note that some
branches in Figure 6 have conditions that are reversed
from the source code in Figure 5 to depict the branch con-
ditions that are evaluated at the assembly instruction level.
Several unconditional jumps, represented in Figure 6 as
goto statements underneath dashed lines, have been
inserted to make all transitions between basic blocks result
in a transfer of control penalty. The unconditional jumps
in blocks 3 and 6 were already present. Conditional
branches are represented as if statements in Figure 6. The
jumps (shown as goto statements) immediately following
each conditional branch are actually placed in separate
basic blocks within the compiler’s representation, but are
shown in the same block as the corresponding branch in
the figure to simplify the presentation of the example. The
transitions (directed edges) between nodes are labeled so
they can be referenced later. Figure 7 shows the paths
through the control flow graph. Paths A-D represent paths
within the loop. Path E represents the outer level path,
where the loop is considered a single node within that
path. We consider backedges (directed edges back to the
entry point of the loop) to be part of the paths within the
loop since these edges can be traversed on all loop itera-
tions, except for the last one. Likewise, the exit edges
(directed edges leaving the loop) are considered part of the
outer paths containing the loop since an exit edge is
executed at most once each time the loop is entered.

...
for (i = 0; i < 1000; i++) {

if (a[i] < 0)
a[i] = 0;

else {
a[i] += 1;
sumalla += a[i];

}
if (b[i] < 0)

b[i] = 0;
else {

b[i] += 1;
sumallb += b[i];
b[i] = a[i] - 1;

}
}
...
return;

Figure 5: Source Code Example

-4-

goto 6;

goto 8;

goto 9;

... i=0;

a[i] = 0;

goto 5;

a[i] += 1;

sumalla += a[i];

b[i] = 0;

goto 8;

b[i] += 1;

sumallb += b[i];

b[i] = a[i] − 1;

i++;

if (i < 1000) goto 2;

... return;

goto 5;

c

j

g

9

8

7

6

5

4

3

2

1

if (a[i]>=0) goto 4;

if (b[i]>=0) goto 7;

goto 2;

goto 3;

k

i

h

f

e

d

b

a

Figure 6: Control Flow Graph of Code in Figure 5

Path C:
jhfec

86542

Path D:
jigec

87542

Path E:

2

9loop

Path A:
jhfdb

86532

Path B:
jigdb

8753

ka
1

Figure 7: Paths in Figure 6

There are a few terms that need to be defined before
our WCET code positioning algorithm can be presented.
Edges are denoted as being contiguous, noncontiguous, or
unpositioned. A contiguous edge has its source block
immediately positioned before its target block in memory.
In contrast, a noncontiguous edge does not. An unposi-
tioned edge means that it has not yet been determined if it
will be contiguous or noncontiguous. The UB-WCET
(upper bound WCET) of a path indicates the WCET when

all current unpositioned edges are assumed to be noncon-
tiguous. The LB-WCET (lower bound WCET) of a path
indicates the WCET when all current unpositioned edges
are assumed to be contiguous. Paths are also classified as
contributing or noncontributing to the WCET. A path is
considered noncontributing when its UB-WCET is less
than the LB-WCET of another path within the same loop
(or outermost level of a function). Noncontributing paths
cannot affect the WCET.

Our WCET code positioning algorithm is described in
Figure 8. At this point target alignment penalties are not
assessed by the timing analyzer since WCET target align-
ment, described in Section 5, is performed after WCET
code positioning. The algorithm selects one unpositioned
edge at a time to make contiguous. These edges are
selected by first examining the paths that most affect the
WCET. Thus, we also weight paths by the maximum
number of times that they can be executed in the function
to ensure its effect on the WCET is accurately
represented.1 After selecting an edge to be contiguous
(and possibly making one or more other edges noncon-
tiguous), the UB-WCET and LB-WCET of each path are
recalculated. The algorithm continues until all edges have
been positioned.

Table 1 shows how WCET code positioning is accom-
plished for the example shown in Figures 5, 6, and 7. At
each step the status for each edge and the current UB-
WCET and LB-WCET for each path calculated from the
timing analyzer are shown. Initially all edges are unposi-
tioned, as shown in step 0. For each step an edge is
selected to be contiguous and one or more edges become
noncontiguous. Thus, after each step one or more paths
have their UB-WCET reduced and one or more paths have
their LB-WCET increased. In the first step, the algorithm
selects edge j to be contiguous since it reduces the UB-
WCET of all four paths in the loop. This selection also
causes edges a and k to become noncontiguous, which
results in only a small increase for the LB-WCET of the
entire function (path E) since these edges are outside the
loop. In the second step, edge i is selected since it is part
of path D, which contains the greatest current UB-WCET.
The algorithm chooses edge i instead of another edge in
path D since edge i is also part of path B, which contains
the second greatest WCET at that point. Edge g is
selected to be contiguous in the third step since that is also
part of path D, which still contains the greatest UB-
WCET. Edge e becomes contiguous in the fourth step

1 Different loops may have a different maximum number of itera-
tions. Our timing analyzer automatically determines the number of itera-
tions for each loop in the function [14, 18]. In addition, the number of it-
erations in which a path may be executed can be restricted due to con-
straints on branches [16, 19].

-5-

(1) Add an unconditional jump at the end of each basic block that does not end with an unconditional transfer of con-
trol. Mark all edges as unpositioned.

(2) Invoke the timing analyzer to calculate the UB-WCET and LB-WCET path information. The LB-WCET path in-
formation is calculated by not including jumps or taken branch penalties associated with unpositioned edges.

(3) Sort the paths in the function in descending order based on first if it is contributing, next the number of times it
can be executed that is the product of the number of iterations of each loop in which it is nested, next its UB-
WCET, and finally its LB-WCET. Thus, edges in contributing paths will be addressed first since noncontributing
edges cannot affect the WCET.

(4) If all of the edges in the function have been positioned, then go to step 8.

(5) Select the first path in the list that has at least one unpositioned edge.

(6) Choose the edge within this path to make contiguous that minimizes the UB-WCET of this path. Break ties by
selecting the edge that produces a lower UB-WCET of a path that is first encountered in the sorted list. Break re-
maining ties by selecting the edge that results in a smaller increase in the LB-WCET of a path that is first encoun-
tered in the sorted list.

(7) Mark the chosen edge as contiguous. All paths that include this edge will have their UB-WCET reduced. Mark
other edges that become noncontiguous as a result of choosing the contiguous edge. All paths that contain these
edges will have their LB-WCET increased. Go to step 2.

(8) Connect the contiguous edges with common nodes to perform the final positioning of the basic blocks.

Figure 8: WCET Code Positioning Algorithm

since it is part of path C, which currently contains the
greatest UB-WCET. At this point path D’s UB-WCET
becomes 29, which is less than the LB-WCET of 30 for
path A. Thus, path D is now noncontributing. During the
fifth step edge b is selected since it is part of path A, which
contains the current greatest UB-WCET. At this point all
of the edges have been positioned and the UB-WCET and
LB-WCET for each path are now identical. The original
positioning shown in Figure 6, but without the extra jumps
inserted to make all transitions noncontiguous, has a
WCET of 31,018 or about 14.8% greater than after WCET
code positioning.

Table 1: Information for Each Step of the Algorithm in Figure 8 for the Example Shown in Figures 5, 6, and 7

WCETs of Paths Shown in Figure 7S
t UB-WCET LB-WCET

Status of Edges Shown in Figure 6

e
p a b c d e f g h i j k A B C D E A B C D E

0 u u u u u u u u u u u 36 40 37 41 37,020 21 25 22 26 22,018
1 n u u u u u u u u c n 33 37 34 38 34,024 21 25 22 26 22,024
2 n u u u u u u n c c n 33 34 34 35 31,024 24 25 25 26 22,024
3 n u u u u n c n c c n 33 31 34 32 30,024 27 25 28 26 24,024
4 n u u n c n c n c c n 33 31 31 29 29,024 30 28 28 26 26,024
5 n c n n c n c n c c n 30 28 31 29 27,024 30 28 31 29 27,024

u = unpositioned, c = contiguous, n = noncontiguous

While the edges have been positioned according to the
selections shown in Table 1, the final positioning of the
basic blocks still has to performed. The list of contiguous
edges in the order in which they were selected are 8→2,
7→8, 5→7, 4→5, and 2→3. Connecting these edges by
their common nodes, we are able to determine that six of
the nine blocks should be positioned in the order
4→5→7→8→2→3. The remaining blocks, which are 1,
6, and 9, can be placed either before or after this contigu-
ous set of blocks. In general, there may be several con-
tiguous sets of blocks in a function and these sets can be
placed in an arbitrary order. We always designate the

-6-

entry block of the function as the first block in the final
positioning to simplify the generation of the assembly
code by our compiler and the processing by our timing
analyzer. Note that the entry block can never be the target
of an edge in the control flow due to prologue code for the
function being generated in this block. By contrasting the
code in Figure 6 with the final positioning in Figure 9, one
can observe that performing the final positioning some-
times requires reversing branch conditions, changing tar-
get labels of branches, labeling blocks that are now targets
of branches or jumps, inserting new unconditional jumps,
and deleting other jumps. All of the loop paths, A-D, prior
to WCET code positioning required three transfers of con-
trol. After WCET code positioning paths A and C each
require three transfers of control and paths B and D each
require only one. Note that paths B and D had higher UB-
WCETs before the edges were positioned.

goto 8;

b[i] = 0;

if (i >= 1000) goto 9;

i++;

b[i] = a[i] − 1;

sumallb += b[i];

b[i] += 1;

sumalla += a[i];

a[i] += 1;

goto 2;

... i=0;

goto 5;

a[i] = 0;

1

4

5

7

if (b[i]<0) goto 6;

8

2if (a[i]>=0) goto 4;

3

6

9

h

d

c

... return;

f

a

k

b

j

i

g

e

Figure 9: Control Flow Graph of Code in Figure 5
after WCET Positioning

The portion of the greedy algorithm shown in Figure 8
that most affects the analysis time is the computation per-
formed by the timing analyzer, which is invoked each time
an edge is selected to become contiguous. Given that
there are n basic blocks in a function, there can be at most
n-1 contiguous edges and sometimes there are less. For
instance, only five edges were selected to be contiguous
instead of n-1 or eight edges for the example shown in

Table 1 and Figure 9. Thus, the timing analyzer is invoked
at most n-1 times for each function, which is much less
than the n! inv ocations that would be required if every
possible basic block ordering permutation was checked.

5. WCET Target Alignment

Even after the basic blocks have been positioned within
a function, there can still be extra transfer of control penal-
ties due to misaligned targets. The SC100 fetches instruc-
tions in sets of four words that are aligned on eight byte
boundaries. The target of a transfer of control is consid-
ered misaligned when the target instruction is in a differ-
ent fetch set from the transfer of control and the target
instruction spans more than one fetch set, as shown previ-
ously in Figure 3. In this situation, the processor stalls for
an additional cycle after the transfer of control.

We attempt to minimize the number of target misalign-
ment penalties in the following manner. First, we partition
the function into relocatable sets of basic blocks. The first
block in a relocatable set is not fallen into from a prede-
cessor block and the last block ends with an unconditional
transfer of control, such as an unconditional jump or a
return. A relocatable set of blocks can be moved without
requiring the insertion of additional instructions. For
instance, the code in Figure 9 after WCET positioning has
four relocatable sets of blocks, which are {1},
{4,5,7,8,2,3}, {6}, and {9}. In contrast, the original flow
graph of blocks in Figure 6 without the additional uncon-
ditional jumps to make edges unpositioned has three relo-
catable sets, which are {1,2,3}, {4,5,6}, and {7,8,9}.
After WCET code positioning we align the relocatable
sets of blocks one set at a time. Since each instruction has
to be aligned on a word boundary (2 bytes) and each fetch
set consists of 4 words, we try four different positionings
for each set. The different alignments are accomplished
by inserting 0, 1, 2, or 3 noops before the beginning of the
relocatable set, where each noop is one word in size. The
insertion of noops before each relocatable set of blocks is
illustrated in Figure 10. Note that these noop instructions
are not reachable in the control flow and are never
executed. We inv oke the timing analyzer to determine the
WCET of the function with each combination. Thus, we
have to inv oke the timing analyzer m*4 times, where m is
the number of relocatable sets of blocks to be aligned. We
choose the number of noops to insert before each set that
will minimize the WCET for the function. To help sup-
port this analysis, we added an option to the timing ana-
lyzer to only assess misalignment penalties within a range
of blocks where target alignment has been performed. In
the case that the WCET is the same for two or more
options, we select the option with the fewest noops.

-7-

first relocatable set

... return third relocatable set

second relocatable set

... jump

... jump

noops?

noops?

noops?

Figure 10: Example of Inserting Noop Instructions
before Each Relocatable Set of Blocks

We could attempt a more aggressive approach by trying
all permutations of ordering relocatable sets of blocks in
addition to inserting noops. This approach could poten-
tially reduce the number of noops inserted. However, we
have found that the code size increase is small and our
current approach is quite efficient.

6. Experimental Results

This section describes the results of a set of experi-
ments to illustrate the effectiveness of improving the
WCET by performing WCET code positioning and
WCET target alignment. Table 2 shows the benchmarks
we used for our experiments. The benchmark
sumposclrneg contains the example code shown in Figure
5. The other benchmarks were selected since they hav e

Table 2: Benchmarks Used in the Experiments

Program Description

bubblesort performs a bubble sort on 500 elements
keysearch performs a linear search involving 4 nested loops for 625 elements
summidall sums the middle half and all elements of a 1000 integer vector
summinmax sums the minimum and maximum of the corresponding elements of two 1000 integer vectors
sumoddeven sums the odd and even elements of a 1000 integer vector
sumnegpos sums the negative, positive, and all elements of a 1000 integer vector
sumposclrneg sums positive values from two 1000 element arrays and sets negative values to zero
sym tests if a 100x100 matrix is symmetric
unweight converts an adjacency 100x100 matrix of a weighted graph to an unweighted graph

conditional constructs and most have been used in previ-
ous studies by various groups (FSU, SNU, Uppsala) work-
ing on WCET timing analysis.

Table 3 shows the accuracy of our timing analyzer and
the effect on WCET after code positioning and target
alignment. The results before WCET positioning indicate
the measurements taken after all optimizations have been
applied except for WCET code positioning and WCET
target alignment. The observed cycles were obtained from
running the compiled programs through the SC100 simu-
lator [28] using WCET input data.2 All input and output
were accomplished by reading from and writing to global
variables, respectively, to avoid having to estimate the
WCET of performing actual I/O. The WCET cycles are
the WCET predictions obtained from our timing analyzer.
The WCET ratio is the WCET cycles divided by the
observed cycles. In general, our timing analyzer is able to
obtain tight WCET predictions for code generated for the
SC100. The results after WCET positioning indicate the
measurements taken after the positioning algorithm
described in Section 4 is applied immediately following
the preceding optimization phases. The WCET cycles rep-
resent the new predicted WCET by the timing analyzer.
The positioning ratio indicates the ratio of the WCET
cycles after WCET positioning divided by the WCET
cycles before WCET positioning. There was over a 9%
av erage reduction in WCET by applying the WCET code
positioning algorithm. The results after WCET alignment
indicate the measurements that were obtained after the
WCET target alignment algorithm in Section 5 is applied
following WCET code positioning. The WCET cycles
again represent the new predicted WCET by the timing

2 The WCET input data had to be meticulously determined since
the WCET paths were often difficult to detect manually due to control-
flow penalties, as illustrated in Figure 2. We did not obtain the observed
cycles after WCET positioning or WCET alignment since this would re-
quire new WCET input data due to changes in the WCET paths.

-8-

Table 3: Results after WCET Code Positioning and Target Alignment

Before WCET Positioning After WCET Positioning After WCET Alignment
Time

Observed WCET WCET WCET Positioning WCET Alignment
Cycles Cycles Ratio Cycles Ratio Cycles Ratio Ratio

Program

bubblesort 7,497,532 7,748,545 1.033 7,747,045 1.000 7,622,296 0.984 1.94
keysearch 30,667 31,143 1.016 29,268 0.940 29,268 0.940 2.17
summidall 19,508 19,515 1.000 16,721 0.857 16,721 0.857 1.33
summinmax 24,010 24,015 1.000 22,021 0.917 21,023 0.875 1.56
sumnegpos 20,010 20,015 1.000 18,021 0.900 18,021 0.900 1.33
sumoddeven 22,021 23,027 1.046 18,030 0.783 16,543 0.718 1.67
sumposclrneg 31,013 31,018 1.000 27,024 0.871 27,024 0.871 1.90
sym 223,168 223,472 1.001 208,622 0.934 208,622 0.934 1.70
unweight 350,507 350,814 1.001 341,020 0.972 341,020 0.972 2.00

av erage 913,160 941,285 1.011 936,419 0.908 922,282 0.895 1.73

analyzer. The alignment ratio indicates the ratio of the
WCET cycles after WCET alignment as compared to the
WCET cycles before WCET positioning. Three of the nine
benchmarks improved due to WCET target alignment,
which resulted in over an additional 1% average
improvement in WCET. The time ratio indicates the com-
pilation overhead of performing WCET code positioning
and target alignment. Most of this overhead is due to
repeated calls to the timing analyzer. While this overhead
is reasonable, it could be significantly reduced if the tim-
ing analyzer and the compiler were in the same executable
and passed information via arguments instead of files.

While the results in Table 3 show a significant
improvement in the predicted WCET, it would be informa-
tive to know if better positionings than those obtained by
our greedy WCET code positioning algorithm are possi-
ble. Like most benchmarks used for WCET prediction
studies, the size of each benchmark is fairly small so that
the WCET input data can be manually determined and the
WCET observed cycles can be measured. The functions
in these benchmarks were small enough so that the WCET
for every possible permutation of the basic block ordering
could be estimated. The number of possible orderings for
each function is n!, where n is the number of basic blocks,
since each block can be represented at most once in the
ordering. Table 4 shows the results of performing an
exhaustive search for the best WCET code positioning for
each benchmark, where the WCET is calculated for each
possible permutation. Unlike the measurements shown in
Table 3, these WCET results exclude target misprediction
penalties. Our WCET positioning algorithm does not take
target misprediction penalties into account when making
positioning decisions since the WCET target alignment

optimization occurs after positioning. Thus, the WCETs
are in general slightly lower than the WCETs shown in
Table 3. The number of permutations varied depending
upon the number of routines in the benchmark and the
number of basic blocks in each function. The minimum
WCET represents the lowest WCET found by performing
the exhaustive search. There are typically multiple code
positionings that result in an equal minimum WCET. We
found that the greedy WCET obtained by our algorithm
was always identical to the minimum WCET for each func-
tion in each benchmark for our test suite. While we can-
not always guarantee an optimal result, it does appear that
our greedy algorithm is very effective at finding an effi-
cient WCET code positioning. The default WCET repre-
sents the WCET with the default code positioning. On
av erage the default WCET is 11.6% worse than the mini-
mum WCET. The maximum WCET represents the highest
WCET found during the exhaustive search. The results
show that the maximum WCET is 50.2% higher on average
than the minimum WCET. While the default WCET is rel-
atively efficient compared to the maximum WCET, the
greedy WCET still is a significant improvement over just
using the default code positioning.3

3 Invoking the timing analyzer n! times when performing an ex-
haustive search for each function would require an excessive amount of
time. Instead, we initially invoked the timing analyzer once without as-
sessing transfer of control penalties to obtain a base WCET time for each
path. For each permutation we adjusted each path’s WCET by adding
the appropriate transfer of control penalty to each noncontiguous edge.
After finding the minimum WCET permutation, we invoked the timing
analyzer again for this permutation to verify that our preliminary WCET
prediction without using the timing analyzer was accurate. While this
approach is potentially less accurate, we were able to obtain results in a
few hours. Invoking the timing analyzer for each permutation would
have taken significantly longer.

-9-

Table 4: Minimum, Greedy, Default, and Maximum WCET Code Positioning Results

Greedy Default MaximumRou- Permuta- Minimum
tines tions WCET WCET Ratio WCET Ratio WCET Ratio

Program

bubblesort 4 40,328 7,747,045 7,747,045 1.000 7,748,545 1.000 9,248,542 1.194
keysearch 2 39,916,801 29,238 29,238 1.000 31,113 1.064 59,574 2.038
summidall 1 5,040 16,721 16,721 1.000 18,515 1.107 28,721 1.718
summinmax 1 362,880 21,021 21,021 1.000 24,015 1.142 30,021 1.428
sumnegpos 1 5,040 18,021 18,021 1.000 20,015 1.111 24,021 1.333
sumoddeven 1 3,628,800 16,029 16,029 1.000 22,044 1.375 31,044 1.937
sumposclrneg 1 362,880 27,024 27,024 1.000 31,018 1.148 37,024 1.370
sym 2 5041 208,622 208,622 1.000 223,472 1.071 238,922 1.145
unweight 1 40,320 341,020 341,020 1.000 350,714 1.028 461,320 1.353

av erage 1.5 5,540,851 936,082 936,082 1.000 941,050 1.116 1,128,799 1.502

7. Future Work

The WCET code positioning algorithm could be
adapted to improve WCETs on processors with an instruc-
tion cache. Improving instruction cache performance
would require the optimization to be performed at a later
stage in the compilation process where all of the applica-
tion code is accessible. We currently perform WCET code
positioning during the compilation of a single function.

So far we have always obtained an optimal positioning
using our WCET code positioning algorithm. It may be
that the algorithm for a processor such as the SC100 is
actually optimal and it would be interesting to attempt to
prove the optimality of the algorithm.

There are also a number of other compiler optimiza-
tions that can be redesigned to improve WCET as opposed
to improving ACET. Rather than improving the frequently
executed portions of the program, we can use WCET
information to determine the portions that contribute the
most to the WCET. For instance, there have also been
many compiler optimizations that have been developed to
improve the code within frequently executed paths. These
optimizations can be redesigned to instead improve the
WC path. Similar to issues faced in WCET code position-
ing, the compiler will have to consider that the WCET
path may change as optimizations are applied.

8. Conclusions

In this paper we have described a code positioning
algorithm that is driven by WCET path information, as
opposed to ACET frequency data. Our algorithm
addresses the issue of causing a different path to increase
its WCET and become the WC path after changing the
positioning. We accomplish this by initially assuming that
all edges are unpositioned. At each step we conservatively

estimate the WC paths in the function based on the cur-
rently unpositioned edges and use this information to
select the next edge to make contiguous. We also deter-
mine which paths cannot contribute to the WCET by cal-
culating when its UB-WCET is less than the LB-WCET of
another path in the same loop or outermost level of a func-
tion. Edges that appear in only noncontributing paths have
the lowest priority for being made contiguous. We hav e
implemented the algorithm and have demonstrated that it
can improve the WCET of applications on a machine
which has transfer of control penalties. In fact, we showed
that our greedy WCET code positioning algorithm obtains
optimal results on the SC100 for our test suite of pro-
grams. We hav e also implemented and evaluated a related
compiler optimization to reduce WCET due to target mis-
alignment penalties. Thus, we have shown it is feasible to
develop specific compiler optimizations that are designed
to improve WCET using WCET path information as
opposed to improving ACET using frequency data.

9. Acknowledgements

The anonymous reviewers’ suggestions improved the
quality of the paper. We also thank StarCore for providing
the necessary software and documentation that were used
in this project. This research was supported in part by
NSF grants EIA-0072043, CCR-0208581, CCR-0208892,
CCR-0310860, CCR-0312493, and CCR-0312695.

10. References

[1] S. McFarling, “Program Optimization for Instruction
Caches,” Proceedings of the Third International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pp. 183-191 (April
1989).

-10-

[2] W. W. Hwu and P. P. Chang, “Achieving High Instruction
Cache Performance with an Optimizing Compiler,” Pro-
ceedings of the 16th Annual Symposium on Computer
Architecture, pp. 242-250 (May 1989).

[3] K. Pettis and R. Hansen, “Profile Guided Code Position-
ing,” Proceedings of the SIGPLAN ’90 Conference on
Programming Language Design and Implementation, pp.
16-27 (June 1990).

[4] B. Calder and D. Grunwald, “Reducing Branch Costs via
Branch Alignment,” Proceedings of the Sixth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 242-251
(October 1994).

[5] C. Young, D. S. Johnson, D. R. Karger, and M. D. Smith,
“Near-optimal Intraprocedural Branch Alignment,” Pro-
ceedings of the SIGPLAN ’97 Conference on Program-
ming Language Design and Implementation, pp. 183-193
(June 1997).

[6] Y. S. Li, S. Malik, and A. Wolfe, “Efficient Microarchi-
tecture Modeling and Path Analysis for Real-Time Soft-
ware,” Proceedings of the Sixteenth IEEE Real-Time Sys-
tems Symposium, pp. 298-307 (December 1995).

[7] H. Theiling, C. Ferdinand, and R. Wilhelm, “Fast and
Precise WCET Prediction by Separate Cache and Path
Analyses,” Real-Time Systems 18(May 2000).

[8] J. Engblom and A. Ermedahl, “Modeling Complex Flows
for Worst-Case Execution Time Analysis,” Proceedings
of the IEEE Real-Time Systems Symposium, (December
2000).

[9] T. Lundqvist and P. Stenström, “Integrating Path and
Timing Analysis using Instruction-Level Simulation
Techniques,” ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, pp. 1-15
(June 1998).

[10] T. Lundqvist and P. Stenström, “An Integrated Path and
Timing Analysis Method based on Cycle-Level Symbolic
Execution,” Real-Time Systems 17 pp. 183-207 (Novem-
ber 1999).

[11] R. Arnold, F. Mueller, D. Whalley, and M. Harmon,
“Bounding Worst-Case Instruction Cache Performance,”
Proceedings of the Fifteenth IEEE Real-Time Systems
Symposium, pp. 172-181 (December 1994).

[12] C. A. Healy, D. B. Whalley, and M. G. Harmon, “Inte-
grating the Timing Analysis of Pipelining and Instruction
Caching,” Proceedings of the Sixteenth IEEE Real-Time
Systems Symposium, pp. 288-297 (December 1995).

[13] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and
M. G. Harmon, “Timing Analysis for Data Caches and
Set-Associative Caches,” Proceedings of the IEEE Real-
Time Technology and Applications Symposium, pp.
192-202 (June 1997).

[14] C. A. Healy, M. Sjödin, V. Rustagi, and D. B. Whalley,
“Bounding Loop Iterations for Timing Analysis,” Pro-
ceedings of the IEEE Real-Time Technology and Applica-
tions Symposium, pp. 12-21 (June 1998).

[15] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Har-
mon, “Bounding Pipeline and Instruction Cache Perfor-
mance,” IEEE Transactions on Computers 48(1) pp.
53-70 (January 1999).

[16] C. A. Healy and D. B. Whalley, “Tighter Timing Predic-
tions by Automatic Detection and Exploitation of Value-
Dependent Constraints,” Proceedings of the IEEE Real-
Time Technology and Applications Symposium, pp. 79-88
(June 1999).

[17] R. T. White, F. Mueller, C. A. Healy, D. B. Whalley, and
M. G. Harmon, “Timing Analysis for Data Caches and
Wrap-Around Fill Caches,” Real-Time Systems, pp.
209-233 (November 1999).

[18] C. Healy, M. Sjödin, V. Rustagi, D. Whalley, and R. van
Engelen, “Supporting Timing Analysis by Automatic
Bounding of Loop Iterations,” Real-Time Systems, pp.
121-148 (May 2000).

[19] C. Healy and D. Whalley, “Automatic Detection and
Exploitation of Branch Constraints for Timing Analysis,”
IEEE Transactions on Software Engineering 28(8) pp.
763-781 (August 2002).

[20] T. Marlowe and S. Masticola, “Safe Optimization for
Hard Real-Time Programming,” System Integration, pp.
438-446 (June 1992).

[21] S. Hong and R. Gerber, “Compiling Real-Time Programs
into Schedulable Code,” Proceedings of the SIGPLAN
’93 Conference on Programming Language Design and
Implementation, pp. 166-176 (June 1993).

[22] S. Lee, J. Lee, C. Park, and S. Min, “A Flexible Tradeoff
between Code Size and WCET Employing Dual Instruc-
tion Set Processors,” International Workshop on Worst-
Case Execution Time Analysis, pp. 91-94 (July 2003).

[23] W. Zhao, P. Kulkarni, D. Whalley, C. Healy, F. Mueller,
and G. Uh, “Tuning the WCET of Embedded Applica-
tions,” Proceedings of the IEEE Real-Time and Embed-
ded Technology and Applications Symposium, (May
2004).

[24] F. Mueller and D. B. Whalley, “Av oiding Unconditional
Jumps by Code Replication,” Proceedings of the SIG-
PLAN ’92 Conference on Programming Language
Design and Implementation, pp. 322-330 (June 1992).

[25] F. Mueller and D. B. Whalley, “Av oiding Conditional
Branches by Code Replication,” Proceedings of the SIG-
PLAN ’95 Conference on Programming Language
Design and Implementation, pp. 56-66 (June 1995).

[26] M. E. Benitez and J. W. Davidson, “A Portable Global
Optimizer and Linker,” Proceedings of the SIGPLAN ’88
Symposium on Programming Language Design and
Implementation, pp. 329-338 (June 1988).

[27] StarCore, Inc. and Atlanta, GA, SC110 DSP Core Refer-
ence Manual, 2001.

[28] StarCore, Inc. and Atlanta, GA, SC100 Simulator Refer-
ence Manual, 2001.

-11-

