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Abstract

It is advantageous to perform compiler optimizations to
lower the WCET of a task since tasks with lower WCETs
are easier to schedule and more likely to meet their dead-
lines. Compiler writers in recent years have used profile
information to detect the frequently executed paths in a
program and there has been much effort to develop com-
piler optimizations to improve these paths in order to
reduce average-case execution time. In this paper we
describe our approach to reduce WCET by adapting and
applying optimizations designed for frequent paths to the
worst-case paths in an application. Our compiler uses
feedback from our timing analyzer to detect the WCET
paths through a function that will be subject to aggressive
optimizations, reflect subsequent effects on the WCET of
the paths due to these optimizations, and to also ensure
that the worst-case path optimizations actually improve
the WCET before committing to a code size increase. We
evaluate a number of WC path optimizations and present
results showing the decrease in WCET versus the increase
in code size.

1. Introduction

Generating acceptable code for applications residing
on embedded systems is challenging. Unlike most gen-
eral-purpose applications, embedded applications often
have to meet various stringent constraints, such as time,
space, and power. Constraints on time are commonly for-
mulated as worst-case (WC) constraints. If these timing
constraints are not met, even only occasionally in a hard
real-time system, then the system may not be considered
functional.

The worst-case execution time (WCET) must be cal-
culated to determine if a timing constraint will always be
met. Simply measuring the execution time is not safe
since it is difficult to determine input data that will pro-
duce the WCET. Accurate and safe WCET predictions
can only be obtained by a tool that statically analyzes an
application to calculate an estimated WCET. Such a tool

is called a timing analyzer, and the process of performing
this calculation is called timing analysis.

It is desirable to not only accurately predict the
WCET, but to also improve it. An improvement in the
WCET of a task may enable an embedded system to meet
timing constraints that were previously infeasible.
Improving the WCET of a task may also allow an embed-
ded system developer to use a lower clock rate (still meet-
ing the timing constraints) and save power, which is valu-
able for mobile applications.

In an effort to improve the average-case execution
time (ACET), compiler designers in recent years have used
profile data to determine the frequently executed paths in a
program and have dev eloped compiler optimizations to
improve the execution time of these paths [1]. Sometimes
the optimizations performed on these frequent or hot paths
may be at expense of the other paths in the function.
Unfortunately, frequent paths optimizations are not guar-
anteed to reduce the WCET of an application since the
most frequently executed paths may not be the WC paths.

In this paper we describe an approach for improving
the WCET of an application by performing path optimiza-
tions on the WC paths of a function. We hav e integrated a
timing analyzer with a compiler where the WCET of the
application and the current function can be calculated on
demand. The timing analyzer supplies the compiler with
the WC path information and the compiler applies opti-
mizations on the WC path that have been traditionally per-
formed on frequent paths. After each code-improving
transformation is performed on the WC path, the timing
analyzer is invoked and up-to-date WCET path informa-
tion is obtained in case the WC path has changed. When
the WC path optimization increases code size, the timing
analyzer is invoked to ensure that the WCET was reduced.
If not, then the WC path transformation is discarded.

The remainder of the paper has the following organi-
zation. First, we outline related work in the areas of path
optimization and improving WCET. Second, we present
the experimental environment in which this research was
accomplished. Third, we describe the WC path
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optimizations that we implemented within our compiler to
automatically improve the WCET of the WC paths in a
function. Fourth, we give results for a number of applica-
tions indicating the WCET improvement by applying
these WC path optimizations. Finally, we giv e the conclu-
sions for the paper.

2. Related Work

There has been a significant amount of work over the
past couple of decades on developing optimizations to
improve the performance of frequently executed paths.
Each technique involves detecting the frequently executed
path, distinguishing the frequent path using code duplica-
tion, and applying a variety of other code-improving trans-
formations in an attempt to improve the frequent path,
often at the expense of less frequently executed paths.

Much of this work was inspired by the goal of
increasing the level of instruction-level parallelism in pro-
cessors that can simultaneously issue multiple instruc-
tions. Some of the early work in this area involves a tech-
nique called trace scheduling, where long traces of the fre-
quent path are obtained via loop unrolling and the trace is
compacted into VLIW instructions [2]. A related tech-
nique that was later developed was called superblock for-
mation and scheduling [3]. This approach differs in that
tail duplication is used to make the trace have only a sin-
gle entry point, which makes trace compaction simpler
and more effective, though typically at the expense of an
additional increase in code size as compared to trace
scheduling.

Path optimizations have also been used to improve
code for single issue processors. This includes techniques
to avoid the execution of unconditional jumps [4] and con-
ditional branches [5] and to perform partial dead code
elimination [6] and partial redundancy elimination [7].

While there has been much work on developing com-
piler optimizations to reduce ACET and, to a lesser extent,
to reduce space and power consumption, there has been
relatively little work to reduce WCET. Marlowe and Mas-
ticola outlined how a variety of standard compiler opti-
mizations could potentially affect timing constraints of
critical portions in a task. However, no implementation
was described [8]. Hong and Gerber developed a pro-
gramming language with timing constructs and used a
trace scheduling approach to improve code in what they
deemed to be critical sections of the program. However,
no empirical results were given since the implementation
did not interface with a timing analyzer to evaluate the
impact on reducing WCET [9]. Both of these papers out-
lined strategies to move code outside of critical sections
within an application that have been designated to contain

timing constraints. However, most real-time systems use
the WCET of entire tasks to determine if a schedule can
be met. Lee et al. used WCET information to select how
to generate code on a dual instruction set processor for the
ARM and the Thumb [10]. ARM code is generated for a
selected subset of basic blocks that can impact the WCET.
Thumb code is generated for the remaining blocks to min-
imize code size. In contrast, we have dev eloped compiler
optimizations to reduce the WCET of an application on a
single instruction set processor. A genetic algorithm has
been used to search for an effective optimization phase
sequence that best reduces WCET for an application [11].
This search uses standard compiler optimizations, whereas
we have dev eloped optimizations that are driven by
WCET path information. Finally, a WCET code position-
ing algorithm has been developed to find an ordering of
the basic blocks in a function that attempts to minimize
the number of unconditional jumps and taken conditional
branches for transitions between basic blocks that can
affect the WCET [12]. The optimizations we describe in
this paper perform transformations to reduce WCET using
code duplication and modification rather than just reorder-
ing blocks.

3. Experimental Environment

In this section we provide a brief description of the
experimental environment in which this research was per-
formed. We giv e an overview of the compiler and timing
analyzer that we use and how they interact. We also
describe the processor for which the compiler generates
code and the timing analyzer calculates the WCET.

We hav e developed a system, called VISTA (Vpo
Interactive System for Tuning Applications), where a
compiler can obtain WCET information from a timing
analyzer upon demand [11]. Figure 1 shows an overview
of the flow of information. The compiler will send infor-
mation about the control flow and the current instructions
that have been generated to the timing analyzer. WCET
predictions will be sent back to the compiler. The com-
piler we use is VPO, which performs its optimizations on
a low lev el representation that is equivalent to machine
instructions [13], which allows accurate WCETs to be
obtained from a timing analyzer. One aspect of this sys-
tem that we extensively used when applying WC path
optimizations is the ability to discard previously applied
transformations when the code size was increased without
improving the WCET. This feature is accomplished by
keeping a linked list of the transformations and their asso-
ciated changes, discarding the current state of the program
representation, reading in the intermediate representation
for the current function, and applying the changes to the
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point of the last transformation that we wish to retain.

WCET predictions

control flow and

instruction info

transformation information

State

Saved

Assembly File

Source File Timing

Analyzer
Compiler

Figure 1: WCET Aware Compilation Process

The timing analyzer we use for this study calculates
the WCET for each path, loop, and function in the pro-
gram. It performs this analysis in a bottom up fashion,
where the WCET for an inner loop (or called function) is
calculated before determining the WCET for an outer loop
(or calling function). Our timing analyzer has been used
in the past to predict WCETs for applications that execute
on machines with an instruction cache [14, 15], a pipeline
[16, 15], and a data cache [17, 18]. In addition, it can
automatically calculate the maximum number of iterations
of many loops, including those involving nonrectangular
loop nests [19, 20]. Finally, the timing analyzer can also
detect many constraints on branches that restrict the set of
paths that can be taken in a program [21, 22].

Our timing analyzer uses a path-based approach, as
opposed to using integer linear programming (ILP) [23,
24, 25] or symbolic execution [26, 27]. The result of ILP
analysis is a single WCET prediction for the entire task,
which means that it does not provide the detailed path
information needed by a compiler to perform optimiza-
tions to improve WCET. The analysis time for symbolic
execution is proportional to the WC number of instruc-
tions that would be executed. Thus, symbolic execution
analysis can be prohibitively slow, which is not ideal for
interfacing with a compiler. In contrast, our path-based
approach both provides the WCET path information
needed by a compiler to perform WCET path optimiza-
tions and performs the timing analysis very quickly [22].

We hav e ported both the VPO compiler and our tim-
ing analyzer to the StarCore SC100 processor [28]. This
processor has neither a memory hierarchy (no caches or
virtual memory system) nor an OS, which facilitates
obtaining tight WCET predictions [11]. It has no architec-
tural support for floating-point operations since it is a digi-
tal signal processor that is instead designed for fixed-point
arithmetic. It has 16 data registers and 16 address regis-
ters. The SC100 also has a simple five stage pipeline,
where most instructions can perform their execution in a
single stage. There are no pipeline interlocks and it is the
responsibility of the compiler to schedule instructions and
to insert noops when a subsequent instruction uses the
result of a preceding instruction that will not be available
in the pipeline. The size of the instructions can vary from

one word (two bytes) to five words (ten bytes) depending
on the instruction type, addressing modes used, and regis-
ter numbers that are referenced. All transfers of control
(taken branches, unconditional jumps, calls, and returns)
result in a one to three cycle penalty depending on the
addressing mode used and if a transfer of control uses a
delay slot. SC100 instructions are grouped into fetch sets,
which are four words (eight bytes) in size and are aligned
on eight byte boundaries. When a transfer of control
occurs to an instruction in a new fetch set and the target
instruction spans more than one fetch set, then the proces-
sor stalls for an additional cycle.

4. WC Path Optimizations

Compilers that attempt to apply path optimizations
typically identify the frequent paths within a program.
Often optimizations applied for that path may be at the
expense of less frequently executed paths. However, there
is no guarantee that the WC path will be the same as the
frequent path. For instance, consider Figure 2(a), which
shows the source code for finding the index of the element
for the maximum value in an array and the number of
times that the index for the maximum element was
updated. Figure 2(b) shows the corresponding control
flow after unrolling the loop by a factor of two so that the
loop overhead (compares and branches of the loop vari-
able i) can be reduced. The WC path (blocks and transi-
tions) is depicted in bold. Note that loop unrolling and all
other optimizations are performed at a low lev el by the
compiler backend to be able to assess the impact on both
the WCET and code size. While the code in this figure is
represented at the source code level to simplify its presen-
tation, the analysis is performed by the compiler at the
assembly instruction level after compiler optimizations
have been applied to allow more accurate timing predic-
tions. The conditions have been reversed in the control
flow to represent the condition tested by a conditional
branch at the assembly level.

WCET code positioning needs to be driven by WCET
path information. Our timing analyzer calculates all paths
within each loop and the outer level of a function. A path
consists of nodes that are basic blocks and edges that are
control-flow transitions. Each loop path starts with the
loop entry block (the loop header) and is terminated by a
block that has a transition back to the header (the back
edge) or outside the loop. A function path starts with the
function entry block and is terminated by a block contain-
ing a return. If a path enters a nested loop, then the entire
nested loop is considered a single node along that path.

Our compiler obtains the WCET for each path in the
function from the timing analyzer. If the timing analyzer
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Figure 2: Example Illustrating WCET Superblock Formation and Associated Optimizations

calculates the WCET path information on the original
positioned code, then changing the order of the basic
blocks due to performing WC path optimizations may
result in unanticipated increases in the WCET for other
paths since previously contiguous edges may become non-
contiguous and be assessed a transfer of control penalty.
We decided instead to treat the basic blocks as being ini-
tially unpositioned so that the current layout of the basic
blocks does not bias the selection of the WC path. We
accomplish this by actually modifying the code so that all
transitions between blocks are accomplished using a trans-
fer of control and will result in a transfer of control
penalty. This means an unconditional jump is added after
each basic block that does not already end with an uncon-
ditional transfer of control (i.e., unconditional jump or
return). Unnecessary jumps are later deleted so that an
accurate WCET may be obtained to determine if the trans-
formations are beneficial.

Figure 2(c) enumerates the four different paths
through the loop. Transfer of control penalties are initially

assessed between each basic block and path A is the cur-
rent WC path in the loop due to it containing the most
instructions. However, when the array contains random
values, path D would likely be the most frequent path
executed since not finding a new maximum is the most
likely outcome of each iteration. Thus, this example illus-
trates that the frequent path and the WC path may differ.

We attempt WC path optimizations on the WC path in
the innermost loops of a function or at the outer level if the
function has no loops. Once the WC path is identified, we
attempt superblock formation on that path. This means
that we duplicate code so that the path is only entered at
the header of the loop. Consider Figure 2(d), where a
superblock (2→3→4’→5’→6’) representing path A now
is only entered at block 2. Blocks 4’, 5’, and 6’ are dupli-
cates of blocks 4, 5, and 6, respectively. Note that there
are still multiple exits from this superblock, but there is
only a single entry point.

Distinguishing the WC path may enable other com-
piler optimizations. In Figure 2(d), blocks 3 and 4’ and
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blocks 5’ and 6’ are merged together. Removing joins
(incoming transitions) from the WC path may enable some
optimizations by itself.

When it is beneficial, the compiler also sinks an
instruction further down in the WC path. The two assign-
ments in block 3 of Figure 2(d) and the increment of i
from block 4’ in Figure 2(d) are sunk after the fallthrough
transition of block 4’ into the top portion of block 5’ in
Figure 2(e). Likewise, we have to duplicate these assign-
ments after the taken transition of block 4’, which are
assigned to the top portion of block 6’’. Due to the high
cost of SC100 transfers of control, we continue to dupli-
cate code until another transfer of control is encountered
when sinking assignments off the WC path, as shown by
the duplicated code in the bottom portion of block 6’’.
This additional code duplication avoids introducing an
extra unconditional jump at the end of block 6’’, which
decreases the WCET of the path containing that block.

Initially it may appear that there is no benefit from
performing code sinking. Figure 2(f) shows the updated
code after performing dead assignment elimination,
instruction selection, and common subexpression elimina-
tion. The first assignment to m in block 5’ of Figure 2(e)
is now dead since its value is never used and this assign-
ment is deleted in Figure 2(f). Likewise, the multiple
increments to the updates variable in block 5’ of Figure
2(e) are combined into a single instruction in block 5’ of
Figure 2(f). In addition, the two pair of increments of i in
blocks 5’ and 6’ and in block 6’’ are combined into single
increments in blocks 6’ and 6’’. Finally, the movement of
the "i++;" statement past the assignment "m = i;"
statement in block 5’ causes the source of that statement to
be modified. Other optimizations are also reapplied that
can exploit the superblock control flow with its single
entry point. These optimizations include constant propa-
gation, copy propagation, and strength reduction.

Figure 3 more clearly illustrates the WC superblock
formation process. Figure 3(a) depicts the original control
flow. The blocks and transitions that are in bold indicate
the WC path, 2→3→5→6→8, through the loop. We start
at the beginning of the WC path and duplicate code up to
the last point where other paths have an entry point (join
block) into the WC path. Figure 3(b) shows the control
flow after duplicating code along the WC path. At this
point there is only a single entry point in the WC path,
which is the loop header at block 2. The algorithm also
makes the blocks within the WC path contiguous, which
eliminates transfers of control within the superblock.
After superblock formation, the compiler also attempts
other code improving transformations that may exploit the
new control flow and afterwards invokes the timing

analyzer to obtain the WCET.
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Figure 3: Example Illustrating Superblock Formation

Some transformations, such as distinguishing the WC
path through WC superblock formation and code sinking,
can increase the number of instructions in the function.
Since our target application area is for embedded systems,
we would prefer not to increase code size unless there was
a corresponding benefit obtained by decreasing the
WCET. As mentioned previously, we hav e the ability in
VISTA to discard previously applied transformations.
Thus, the compiler invokes the timing analyzer to obtain
the WCET before and after applying each code size
increasing transformation. If the transformation does not
decrease the WCET, then we restore the state of the pro-
gram representation prior to the point when the transfor-
mation was applied. Alternatively, a user could specify
the ratio of the code size increase to the WCET decrease
that he/she is willing to accept. Note that the timing ana-
lyzer returns the WCET of the entire program. By check-
ing the program’s entire WCET, the compiler discards all
code size increasing transformations where the WC path
does not contribute to the overall WCET, even though the
transformation may decrease the WCET of the loop or
function in which the WC path resides.

This ability to discard previously applied transforma-
tions also allows our compiler to aggressively apply an
optimization in case the the resulting transformation will
be beneficial. For instance, notice that the number of
taken conditional branches, which result in a transfer of
control penalty on the SC100, could be reduced in the WC
path within a loop by duplicating this path. For instance,
regardless of how the nonexit path 2→3→5’→6’→8’→ in
Figure 3(b) is positioned, it would require at least one
transfer of control since the last transition is back to block
2. Figure 4 shows the control-flow graph of Figure 3(b)
after duplicating the WC path. Now the path
2→3→5’→6’→8’→2’→3’→5’’→6’’→8’’→ in Figure 4
can potentially be traversed with only a single transfer of
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control. For our study, we attempted WC path duplication
on each of the innermost loops of a function.
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Figure 4: WC Path Duplication of Graph in Figure 3(b)

WC path duplication presents interesting challenges
to the timing analyzer and the compiler since some acyclic
paths, such as 2→...→8’’ in Figure 4, represent two itera-
tions of the original loop and others, such as 2→4→...→8,
represent a single iteration. We annotated the duplicated
loop header, block 2’ in Figure 4, so that the timing ana-
lyzer counts an extra iteration for any path containing it.
We also modified the compiler to retain the original num-
ber of loop iterations before WC path duplication and to
halve the WCET of paths containing the duplicated loop
header when performing code positioning [12].

Finally, we also investigated performing limited loop
unrolling followed by superblock formation and associ-
ated other compiler optimizations to exploit the modified
control flow. For our study we unrolled only the inner-
most loops of a function by a factor of two since we
wished to limit the code size increase.1 Figure 5(a) shows
the control flow of Figure 3(a) after unrolling by an factor
of two when the original loop had an even number of iter-
ations. Figure 5(b) shows how our compiler uses a less
conventional approach to perform loop unrolling by an
unroll factor of two and still not require an extra copy of
the loop body when the original number of loop iterations
is odd. Each WC loop path (blocks and transitions) in

1 Some approaches that perform unrolling of the superblock re-
quire a cleanup loop to handle exits from the superblock and this cleanup
loop can be unstructured [29]. We could not use such an approach since
our timing analyzer requires that all loops be structured for the analysis.

these figures is again depicted in bold. Note that the WC
loop path in Figure 5(b) starts at block 2’, the loop header,
and ends at block 8. In both Figure 5(a) and 5(b) the com-
pare and branch instructions in block 8 are eliminated,
which will reduce both the ACET and WCET. Howev er,
the approach in Figure 5(b) does not result in any merged
blocks, such as blocks 8 and 2’ in Figure 5(a), which may
result in fewer other compiler optimizations being
enabled. Figure 5(c) shows the code from Figure 5(a)
after forming a superblock for the WC path. Likewise, a
superblock could also be formed for the WC path in Fig-
ure 5(b). By contrasting Figure 4 with Figure 5(c), one
can see that loop unrolling followed by superblock forma-
tion can result in a greater code size increase. While loop
unrolling followed by superblock formation will likely
result in lower WCETs, superblock formation followed by
path duplication may be a more attractive alternative when
the code size is constrained.
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Figure 5: Unrolling Followed by Superblock Formation

Prior to invoking the timing analyzer after performing
each WC path optimization, we also perform instruction
scheduling, WCET code positioning [12], insertion of
noops to address data hazards (the SC100 has no pipeline
interlocks), and WCET target alignment [12]. Much of
the WCET improvement that was previously obtained
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Table 1: Benchmarks Used in the Experiments

Program Description

bubblesort performs a bubble sort on 500 elements
findmax finds the maximum element in a 1000 element array
keysearch performs a linear search involving 4 nested loops for 625 elements
summidall sums the middle half and all elements of a 1000 integer vector
summinmax sums the minimum and maximum of the corresponding elements of two 1000 integer vectors
sumoddeven sums the odd and even elements of a 1000 integer vector
sumnegpos sums the negative, positive, and all elements of a 1000 integer vector
sumposclr sums positive values from two 1000 element arrays and sets negative values to zero
sym tests if a 50x50 matrix is symmetric
unweight converts an adjacency 100x100 matrix of a weighted graph to an unweighted graph

from WCET code positioning may now be achieved by
superblock formation and WC path duplication due to the
resulting contiguous layout of the blocks in the WC path.

5. Experimental Results

This section describes the results of a set of experi-
ments to illustrate the effectiveness of improving WCET
by performing WC path optimizations. All of the opti-
mizations described in the previous section were imple-
mented in our compiler and the measurements were auto-
matically obtained by applying these optimizations.

Table 1 shows the benchmarks we used for our
experiments.2 All of these benchmarks were selected since
they hav e conditional constructs and have been used in a
previous timing analysis studies.

Table 2 shows the accuracy of our timing analyzer.
The measurements are taken after all optimizations have
been applied except for those that are performed to
improve the WC paths. We did include WCET target
alignment [12], but did not include WCET code position-
ing [12] since we wish to show that the WC path opti-
mizations often obtain much of the WCET code position-
ing benefit. The observed cycles were obtained by run-
ning the program executables through the SC100 simula-
tor [30] using WCET input data. All input and output
were accomplished by reading from and writing to global
variables, respectively, to avoid having to estimate the
WCET of performing actual I/O.3 The WCET cycles are
the WCET predictions obtained from our timing analyzer.
The WCET ratio is the WCET cycles divided by the
observed cycles. In general, our timing analyzer is able to
obtain tight WCET predictions for SC100 generated code.

2 The benchmark findmax contains the example code shown in
Figure 2. However, we assigned the initial value for i in the for loop to
be 1 instead of 0. Thus, when applying loop unrolling for this bench-
mark, the compiler uses the approach shown in Figure 5(b). We used an
initial value of 0 in Figure 2 in order to simplify the example.

Table 2: Baseline Results

Observed WCET WCET
Cycles Cycles RatioProgram

bubblesort 7,248,033 7,499,047 1.035
findmax 19,997 20,002 1.000
keysearch 30,667 31,142 1.015
summidall 18,516 18,521 1.000
summinmax 23,009 23,015 1.000
sumnegpos 20,010 20,015 1.000
sumoddeven 22,525 22,549 1.001
sumposclr 31,013 31,018 1.000
sym 55,343 55,497 1.003
unweight 350,412 350,717 1.001

av erage 781,953 807,152 1.006

Table 3 shows the effect on WCET after performing
superblock formation, WC path duplication, and WCET
code positioning. Note these WC path optimizations are
applied after all other conventional code-improving opti-
mizations have been performed. For each of these opti-
mizations, the transformation was not retained when the
WCET was not improved. Thus, the code size was not
increased unless the WCET was reduced. The results
after superblock formation were obtained by applying
superblock formation followed by a number of compiler
optimizations to improve the code due to fewer joins in the
superblock. Only three of the ten benchmarks improved.
We sometimes found there are multiple paths in the bench-
mark that have the same WCET. In these cases improving
one path does not reduce the WCET since the WCET for
another path with the same WCET is not decreased. The
WC path is also often already positioned with only fall
through transitions, which occurs when if-then state-
ments are used instead of if-then-else statements.

3 The WCET input data had to be meticulously determined since
the WCET paths were often difficult to detect manually due to control-
flow penalties. We did not obtain observed cycles after applying WC
path optimizations since this would typically require new WCET input
data for each benchmark due to changes in the WCET paths.
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Table 3: Results after Superblock Formation and WC Path Duplication

After Superblock Formation After WC Path Duplication After WCET Positioning

WCET Size Time WCET Size Time WCET Size Time

Cycles Ratio Ratio Ratio Cycles Ratio Ratio Ratio Cycles Ratio Ratio Ratio

Program

bubblesort 7,499,047 1.000 1.000 1.40 7,498,548 1.000 1.144 2.40 7,497,047 1.000 1.123 5.47
findmax 20,002 1.000 1.000 1.29 20,002 1.000 1.000 2.14 18,010 0.900 1.655 5.43
keysearch 31,142 1.000 1.000 1.17 25,267 0.811 1.247 2.08 24,958 0.801 1.312 5.83
summidall 18,521 1.000 1.000 1.43 18,128 0.979 1.789 2.57 16,324 0.881 1.737 6.71
summinmax 23,015 1.000 1.000 1.33 23,015 1.000 1.000 2.33 20,021 0.870 1.067 5.22
sumnegpos 20,015 1.000 1.000 1.43 20,015 1.000 1.000 2.29 18,021 0.900 1.133 6.71
sumoddeven 16,547 0.734 1.038 1.63 16,547 0.734 1.392 2.38 16,546 0.734 1.000 4.50
sumposclr 30,019 0.968 1.420 1.27 30,019 0.968 1.951 2.18 26,024 0.839 2.222 6.09
sym 55,497 1.000 1.000 1.30 51,822 0.934 1.598 2.50 50,603 0.912 1.660 5.90
unweight 321,017 0.915 1.049 1.38 321,017 0.915 1.573 2.13 300,920 0.858 1.622 5.88

av erage 803,487 0.962 1.051 1.36 802,438 0.934 1.369 2.30 798,847 0.870 1.453 5.78

Changing the layout in this situation will not reduce the
number of transfer of control penalties in the WC path.
Finally, other optimizations often had no opportunity to be
applied after superblock formation due to the path contain-
ing code for only a single iteration of the loop.

To obtain the results after WC path duplication we
performed superblock formation followed by WC path
duplication. If the WCET did not improve, then we dis-
carded the transformations. In contrast to superblock for-
mation alone, WC path duplication after superblock for-
mation was more successful at reducing the WCET. First,
assignments were often sunk across the duplicated loop
header of the new WC path and other optimizations
applied on the transformed code. Second, there was typi-
cally one less transfer of control after WC path duplication
for every other original iteration. Eliminating a transfer of
control is almost always beneficial on the SC100.

The results after WCET positioning were obtained by
performing superblock formation, WC path duplication,
and WCET code positioning. Sometimes superblock for-
mation and/or WC path duplication did not improve the
WCET, but applying WCET code positioning in addition
to these transformations resulted in an improvement. The
combination of applying all three optimizations was over
4% more beneficial on average than applying WCET code
positioning alone. While superblock formation or WC
path duplication did not always provide the best layout for
the basic blocks, WCET code positioning could provide a
better layout resulting in an additional improvement.

Table 4 shows the effect on WCET after unrolling
innermost loops by a factor of two, superblock formation
(as depicted in Figure 5), and WCET code positioning. As
expected, loop unrolling reduced WCET. If typical input
data was available for these benchmarks, then comparable

benefits for ACET would be obtained. Five of the bench-
marks improved after superblock formation was per-
formed following loop unrolling. We found that eliminat-
ing one of the loop branches after unrolling caused other
optimizations to be applied after superblock formation.
WCET code positioning also improved the overall WCET
for one half of the benchmarks beyond what could be
accomplished by unrolling and superblock formation
alone. The results in Table 4 show that the loop unrolling
reduces WCET more than WC path duplication, but
results in a greater increase in code size.

While the WCET is reduced by applying the WC path
optimizations, there is an accompanying substantial code
size increase, as shown shown in Tables 3 and 4. One
must keep in mind that the benchmarks used in this study,
like most timing analysis benchmarks, are quite small.
Thus, the duplicated blocks from applying superblock for-
mation, WC path duplication, and loop unrolling comprise
a significant percentage of the total code size. Performing
these optimizations on larger applications should result in
a smaller percentage code size increase.

The time ratios in Tables 3 and 4 indicate the increase
in compilation time from performing these optimizations.
There were several factors that resulted in longer compila-
tion times compared to those cited in a previous study
[12]. First, the optimizations that we applied increased the
number of basic blocks and paths in the program, which
increased the timing analysis time and required additional
invocations of the timing analyzer for WCET code posi-
tioning. Second, we had to perform required phases (fix-
ing the entry/exit of the function to address calling con-
ventions and instruction scheduling to address the lack of
pipeline interlocks) before invoking the timing analyzer.
In contrast, WCET code positioning is performed after
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Table 4: Results after Loop Unrolling and SuperBlock Formation

After Loop Unrolling After Superblock Formation After WCET Positioning

WCET Size Time WCET Size Time WCET Size Time

Cycles Ratio Ratio Ratio Cycles Ratio Ratio Ratio Cycles Ratio Ratio Ratio

Program

bubblesort 7,248,546 0.967 1.349 1.00 7,248,546 0.967 1.349 2.20 7,247,046 0.966 1.329 5.33
findmax 18,006 0.900 1.379 1.14 16,014 0.801 1.983 3.00 16,014 0.801 1.983 5.57
keysearch 28,767 0.924 1.435 1.08 24,767 0.795 1.242 1.75 24,767 0.795 1.242 3.75
summidall 16,520 0.892 1.386 1.29 16,520 0.892 1.386 2.57 15,077 0.814 2.105 9.29
summinmax 21,015 0.913 1.533 1.56 21,015 0.913 1.533 4.67 19,021 0.826 1.600 11.89
sumnegpos 17,015 0.850 1.400 1.14 17,015 0.850 1.400 5.57 16,021 0.800 1.533 20.00
sumoddeven 20,052 0.889 1.481 1.88 17,048 0.756 1.759 4.88 15,548 0.690 1.759 10.25
sumposclr 29,018 0.936 1.642 4.82 28,019 0.903 2.765 5.73 27,024 0.871 2.802 15.55
sym 50,597 0.912 1.546 1.10 50,597 0.912 1.546 1.90 49,372 0.890 1.546 4.20
unweight 330,716 0.943 1.561 1.25 311,017 0.887 2.098 2.88 311,017 0.887 2.098 6.50

av erage 778,025 0.913 1.471 1.63 775,056 0.868 1.706 3.51 774,091 0.834 1.800 9.23

these phases. We discarded these transformations after
invoking the timing analyzer. We implemented this fea-
ture by reading in the intermediate file and reapplying the
transformations up to the desired point in the compilation.
The extra I/O to support this feature had a large impact on
compilation time. The ability to discard previously
applied transformations is not a feature that is available in
most compilers.

As mentioned previously, a significant portion of the
benefit from the WC path optimizations (superblock for-
mation and WC path duplication) is obtained by the con-
tiguous layout of the WC path. One should note that the
WC path optimizations presented in this paper are compu-
tationally much less expensive than WCET code position-
ing, which requires an invocation of the timing analyzer
after each time an edge is selected to be contiguous. Thus,
the WCET code positioning requires many more invoca-
tions of the timing analyzer when it is performed. As
shown in Tables 3 and 4, WCET code positioning has a
much greater impact on compilation time.

6. Conclusions

In this paper we have described how the WCET of a
program can be reduced by optimizing the WC paths.
Compiler optimizations to improve the performance of
paths typically use profile data to find the frequent paths in
a program. In contrast, our compiler automatically uses
feedback from our timing analyzer to detect the WCET
paths through a function. We hav e shown that traditional
frequent path optimizations can be applied to WC paths
and improvements in the WCET can be obtained. In addi-
tion, we developed new optimizations, such as WC path
duplication and constrained unrolling for an odd number
of iterations, to improve WCET while minimizing code

growth. We also found that it was critical to obtain feed-
back from the timing analyzer to ensure that each code
size increasing transformation improves the WCET before
allowing it to be committed.

During the course of this research, we realized that
path optimizations applied on the WC path to reduce
WCET will in general be less effective than reducing
ACET when applied on the frequent path. One path
within a loop may be executed much more frequently than
other paths in the loop. In contrast, the WC path within a
loop may be only slightly better than other paths. Per-
forming optimizations on the WC path may quickly lead
to another path having the greatest WCET, which can limit
the benefit that can be obtained. However, we were able
to show that reasonable WCET improvements can still be
achieved by optimizing the WC paths of an application.
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