Timing Analysis: In Search of Multiple Paradigms

Frank Mueller
Department of Computer Science/
Center for Embedded Systems Research
North Carolina State University
448 EGRC, Raleigh, NC 27695-7534
e-mail: mueller@cs.ncsu.edu, phone: +1.919.515.7889, fax: +1.919.515.7925

Abstract

While timing analysis is a vital prerequisite for real-time
schedulability tests, prior advances on timing analysis were
sometimes incremental in addressing selected new proces-
sor features or limited source code annotations to provide
safe but tight WCET bounds. In contrast, recent advances
in timing analysis including a refreshing set of novel ap-
proaches to bound the worst-case execution time (WCET)
of real-time tasks. These advances are in search of new
methodologies to address the timing analysis problem and
approach this problem in a more general manner. Examples
are 1) the complexity wall of hardware that causes timing
analysis tools to trail behind the curve of microarchitectural
innovation, 2) severe restrictions on the knowledge of loop
bounds, 3) the inability to analysis large application pro-
grams, 4) a lack of capitalizing on opportunities of dynamic
scheduler interactions and 5) the challenge in expressing
certainty levels of WCET bounds.

This paper gives an overview of selected approaches and
contributes an initial account on the potential of the con-
tributions for the field. Each of these novel approaches to
timing analysis solves one problem in current toolsets. It
appears that the diversity of approaches is a valuable asset
to the research area. While a particular solution may prove
best suitable for some problem, another approach may be
required for different problems. Furthermore, many of the
recent advances are complementing each other. Some can
be used in conjunction to provide additional robustness to
hard real-time systems.

1. Introduction

Schedulability analysis of real-time systems determines
if given a set of tasks can be feasibly scheduled such that
every deadline is met. The specification of task sets in-
cludes, at a minimum, the period and the worst-cases ex-

ecution time (WCET) of each task. While the period is
typically derived from the application environment, deter-
mining the WCET remains a hard problem, particularly for
complex application codes with large inputs and advanced
architectures with sources of unpredictable behavior.

The objective of timing analysis is to provide upper
bounds on the worst-case execution time (WCET) of hard
real-time tasks. By designing timing analysis tools to safely
and tightly predict the WCET, much of the challenge of
timing analysis can be addressed in an automated fashion.
Nonetheless, timing analysis has, to date, only been applied
to small codes and simple architectures. Manual annota-
tions are often required to supplement source code with
constraints necessary to bound selected loop iterations and
describe flow dependencies in order to derive tight WCET
bounds. Larger programs or programs with complex inputs
typically exceed the capability of analysis tools due to non-
linear analysis overheads. Advances in microarchitecture
create a complexity wall, which causes timing analysis tools
to generally trail years behind the curve of architectural in-
novations.

To address these problems in timing analysis, recent re-
search has taken fresh approaches at the problem. Archi-
tectural enhancements have been proposed to counter the
complexity wall in processor innovations. Methods of para-
metric timing analysis have been explored to handle loops
with variable bounds and provide late bindings for the ac-
tual number of loop iterations. Modular analysis methods
have been proposed to address the analysis constraints on
large programs. Instead of requiring tight WCET bounds,
looser bounds are deemed sufficient for dynamic voltage
scaling (DVS) scheduling algorithms that trade speed for
power conservation. Frequency-aware static timing analy-
sis (FAST) complements DVS scheduling for real-time sys-
tems by ensuring the timing predictions do not deteriorate
to a level where power consumption is sacrificed because
of inaccuracies in bounding the WCET. While static timing
analysis approaches can be complemented by experimen-



tal timing values, e.g., through genetic algorithms to search
for longer execution times as a function of the input, recent
work is promoting extreme statistics in conjunction with ob-
served timing measurements in a probabilistic WCET as-
sessment. Resulting WCET bounds are guaranteed with a
certainty of some probability.

In the following, an overview of some of these novel ap-
proaches is given. Some of these research advances solve
one problem in current timing analysis toolsets. The diver-
sity of approaches provides a valuable asset to the research
area in large. While a particular solution may prove best
suitable for some problem, another approach may be re-
quired for different problems. Furthermore, many of the
recent advances are complementing each other. For exam-
ple, DVS scheduling and FAST can be used in conjunction
to provide additional robustness to hard real-time systems.

2. VISA: A Virtual Simple Architecture

VISA resolves a long-standing problem in embedded
systems: bounding the worst-case execution times (WCET)
of tasks on contemporary processors. WCETS are essential
for real-time scheduling; yet deriving them for contempo-
rary processors is intractable. The Virtual Simple Archi-
tecture (VISA) framework shifts the burden of bounding
the WCETSs of tasks, in part, to hardware. A VISA is the
pipeline timing specification of a hypothetical simple pro-
cessor. WCET is derived for a task assuming the VISA.
At run-time, the task is executed speculatively on an unsafe
complex processor, and its progress is continuously gauged.
If continued safe progress appears to be in jeopardy, the
complex processor is reconfigured to a simple mode of
operation that directly implements the VISA, thereby ex-
plicitly bounding the task’s overall execution time by the
WCET.

System design involves defining a VISA, and then im-
plementing a static timing analyzer and a complex proces-
sor, the latter two compliant with the VISA. In defining the
VISA, we considered the capabilities of current timing anal-
ysis tools. We also considered how a simple mode of opera-
tion is likely to be accommodated within a typical dynami-
cally scheduled superscalar processor and, in particular, the
complex processor described in [1]. The three layers —
VISA, processor, and timing analyzer — are shown in Fig. 1
and are described in detail elsewhere [1].

Typically, the VISA-protected complex processor fin-
ishes periodic hard-real-time tasks faster than an explicitly-
safe simple processor, creating slack in the schedule. Dy-
namic slack cannot be used to schedule more periodic hard-
real-time tasks, because WCETS are based on the hypothet-
ical simple processor. Nonetheless, slack can be exploited
to safely lower frequency/voltage for power savings. This
application was explored in our recent ISCA’03 paper [1],

EDF or other scheduler,
dynamic voltage scaling, etc.

Worst—Case Timing Analysis

Virtual Smple Architecture (VISA)

Complex
Processor
with simple mode

Figure 1. VISA Abstraction Layers

which demonstrated 43-61% power savings.

In summary, VISA provides a general framework for
safe operation on unsafe processors, setting up new oppor-
tunities for exploiting higher performance in embedded sys-
tems.

3. Parametric Timing Analysis

Traditionally, static timing analysis yields a discrete pre-
diction of the WCET based on fixed iteration bounds that
have to be known statically. Such analysis requires that the
actual number of iterations always be known prior to exe-
cution of a real-time task.

This work addresses these limitations of timing analy-
sis for embedded systems. It contributes a novel approach
to program analysis through parametric techniques of static
timing analysis and provides innovative methods for ex-
ploiting them. The proposed techniques express worst-case
execution time as a formula with the following benefits.
First, static timing analysis becomes applicable to a wide
class of embedded systems with variable loop bounds. Sec-
ond, the techniques of static timing analysis, currently con-
strained to hard real-time system, become applicable to a
much wider range of embedded systems with soft timing
constraints.

For example, a loop may encompass n iterations, where
n depends on the current input. Typically, the number of it-
erations n is already known prior to entering the loop. Static
timing analysis may supply a closed formula to predict the
WCET for the remaining execution time based on dynamic
information, such as the actual value of n.

A novel fix-point algorithm has been developed to derive
closed formulas for expressing the WCET bounds on loops
with variable trip counts. Preliminary experimental results
using parametric analysis in contrast to the traditional nu-
merical technique illustrate the feasibility this novel ap-
proach [7]. Parametric timing analysis only looses an in-
significant amount of precision (tightness) in bounding the



WCET. The benefit of flexibility outweights this diminish-
ing cost. Applications of the approach lie in novel applica-
tions for dynamic scheduling decisions and a potential for
more effective system utilization.

4. Modular Static Cache Simulation

Static timing analysis techniques derive safe WCET
bounds via path analysis, pipeline simulation and cache
simulation. But such analysis has traditionally been con-
strained to only small programs due to the complexity of
simulation, most notably by static cache simulation, which
requires inter-procedural analysis. A novel approach of
modular static cache simulation is devised that alleviates the
complexity problem, thereby making static timing analysis
feasible for much larger programs that in the past.

The main contribution of this effort is a framework to
perform static cache analysis in two steps, a module-level
analysis and a compositional phase, thus addressing the is-
sue of complexity of inter-procedural analysis for an entire
program. The module-level analysis parameterizes the data-
flow information in terms of the starting offset of a module.
The compositional analysis stage uses this parameterized
data-flow information for each module. Thus, the emphasis
here is on handling most of the complexity in the module-
level analysis and performing as little analysis as possible
at the compositional level. The experimental results for
direct-mapped instruction caches show that the composi-
tional analysis framework provides equally accurate predic-
tions when compared with the simulation approach that uses
complete inter-procedural analysis [5]. This novel approach
to static cache analysis provides a promising solution to the
complexity problem in timing analysis, which, for the first
time, makes the analysis of larger programs feasible.

5. DVS: Dynamic Voltage Scheduling

Dynamic voltage scaling (DVS) is a promising method
for embedded systems to exploit multiple voltage and fre-
quency levels and to prolong battery life. Numerous DVS
scheduling algorithms for real-time systems have been pro-
posed, but the most promising approaches are those that
capitalize slack reclamation due to idle time (static slack)
and, in addition, slack due to early completion (dynamic
slack). This requires a dynamic scheduling scheme, such as
EDF enhanced by slack reclamation and voltage/frequency
modulation, e.g., Look-ahead EDF [6]. The benefit for
DVS scheduling for real-time systems is that even loose
WCET bounds suffice since voltage/frequency modulation
is based on the actually observed execution times in dy-
namic scheduling schemes. Notice that static DVS schemes
cannot be as aggressive and, hence, should receive less

attention. Furthermore, DVS scheduling can, in general,
profit from deviations between WCET and actual execution
times, which are reportedly significant with the actual ex-
ecution time of real-time tasks ranging from about 30% to
90% of the WCET, depending on the application.

Pure DVS techniques do not perform well for dynamic
systems where the system workloads vary significantly.
A novel approach combining feedback control with DVS
schemes was devised targeting hard real-time systems of
dynamic workloads. This method relies strictly on oper-
ating system support by integrating a DVS scheduler and a
feedback controller within the EDF scheduling algorithm.
The scheme splits each task into two portions, and aims at
finishing the actual execution within the first portion of each
task while reserving enough time in the second portion to
meet the deadline following a last-chance approach. Feed-
back techniques make the system capable to select the right
frequency and voltage settings for the first potion, as well
as guaranteeing the deadline requirements of the hard real-
time task sets. Simulation experiments demonstrate that our
algorithm is able to saves up to 29% more energy than pre-
vious work for task sets with different dynamic workload
characteristics [10, 3, 9].

6. FAST: Frequency-Aware Static Timing
Analysis

DVS techniques for real-time scheduling focus on saving
power in static as well as dynamic scheduling environments
by exploiting idle and slack due to early task completion for
DVS of subsequent tasks. As mentioned before, these ap-
proaches rely on a priori knowledge of the WCET for each
task. All DVS scheduling algorithms assume that DVS has
no effect on the worst-case execution cycles (WCEC) of a
task and scale the WCET according to the processor fre-
quency. However, for systems with memory hierarchies,
the WCEC typically does change under DVS due to fre-
quency modulation. Hence, current assumptions used by
DVS schemes result in a highly exaggerated WCET.

A novel technique for tight and flexible static timing
analysis is developed that is particularly well-suited for dy-
namic scheduling schemes. The technical contributions are
as follows: (1) The problem of changing execution cycles
due to scaling techniques is assessed. (2) A parametric ap-
proach towards bounding the WCET statically with respect
to the frequency is proposed. Using a parametric model,
one can capture the effect of changes in frequency on the
WCEC and, thus, accurately model the WCET over any
frequency range. (3) Design and implementation of the
frequency-aware static timing analysis (FAST) tool are dis-
cussed based on prior experience with static timing analy-
sis. (4) Experiments demonstrate that the FAST tool pro-
vides safe upper bounds on the WCET, which are tight.



The tool provides the means to capture the WCET of six
benchmarks using equations that overestimate the WCET
by less than 1%. FAST equations can also be used to im-
prove existing DVS scheduling schemes to ensure that the
effect of frequency scaling on WCET is considered and that
the WCET used is not exaggerated. (5) Three DVS schedul-
ing schemes are leveraged by incorporating FAST into them
and by showing that the power consumption further de-
creases. Overall, FAST and DVS scheduling techniques for
real-time systems provide a symbiotic solution to aggres-
sive lower power consumption without missing deadlines —
and to cope with (as well as benefit from) looser WCET
bounds.

7. Probabilistic Timing Analysis

Traditional timing analysis techniques rely on static
analysis of programs. Past work has discussed the bene-
fits of complementing static and dynamic analyses for soft
and hard real-time systems, most notably by guiding the
search for the WCET in dynamic analysis via genetic al-
gorithms [4, 8]. Taking dynamic analysis one step further,
recent work promotes a probabilistic approach to provide
certainty levels for the WCET. These certainty levels, ex-
pressed as probabilities, are based on a sample of observed
executions and combined with extreme-value statistics. The
supporting experimentation tool, the pWCET tool, handles
timing at a basic block level and combines analysis with the
traditional timing schema [2]. Such an approach can also
be combined with the VISA architecture to obtain WCET
bounds for the simple mode. VISA then provides safety by
gaging progress in complex mode since non of the above
static analysis techniques can fully capture the effects of a
complex architecture. Even the pWCET results at some cer-
tainty level can profit from the additional safety provided by
VISA.

8. Conclusion

This paper provided an overview of a variety of se-
lected novel approaches in tackling the problem of provid-
ing bounds for the WCET of real-time tasks. These research
advances each solve some problem in current timing anal-
ysis toolsets. The diversity of approaches provides a valu-
able asset to the research area in large. While a particular
solution may prove best suitable for some problem, another
approach may be required for different problems. Further-
more, many of the recent advances are complementing each
other. For example, DVS scheduling and FAST as well as
VISA and pWCET can be used in conjunction to provide
additional robustness to hard real-time systems. Overall, the
field of timing analysis has matured and, at the same time,

is still open to new discoveries with potentially significant
impact.

References

[1] A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and
F. Mueller. Virtual simple architecture (VISA): Exceeding
the complexity limit in safe real-time systems. In Inter-
national Symposium on Computer Architecture, pages 250—
261, June 2003.

[2] G. Bernat, A. Collin, and S. Petters. Wcet analysis of prob-
abilistic hard real-time systems. In |EEE Real-Time Systems
Symposium, Dec. 2003.

[3] A. Dudani, F. Mueller, and Y. Zhu. Energy-conserving
feedback edf scheduling for embedded systems with real-
time constraints. In ACM SIGPLAN Joint Conference
Languages, Compilers, and Tools for Embedded Systems
(LCTES 02) and Software and Compilers for Embedded
Systems (SCOPES 02), pages 213-222, June 2002.

[4] F. Mueller and J. Wegener. A comparison of static analysis
and evolutionary testing for the verification of timing con-
straints. In |EEE Real-Time Technology and Applications
Symposium, pages 179-188, June 1998.

[5] K. Patil. Compositional static cache analysis using module-
level abstraction. Master’s thesis, Dept. of CS, North Car-
olina State University, Aug. 2003.

[6] P.Pillai and K. Shin. Real-time dynamic voltage scaling for
low-power embedded operating systems. In Symposium on
Operating Systems Principles, 2001.

[7] E.Vivancos, C. Healy, F. Mueller, and D. Whalley. Paramet-
ric timing analysis. In ACM S GPLAN Workshop on Lan-
guage, Compiler, and Tool Support for Embedded Systems,
volume 36 of ACM SIGPLAN Notices, pages 88-93, Aug.
2001.

[8] J. Wegener and F. Mueller. A comparison of static analysis
and evolutionary testing for the verification of timing con-
straints. Real-Time Systems, 21(3):241-268, Nov. 2001.

[9] Y. Zhu and F. Mueller. Preemption handling and scalability
of feedback dvs-edf. In Werkshop on Compilers and Oper-
ating Systems for Low Power, Sept. 2002.

[10] Y. Zhu and F. Mueller. Feedback dynamic voltage scaling
dvs-edf scheduling: Correctness and pid-feedback. Techni-
cal Report TR 2003-13, Dept. of Computer Science, North
Carolina State University, 2003.



