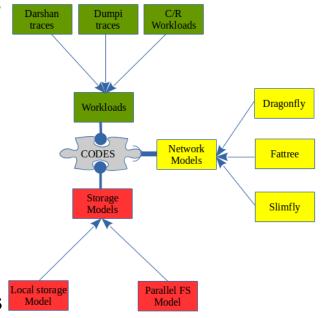

Evaluating Performance of Burst Buffer Models for Real-Application Workloads in HPC Systems

Harsh Khetawat Frank Mueller Christopher Zimmer

Introduction

- Existing storage systems becoming bottleneck
- Solution: burst buffers
- Use burst buffers for:
 - Checkpoint/Restart I/O
 - Staging
 - Write-through cache for parallel FS

Burst Buffers on Cori



Placement

- Burst buffer placement:
 - Co-located with compute nodes (Summit)
 - Co-located with I/O nodes (Cori)
 - Separate set of nodes
- Trade-offs in choice of placements
 - Capability I/O models, staging, etc.
 - Predictability Impact on shared resources, runtime variability
 - Economic Infrastructure reuse, cost of storage device
- I/O performance dependent on placement
 - Choice of network topology

Idea

- Simulate network and burst buffer architectures
 - CODES simulation suite
 - Real-world I/O traces (Darshan)
 - Full multi-tenant system with mixed workloads (capability/capacity)
 - Supports network topologies
 - Local & external storage models
- Combine network topologies and storage architectures
- Performance under striping/protection schemes
- Reproducible tool for HPC centers

Conclusion

- Determine based on workload characteristics:
 - Burst buffer placement
 - Network topology
 - Performance of striping across burst buffers
 - Overhead of resilience schemes
- Reproducible tool to:
 - Simulate specific workloads
 - Determine best fit

Thank You