
A Real-time Distributed Storage System for Multi-Resolution Virtual
Synchrophasor

Tao Qian1, Aranya Chakrabortty2, Frank Mueller1
1Department of Computer Science, 2Electrical Engineering

North Carolina State University
Raleigh, NC, USA

{tqian2,aranya.chakrabortty,fmuelle}@ncsu.edu

Yufeng Xin
Renaissance Computing Institute (RENCI)

University of North Carolina at Chapel Hill
Chapel Hill, NC, USA

yxin@renci.org

Abstract—With the continuing large-scale deployment of Pha-
sor Measurement Units (PMU), the Wide-Area Measurement
System (WAMS) technology is envisioned to evolve towards
a distributed architecture where multiple sets of distributed
Phasor Data Concentrators (PDCs) collectively process PMU
data to achieve real-time distributed intelligence. Emerging
applications developed under this vision will pose stringent but
heterogeneous real-time requirements on throughput, delay, and
reliability performance of the underlying communication and
computing infrastructure. To address this problem, we present a
novel virtual PMU (vPMU) architecture that decomposes phasor
samples into multiple resolution layers. For a particular receiver
with a certain resolution requirement, a complete set of PMU
data can be composed by combining samples from the lower
layers, without the need for samples from higher layers. We
design and implement a real-time distributed storage system to
support the virtual PMU data communication. We extend the
Chord algorithm so that the response time of data communication
can be bounded by our storage system. In addition, we use
queuing theory to analyze the response time of requests with
our stochastic model.

I. INTRODUCTION

In recent years, PMUs have been successfully commercial-
ized and deployed aggressively in many countries to support
efficient wide-area measurement and control [1]. With the
rapidly increasing number of PMUs and the resulting hetero-
geneous Quality of Service (QoS), security, and scalability
requirement of emerging applications [2], the current state-
of-art centralized data processing infrastructure of WAMS
will no longer be tenable in a few years, and a decentral-
ized architecture that supports distributed and autonomous
intelligence will become imperative [3]. Accordingly, in our
recent paper [4], we proposed a cloud computing based virtual
smart grid (vSG) framework that allows dynamic creation of
distributed applications in clouds to connect to the tailored
set of PMUs in real-time. A critical concept in the vSG
framework is the so-called virtual PMU (vPMU) that can
simultaneously generate multi-resolution phasor measurement
samples for WAMS applications that require different sample
rates. In parallel, as the long as more PMUs are deployed and
more WAMS applications require PMU data, reliable real-
time data transmission from PMUs to applications becomes
a challenge. In this paper, we aim to design a distributed
data storage middleware that runs between PMUs and WAMS
applications. Such a data storage system stores periodic PMU

data and serves the data to applications in a real-time fashion.
This distributed storage system could be a very attractive
choice for PMU-PDC topology as it could use PDCs as storage
nodes to store PMU samples, and WAMS applications could
proactively obtain required data from PDCs directly instead of
reactively waiting for the data from PMUs.

Our distributed data storage system, as a data service layer
between PMUs and applications, provides two API services:
put(key, data) stores the PMU data with key as its index;
get(key) returns the PMU data associated with key in the
system. Our idea is to utilize PDCs as storage nodes and build
a distributed hash table (DHT). DHTs, e.g., Chord [5] and
CAN [6] are well suited for this problem due to their superior
scalability, reliability, and performance over centralized or
even tree-based hierarchical approaches. However, there is a
lack of research on real-time bounds for these DHT algorithms
for end-to-end response times of requests. Timing analysis
is the key to enable our storage system to provide real-time
services.

In this paper, we extend the Chord DHT algorithm to adopt
one cyclic executive as the scheduler on each storage node to
execute real-time requests. In addition, by defining the periodic
request patterns according to the realistic WAMS applications
requirement, we develop a stochastic model to derive response
time for our distributed storage system to serve requests. We
evaluate our model by simulations, which demonstrate that our
stochastic model can result in highly reliable response time
bounds.

The remainder of the paper is organized as follows. Sec-
tion II introduces the novel virtual PMU architecture. Sec-
tion III presents our distributed storage system design and
timing analysis model. Section IV presents our experimental
evaluation. Section V concludes the paper with future work.

II. VIRTUAL PMU AND MULTI-RESOLUTION
SYNCHROPHASOR MEASUREMENT

The proposed decentralized PMU-PDC system, as shown
in Fig.1, consists of multiple dynamic communication groups,
one per application. In this paper, we use the non-recursive
phasor estimation problem as a simple example to illustrate
the proposed vPMU implementation, indicating the typical
data flow mechanisms between a vPMU and any other WAMS
application. The phasor estimate is obtained by sampling the

sinusoidal voltage x(t) at a sampling frequency Nf0, f0 being
the nominal frequency, where N is the sample size and θ = 2π

N
is the sampling angle in one cycle, and εn is a zero-mean
noise process with a variance of σ. This can be represented
in matrix notation as x = S×X + ε, and the weighted least-
squares solution for phasor estimate is

X̂ = [STW−1S]−1STW−1x (1)

where W = σ2 × I, and the standard deviation of the estimate
error is σ√

N
, which is inversely proportional to the sampling

rate. We use the notations x(N) and S(θ) to reflect different
sampling resolutions within a sampling cycle (window).

Fig. 1. Distributed PMU-PDC Communica-
tions

Assuming that
a PMU needs to
send a set of phasor
data with different
sampling resolutions
in a window,
{N1, N2, · · · , Nk} ∈
~N , to k applications,
the PMU needs to be
able to sample Nmax
per cycle, where
Nmax is the least
common multiple
of numbers in ~N and θmax = 2π/Nmax. Without loss of
generality, we assume Nk = Nmax, N1 < N2 < · · · < Nmax
so that samples with resolution Ni (represented by the
sample set ~Ni) is a subset of samples with resolution Nmax
(represented by the sample set ~Nmax). ~Ni is formed by
inserting an extra sample in the middle of every sampling
interval of ~Ni−1. Not counting the fixed first sample in
~Ni, we get Ni = 2 × Ni−1 and ∆Ni = Ni−1. In Fig. 2,
sampling with three different resolutions is depicted, where
Nmax = N3.

For the ith application requiring resolution Ni ∈ ~N ,
θi = Nmax

Ni
× θmax, the phasor estimate can be calculated

by taking measurement x(Ni) and using the matrix S(θi),
generated by taking the rows out of x(Nmax) and S(θmax)
at a rate of Nmax

Ni
. Conceptually, each Ni represents a unique

measurement resolution of a virtual PMU (vPMU).
From the networking perspective, each vPMU multicasts a

phasor data train of window size Ni to the designated receivers
in the ith application. We observe that ~Ni can be constructed
by combining ~Ni−1 and ∆ ~Ni = ~Ni − ~Ni−1. This naturally
leads to a novel multi-layer phasor sampling scheme that
decomposes the maximum (physical) sample train ~Nmax into
different layers starting from the minimum sampling rate N1.
For example, considering the maximum resolution sampling
N3 in Fig. 2, ~N1 = {x4, x8}, ∆ ~N2 = {x2, x6}, and ∆ ~N3 =
{x1, x3, x5, x7}. A higher layer can only be composed if all its
lower layers are present, i.e., Ni = N1+

∑i
j=2 ∆Ni = 2i×N1,

where i = 2, · · · ,max.
In addition to reducing PMU overhead and communications

resources, this multi-resolution approach could tolerate PDC
failures with the distributed storage system. In the distributed

Fig. 2. Multi-Resolution Sampling

storage system, PMU samples are not only stored in the PDC
that is connected with the PMU, but also duplicated at other
PDCs in the cloud. As long as at least one PDC, which has the
demanded data, is alive, the WAMS application could obtain
the data via the storage service.

III. DISTRIBUTED STORAGE SYSTEM

A distributed storage abstraction provides support to store
PMU data in a distributed manner, i.e., sets of PDCs and
WAMS applications may obtain data from sets of PMUs
through this layer. The layer builds on and complements the
multicast multi-layer routing protocols in that it provides an
additional protocol level that ensures predictable time bounds
for reads/writes, resilience, and scalability. We utilize dis-
tributed hash tables (DHTs) as a means to realize this resilient
and scalable storage abstraction to disseminate PMU data in
a distributed manner required to state estimates. A network
overlay will be given by a Chord-like ring with finger pointers,
which is self balancing and self repairing [5]. Notice that this
ring overlay may be mapped to multi-layer multicast routings
as a means of optimizations or mapped to a cross-linked tree
[7] as a means to implement it over a given physically or
logical network topology. This ring structure is of higher cost
to maintain than other overlay topologies but provides a natural
way to orchestrate phasor estimates and, optionally, actions of
disjoint PDCs based on key/value pairs. DHTs can store raw
PMU data, memorize state estimates, multicast patterns and
even actuation intentions.

In this section, we present the our extension to the Chord
algorithm to provide real-time services and derive our timing
analysis model.

A. Chord

The Chord algorithm manages storage nodes in a ring-like
topology. Chord uses a consistent hashing algorithm [5], [8]
to generate an identifier for each node by hashing the node’s
IP address, then orders the nodes by their identifiers. When a
put or get request for a specific key is required, Chord uses
the same hash function to encode the key. It then assigns the
key to the first node on the ring whose identifier is equal to
or follows the hash code of that key. This node is called the
successor node of the key, or the target node of the key. Fig. 3
depicts an example of a Chord ring. It is sufficient to locate
one’s successor node by maintaining the nodes in a wrap-
around circular list (ring) in which each node has a reference
to its successor node. In the figure, N10 finds the target node

Fig. 3. Chord-ring example

N60 for K50 by traversing a sequence of intermediate nodes
N20, N32, N40.

This linear algorithm is not scalable with increasing num-
bers of PDCs. In order to reduce the number of intermediate
nodes, Chord maintains the so-called finger table on each node,
which acts as a routing table, to decide the next hop to forward
lookup requests. For example, assuming the largest identifier
for nodes on the ring in Fig. 3 is 128, the finger table for N10
is in Table I. Each entry in the table indicates one routing rule:
the next hop for a given key is the successor node in the entry
if its interval of that entry includes the key. For example, the
next hop for K50 is N60 as 50 is in [42, 74).

TABLE I
FINGER TABLE FOR N10

start interval successor
0 11 [11, 12) N20
1 12 [12, 14) N20
2 14 [14, 18) N20
3 18 [18, 26) N20
4 26 [26, 42) N32
5 42 [42, 74) N60
6 74 [74, 11) N80

In general, a finger table has log(N) entries, where N is the
largest node identifier. For node k, the start of the ith finger
table entry is k + 2i, the interval is [k + 2i, k + 2i+1), and
the successor is the successor of key k+ 2i. Because of such
way that finger tables are constructed, each step of a lookup
request along finger pointers reduces the distance to the target
node for a given key to at most half of the original distance
relative to the ring structure [5]. As a result, the total number
of visited nodes to serve a lookup request is at most log(N),
which is more scalable than the previous linear algorithm.

B. Real-time Chord

The Chord algorithm does not provide real-time bounds
for lookup requests. In order to serve requests in a real-time
fashion, we extend the Chord algorithm in two aspects: (1)
We define the request pattern according to the realistic needs
of WAMS applications; (2) We employ a cyclic executive [9]
to schedule these requests on each storage node.

Request pattern. In WAMS applications, requests follow a
periodic pattern. For example, PMUs periodically send real-
time data to PDCs [10], so that PDCs issue put requests
periodically. At the same time, PDCs or WAMS applications

need to fetch data from other PDCs to monitor global power
states and control the state of the entire power grid periodi-
cally, especially for wide-area control. As a result, PDC nodes
execute periodic tasks to serve these requests. In addition, it
requires a sequence of followup tasks to serve one request,
as once the initial node issues a request, it requires a job on
each intermediate node to forward the request according to
its finger table until the request is eventually served. These
followup-tasks are aperiodic, as we assume a non-constant
network delay to forward the request on the Chord ring.

Cyclic executive. Our real-time Chord employs a cyclic
executive to schedule these periodic and aperiodic tasks on
each node. The cyclic executive divides the timeline into time
frames. In each frame, it first executes periodic tasks that need
to complete in that frame, and then executes aperiodic tasks.
For example, assume a PDC with two PMUs (PMU-a and
PMU-b) attached, each of which send PMU samples to the
PDC at a 60Hz sample rate. Table II depicts the periodic tasks
that the PDC needs to schedule to process these PMU samples
and commit them to the storage system. In a hyperperiod
of 50ms, three frames are included in this schedule table.
After each hyperperiod, a cyclic executive wraps around to
repeatedly schedule periodic tasks for the first frame of the
next hyperperiod. Within a hyperperiod, the cyclic executive
accepts timer interrupts at the beginning of frames to schedule
corresponding periodic tasks according to its schedule table.

TABLE II
REQUEST PATTERN EXAMPLE

start time(ms) end time(ms) periodic tasks
0 0 16.7 receive, put(PMU-a), put(PMU-b)
1 16.7 33.4 receive, put(PMU-a), put(PMU-b)
2 33.4 50.0 receive, put(PMU-a), put(PMU-b)

In order to accept aperiodic jobs sent by other nodes over
the network, each node schedules a periodic receiving task at
the beginning of each frame, as in Table II. A receiving task
accepts jobs that arrive in the previous frame and puts them
into a FIFO queue. When the periodic jobs in one frame are
finished, the cyclic executive utilizes the remaining time in that
frame to execute aperiodic jobs obtained from the FIFO queue.
A side effect of this receiving mechanism is that aperiodic jobs
can only be scheduled in the next frame.

C. Timing analysis model

With the request patterns and the schedule mechanism, we
use queuing theory to build a stochastic model that provides
upper bounds for the response time of aperiodic jobs on one
storage node (single-node response time), and the end-to-end
response time of lookup requests, which is the aggregation of
a sequence of single-node response times along the forward-
ing path. In our model, the response time consists of total
execution time and wait time. We use a Poisson process to
model arrivals of aperiodic tasks. Table III depicts the notation
of our model. We also use the same notation without the
subscript for the vector to denote all values. For example,
U is (U0, U1, . . . , UK), C is (C0, C1, . . . , CM). In the table,

H,K, ν, U are known from the schedule table. M is defined
in our DHT algorithm. C is obtained by measurement from
the implementation. λ is calculated from request patterns.

TABLE III
NOTATION

Notation Meaning
H hyperperiod
K number of receiving jobs in one hyperperiod
νi time when the ith receiving job is scheduled 1,2

Ui utilization of periodic jobs in time interval (νi, νi+1)
M number of different types of aperiodic jobs
λi average arrival rate of the ith type of aperiodic jobs
Ci maximum execution time of the ith type of aperiodic jobs
gi number of arrivals of the ith aperiodic job
E(x, g) execution time for aperiodic jobs

that arrive in time interval of length x
W (i, e) response time for aperiodic jobs,

if they are executed after ith receiving job
P (n, λ, x) probability of n arrivals in time interval of length x,

arrival is a Poisson process with arrival rate λ
1 νi are relative to the beginning of the current hyperperiod.
2 For convenience, ν0 is defined as the beginning of the current hyperperiod,

and νK+1 is the beginning of the next hyperperiod.

Equation 2 formalizes the aperiodic jobs’ execution time
E(x, g). Without loss of generality, we use notation E and
E(x) to represent E(x, g).

E(x, g) =
M∑
i=1

Ci ∗ gi with probability
M∏
i=1

P (gi, λi, x) (2)

We further define Ap as the time available to execute aperiodic
jobs in (ν1, νp+1). Let A0 = 0.

Ap =
p∑
i=1

(1− Ui) ∗ (νi+1 − νi) (3)

To model the response time W (i, E), we find the index
p ∈ [i+ 1,K], so that E ∈ (Ap−1 −Ai−1, Ap −Ai−1]. Thus,
the response time is the length between receiving jobs i and
p plus the time after receiving job p to execute the remaining
workload that is leftover after p. This remaining workload is
finished in one frame and the response time can be calculated
from the schedule table.

Given an aperiodic job J of execution time Cm arrives at
time t relative to the beginning of the current hyperperiod, let
p+1 be the index of the receiving job such that t ∈ [νp, νp+1).
We derive the response time of this job in different cases.

(1) Periodic jobs that arrive before νp cannot be finished
before νp+1, which means the leftover workload LW (νp) =
E(νp) − Ap > 0. In this case, the response time of job J is
the time to wait for the next receiving job at νp+1 in addition
to the time to execute the aperiodic job workload LW (νp) +
E(t− νp) + Cm, which is W (p+ 1, E(t)−Ap + Cm), after
the (p+ 1)th receiving job as in Equation 4.

R(Cm, t) = (νp+1 − t) +W (p+ 1, E(t)−Ap + Cm) (4)

(2) Periodic jobs that arrive before νp can be finished before
νp+1, LW (νp) ≤ 0. The response time in this case is given
by Equation 5.

R(Cm, t) = (νp+1 − t) +W (p+ 1, E(t− νp) + Cm) (5)

This completes the stochastic model R(Cm, t) for the single
node response time of an aperiodic job of execution time
Cm that arrives at t. The end-to-end response time of a
request is the aggregation of three parts in our real-time Chord
implementation: 1) the response time of the initial periodic job,
which is known by the schedule table; 2) the total response
time of subsequent aperiodic jobs for a lookup service on
a maximum of log(N) nodes [5], where N is the number
of nodes in the Chord ring; and 3) the final aperiodic jobs
to serve the communication between the initial node and the
target node.

IV. EVALUATION

In our evaluation, we simulate the request patterns according
to the needs of a wide-area monitoring system. We use
four nodes to simulate four PDCs in a local area within
an interconnection area. The nodes are not synchronized to
each other relative to their start of hyper-periods as such
synchronization would be hard to maintain in a distributed
system. In our simulation, each PDC has 10 PMUs attached.
The data exporting rate of each PMU is taken as 60 Hz.
Table IV depicts the periodic requests of three frames in one
hyper-period. It is sufficient to evaluate our model by only
executing put requests in the simulation since get requests are
served with the same response time as put requests in our
current real-time storage system implementation.

TABLE IV
REQUEST PATTERN IN THE SIMULATION

start time(ms) end time(ms) periodic tasks
0 16.7 receive, put(PMU-1), .., put(PMU-10)

16.7 33.4 receive, put(PMU-1), .., put(PMU-10)
33.4 50.0 receive, put(PMU-1), .., put(PMU-10)

Table V includes the parameter values for our timing anal-
ysis model in the simulation. The cyclic executive schedules a
sleep job once the periodic jobs in each frame have executed.
This sleep job is to simulate the periodic computation on
PDCs for power state estimation. As a result, the utilizations
of periodic jobs in the three frames are 40%, 40%, 40%,
respectively. Any put/get requests forwarded to other nodes
in the DHT result in aperiodic (remote) jobs. We use sleep
again to simulate an execution time of 0.2ms for aperiodic
jobs, which includes the message transmit time between the
simulated nodes. In this experiment, the utilizations of periodic
jobs and aperiodic jobs are 40% and 48%, respectively. The
system is stable as the total utilization is less than 100%.

TABLE V
MODEL PARAMETER VALUES

Name Value
H 50ms
K 3
ν (0ms, 16.7ms, 33.4ms)
U (40%, 40%, 40%)
M 1
λ 2.4/ms
C 0.2ms

Fig. 4 depicts the cumulative distributions of single-node
response times for aperiodic jobs. The figure shows that 99.4%

of the aperiodic jobs finish within the next frame after they
are issued under this workload, i.e., their response times
are bounded by 33.4ms. Our model predicts that 99.5% of
aperiodic jobs complete within the 16.6ms deadline, which is
a good match. In addition, for most of the response times in
the figure, our model predicts that a larger fraction of aperiodic
jobs are finished within the response times than the fraction in
the experimental data, as the red curve for modeled response
times is above the blue curve. This indicates that our model
is conservative for this workload.

Our model underestimates response times of a part of
aperiodic jobs as shown in the figure between 12ms and
18ms. This is due to the fact that aperiodic jobs are released
more frequently at the beginning of periodic job execution
phase, e.g., (0ms, 4ms), and aperiodic job execution phase,
e.g., (6.7ms, 12.0ms), in each frame. As a result, the arrivals
of aperiodic jobs are clustered at the beginning of the next
frame instead of following a Poisson distribution over the
whole frame. However, considering the non-constant network
delay in real WAMS communication environments, it is more
suitable to model the arrivals as a Poisson process. In our
future work, we will conduct experiments with real PMU data
to confirm this.

Fig. 5 depicts the cumulative distributions of end-to-end
response times for requests, i.e., the time between a put/get
request and its final response after propagating over multiple
hops (nodes) within the DHT. 97.3% of the requests finish
within the (75ms, 80ms) interval after their arrival. These
requests require four aperiodic jobs on average and most of the
aperiodic jobs (88.9%) are finished within an (18ms, 22ms)
interval after being issued. All requests finished within 90ms
in the experiment, which was predicted by our model with a
probability of 98.9%.

Fig. 4. Single-node response times distribution

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel virtual-PMU architecture
that can simultaneously generate multi-resolution phasor mea-
surements from one physical PMU. To further enhance the per-
formance and efficiency of disseminating Synchrophasor data,

Fig. 5. End-to-end response times distribution

a distributed storage system is designed and implemented.
It supports heterogeneous wide-area monitoring and control
applications using a distributed PMU-PDC architecture. Our
distributed storage system on the basis of Chord protocol
provides real-time data communication between PMUs, PDCs
and WAMS applications such as oscillation monitoring, special
protection schemes, state estimation, and damping control. We
also develop a stochastic model to analyze the response time of
requests served by our distributed storage system. In the future,
extensive performance studies will be conducted to quantify
the performance gains over more traditional approaches. This
includes studying the tradeoffs under different scheduling
schemes for the abovementioned WAMS applications.

REFERENCES

[1] J. D. L. Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized
phasor measurement applications in power systems,” IEEE Transactions
on Smart Grid, vol. 1, no. 1, June 2010.

[2] D. E. Bakken, A. Bose, C. H. Hauser, D. E. Whitehead, and G. C.
Zweigle, “Smart generation and transmission with coherent, real-time
data,” Proceedings of the IEEE, vol. 6, no. 99, June 2011.

[3] A. Chakrabortty, “Handling the data explosion in tomorrow’s power
systems,” IEEE Smart Grid Newsletter, Sep. 2011.

[4] Y. Xin, I. Baldine, J. Chase, T. Beyene, B. Parkhurst, and
A. Chakrabortty, “Virtual smart grid architecture and control frame-
work,” in 2nd IEEE International Conference on Smart Grid Commu-
nications, Oct. 2011.

[5] R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications,” in ACM
SIGCOMM 2001, San Diego, CA, September 2001.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker,
“A scalable content-addressable network,” in in Proceedings of ACM
SIGCOMM, 2001, pp. 161–172.

[7] C. Zimmer and F. Mueller, “Fault tolerant network routing through soft-
ware overlays for intelligent power grids,” in International Conference
on Parallel and Distributed Systems, Dec. 2011, pp. 542–549.

[8] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in ACM
Symposium on Theory of Computing, 1997, pp. 654–663.

[9] J. Liu, Real-Time Systems. Prentice Hall, 2000.
[10] W. A. Mittelstadt, P. E. Krause, P. N. Overholt, D. J. Sobajic, J. F. Hauer,

R. E. Wilson, and D. T. Rizy, “The doe wide area measurement system
(wams) project demonstration of dynamic information technology for
the future power system,” in EPRI Conference on the Future of Power
Delivery, 1996.

	Introduction
	Virtual PMU and Multi-Resolution Synchrophasor Measurement
	Distributed Storage System
	Chord
	Real-time Chord
	Timing analysis model

	Evaluation
	Conclusions and future work
	References

