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Abstract
Characterizing the communication behavior of large-
scale applications is a difficult and costly task due to
code and system complexity as well as their long exe-
cution times. An alternative to running actual codes is to
gather their communication traces and then replay them,
which facilitates application tuning and future procure-
ments. While past approaches lacked lossless scalable
trace collection, we contribute an approach that pro-
vides near constant-size communication traces regard-
less of the number of nodes while preserving structural
information. We introduce intra- and inter-node com-
pression techniques of MPI events and present results
of our implementation for BlueGene/L. Given this novel
capability, we discuss its impact on communication tun-
ing and beyond. To the best of our knowledge, near
constant-size representation of MPI traces in a scalable
manner combined with deterministic MPI call replay
are without any precedence.

1. Introduction and Overview
Scalability is one of the main challenges to petascale
computing. One central problem lies in a lack of scaling
of communication. However, understanding the com-
munication patterns of complex large-scale scientific
applications is non-trivial.

An array of analysis tools have been developed, both by
academia and industry, to aid this process. For example,
Vampir is a commercial tool set including a trace gen-
erator and GUI to visualize a time line of MPI events.
While the trace generation supports filtering, trace files,
which are stored locally, grow with the number of MPI
events in a non-scalable fashion. Another example is the
mpiP tool that uses the profiling layer of MPI to gather
user-configurable aggregate metrics for statistical anal-
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ysis. Locally stored profiling files are constrained in size
by the number of unique call sites of MPI events, which
is independent of the number of nodes. However, mpiP
does not preserve the structure and temporal ordering
of events, which limits its use to high-level analysis.
Other communication analysis tools fall into the former
or later category,i.e., their storage requirements either
do not scale or they are lossy with respect to program
structure and temporal ordering.

In contrast to prior work, we promote a trace-driven
approach to analyze MPI communication that scales.
While past approaches fail to gather full traces for hun-
dreds of nodes in a scalable manner or only gather
aggregate information, we have designed a framework
that extracts full communication traces of near constant
size regardless of the number of nodes while preserving
structural and temporal-order information of events.

Our trace-gathering framework, depicted in Figure 1,
utilizes the MPI profiling layer (PMPI) to intercept MPI
calls during application execution. Profiling wrappers
trace which MPI function was called along with call pa-
rameters within each node. Such intra-node information
(task-level) is compressed on-the-fly. Upon application
termination, inter-node compression is triggered over all
nodes resulting in a single trace file that preserves struc-
tural information suitable for lossless replay.

We assess the effectiveness of our framework by con-
ducting experiments with benchmarks and an appli-
cation on BlueGene/L. The results obtained confirm
the scalability of on-the-fly MPI trace compression by
yielding near constant size traces for processor scaling
and problem scaling.

In addition to trace generation, we have designed a tool
to replay compressed traces on-the-fly independent of
the original application and without decompressing the
trace. We demonstrate this ability to verify the correct-
ness of our trace compression. We also discuss the use
of the replay mechanism in performance tuning MPI
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communication and facilitating projections of network
requirements for future large-scale procurements.

To the best of our knowledge, near constant-size rep-
resentation of MPI traces in a scalable manner com-
bined with deterministic MPI call replay are without any
precedence.

The paper is structured as follows. Section 2 and 3 detail
intra- and inter-node trace compression. Sections 4 and
5 present the experimental framework and results. Sec-
tion 6 contrasts this work with prior research. Section 7
summarizes our contributions.

2. Intra-Node/Task-Level Trace
Compression

Lossless, yet space-efficient trace compression must
preserve the structure and temporal order of events.
Nonetheless, repetitive MPI events in loops with iden-
tical parameters should only require near constant size.
Using the PMPI layer, wrappers of MPI calls are spec-
ified to generate an entry per call, including the type of
MPI call, source and destination of communication and
other parameters, yet excluding actual message content.
These MPI call entries, generally repeated due to an ap-
plication’s loop structure, are subject to on-the-fly com-
pression.

We extend regular section descriptors (RSDs) for sin-
gle loops to express MPI events nested in a loop in

constant size [4] while power-RSDs (PRSDs) are uti-
lized to recursively specify RSDs nested in multiple
loops [5]. MPI events may occur in inner-most or outer
loops alike in PRSDs. For example, the tupleRSD1 :<
100, MPI Send1, MPI Recv1 > denotes a loop with
100 iterations of alternating send/receive calls with
identical parameters (omitted here), andPRSD1 :<
1000, RSD1, MPI Barrier1 > denotes 1000 invoca-
tions of (a) the former loop (RSD1) followed by (b) a
barrier.

The compression algorithm maintains a queue of MPI
events and attempts to greedily compress the first
matching sequence, an approach that is loosely based
on the SIGMA scheme for memory analysis [2]. Our al-
gorithm, depicted in Figure 2, proceeds in four steps.
First, head and tail of a match are determined by it-

Compress Queue(Queue Op Queue

TargetTail = Op Queue.tail
Match Tail = Search for match of TargetTail
if (Match Tail)

TargetHead = MatchTail.next
Match Head = Search for match of TargetHead
if (Match Head)

SequenceMatches = TRUE
TargetIter = TargetTail
Match Iter = MatchTail
while (TargetIter && Target Iter != TargetHead)

if (Target Iter does not match MatchIter)
SequenceMatches = FALSE
break

TargetIter = TargetIter.prev
Match Iter = MatchIter.prev

if (SequenceMatches)
Increment iteration count on MatchHead
Delete elements TargetHead to TargetTail

Fig. 2. Task-level Compression on MPI Event Queue

eratively inspecting queue elements from the “target
tail” (end of the queue) backwards till a match is found
(the “match tail”) immediately succeeded by the “tar-
get head”. Second, the “match head” is determined as
the element following the “match tail” that matches the
target head. Third, an element-wise comparison is con-
ducted between head and tail of the “target” and the
“match”. Fourth, upon a complete match, the “match”
is merged into the target by incrementing the RSD (or
PRSD) counter — or by creating an RSD (or PRSD)
upon initial match of two sequences.

For the first step, we impose a maximum window size
for this search before entries are flushed (stored without
compression). This ensures that long mismatches do not
result in quadratic online search overhead.



A number of encoding techniques are used to enable
compression across nodes. While inter-node compres-
sion is detailed in the next section, the following encod-
ing schemes are performed at the intra-node level.

Calling Sequence Identification: Identically named
MPI calls, such as MPISend, may be scattered over var-
ious locations in a program. To distinguish the location
of MPI events, our tracing framework further records
the calling sequence by logging the call sites of the call-
ing stack in stack walk. Call sites, including the MPI call
itself, create a unique signature of an MPI call-chain and
are subsequently treated as part of the event,i.e., they
are required to match when compression is attempted.

Location-independent Encodings: Communication
end-points in SPMD programs often differ from one
node to another. However, their position relative to the
MPI task ID is often constant. Hence, relative encodings
of communication end-points are utilized by our frame-
work, i.e., an end-point is denoted as±c for a constantc
relative to the current MPI task ID. This fosters effective
compression of location-specific parameters. Consider
as an example the communication pattern in Figure 3
depicting a 2D stencil where both nodes 9 and 10 com-
municate with relative neighbors -4, -1, +1 and +4.
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Fig. 3. Communication Endpoint Encoding

Request Handles: Handles for asynchronous MPI
calls are runtime-specific,i.e., they cannot simply be
recorded as their abstractions (generally pointers) are
invocation-dependent. We record these handles in a
buffer. When an asynchronous call references a han-
dle, the invocation-dependent pointer is determined by
finding a match in the handle buffer. The MPI event
then records its handle offset relative to the last ele-
ment of the buffer. Relative indexing again enables sub-
sequent cross-node compression. Upon message replay,
this buffer is created on-the-fly and indexed by the offset
in the trace to obtain the correct handle pointer.

Certain MPI operations (e.g., MPI Waitall) allow an ar-
ray of request handles to be specified. We observed that
for some programs the size of these arrays depends on
the number of nodes. Since handles are already repre-
sented as relative indices into the handle buffer, as ex-

plained before, we can now effectively compress long
arrays of handles using PRSDs.1 Here, the PRSDs spec-
ify (via indices) which handles in the buffer participate
in the MPI operation. While originally motivated by
handles, we apply this PRSD compression to arbitrary
MPI parameters that have to be retained in the trace
(well beyond handles) and, as explained later, also in
the cross-node compression framework. MPI parame-
ters that increase linearly with the number of nodes are,
of course, an impediment to application scalability. This
is precisely where our tracing tool can provide a “red
flag” to application developers suggesting to them to
replace point-to-point communication with collectives.
Hence, our tool can be utilized to detect certain scala-
bility problems within the communication design of al-
gorithms.

Event Aggregation:Our approach generally has to pre-
serve event ordering and program structure information.
However, non-deterministic repetitions of MPI calls,
such as triggered by,e.g., MPI Waitsome, present a
challenge to cross-node compression. Depending on the
number of completed asynchronous calls, a loop that
terminates upon completion ofn corresponding asyn-
chronous calls may result in1 to n MPI Waitsome calls
within its body. To address this problem early, such
sequences of MPI calls are are squashed into a sin-
gle event that records the number of completed asyn-
chronous calls. Notice that this preserves compression
capabilities while exploiting MPI-specific semantics.
Even during replay, successive MPIWaitsome calls are
aggregated till the recorded number of completions is
reached.

3. Inter-Node/Cross-Node Trace
Compression

Local traces are combined into a single global trace
upon application completion,i.e., within the PMPI
wrapper for MPIFinalize. This approach is in con-
trast to generating local trace files, which results in lin-
early increasing disk space requirements and does not
scale as traces have to be moved to permanent (global)
file space. The I/O bandwidth, particularly in systems
like BG/L with a limited number of I/O nodes, could
severely suffer under such a load. To guarantee scala-
bility, we instead employ cross-node compression, step-
wise and in a bottom-up fashion over a binary tree.

Events and structures (RSD / PRSDs) of nodes are
merged when events, parameters, structure and itera-
tion counts match. First, the compressed trace of one

1 We actually use a recursive definition of iterators with a start point,
depth and a sequence ofn pairs of (stride, iterations) for this purpose,
which is equivalent to nested PRSDs of the same depth.



child (slave queue) is merged into the local trace of the
current node (master queue), then the trace of the other
child (slaved) is merged similarly into master queue re-
sulting from the former merger. Each merge operation
is performed by the algorithm depicted in Figure 4. The

merge algorithm(master queue, slave queue)
masteriter = masterqueue.head
slavehead = slavequeue.head
while (masteriter && slave head)

slaveiter = slavehead
while (slaveiter)

if (slave iter == masteriter)
insert operations between slavehead to

slaveiter before masteriter
add slaveiter task participant list to

masteriter task participant list
slavehead = slaveiter.next
break

slaveiter = slaveiter.next
masteriter = masteriter.next

Fig. 4. Merge Slave (Child) into Master (Parent) Trace

slave queue is merged into the master queue by identify-
ing matching sequences of operations using three itera-
tors, namely, master and slave iterators as well as a slave
head. The master iterator is used as a place holder for
the current operation sequence in the master queue. The
slave head is used as a place holder for the last matched
operation sequence in the slave queue. Lastly, the slave
iterator is used to identify matching sequences between
the master queue and the slave queue.

The algorithm starts all iterators at the beginning of
their respective queues. The slave iterator works its way
down the slave queue attempting to find an operation se-
quence matching the current master iterator. If a match
is found, all mismatching operation sequences are first
copied into the master queue preceding the master it-
erator. The mismatching operation sequences are those
between the slave head (the last matching operation se-
quence in the slave queue) and the slave iterator (the cur-
rent matching operation sequence in the slave queue).
This ensures that the order of operations from the slave
queue is maintained. The slave iterator’s task participant
list is then appended to its twin’s task participant list
(demarcated by the master iterator).

Temporal Cross-Node Reordering:The merge algo-
rithm compresses well at lower levels of the reduction
tree but runs into problems at higher levels. The prob-
lem lies in its inability to merge differing sequences
from multiple nodes in a deterministic order. Con-
sider entries (event;tasks) in master and slave queues
< (A; 1), (B; 2) > and< (B; 3), (A; 4) >. By match-

ingA, the merged queue is< (B; 3), (A; 1, 4), (B; 2) >
indicating a potential to grow linearly during the merge.
However, the temporal ordering between tasks is irrele-
vant in this example, and another legal queue would be
< (A; 1, 4), (B; 2, 3) >, which provides a constant-size
representation. When different tasks participate in the
operation sequences, any ordering is legal. This is de-
termined by testing if the intersection of tasks in the un-
matched sequence with those of the matched sequence
is empty. The merge algorithm then allows matches to
occur one event at a time so that the resulting sequence
may differ in the master compared to the original slave.
The upper complexity bound of this operation isO(n2)
for n events, but, due to the SPMD regularity of appli-
cations, the actual cost is generally constant.

Task ID Compression:During the merge process, task
IDs are encoded as PRSDs themselves to specify which
subset of nodes participated in some set of events.2

This allows us to concisely represent cross-node sim-
ilarities, even for stencil codes. Assuming non-wrap-
around communication for the 2D stencil in Figure 3,
interior nodes 5, 6, 9 and 10 have an identical communi-
cation pattern. Any pair of nodes between corners on the
boundary as well as any corner nodes also have a unique
pattern resulting in nine different patterns to record for
2D stencils, regardless of the number of nodes. This ap-
proach makes cross-node compression feasible and re-
sults in a single near constant-size trace file, which is by
far more efficient than storing per-node trace files and
later consolidating them.

Reduction over a Radix Tree:We internally use a bi-
nary radix tree for the reduction (compression) step. The
radix tree representation has several advantages over an
arbitrary reduction tree. First, the tree is already bal-
anced, which also balances computational compression
cost during cross-node compression. Second, the com-
pression of task IDs as RSDs is naturally facilitated by
a radix tree. Any subtree of the radix tree has a constant,
uniform distance between task IDs of the nodes in the
subtree, which supports a single-RSD representation to
describe matching events across these nodes during task
ID compression.

4. Experimental Framework
The communication trace components can be integrated
transparently into arbitrary MPI applications, either by
using dynamic linking (as in most environments) or by
explicitly linking with our components (e.g., in BG/L
environments where static linking is required). Exper-

2 We actually use a recursive definition of iterators with a start point,
depth and a sequence ofn pairs of (stride, iterations) for this purpose,
which is equivalent to nested PRSDs of the same depth.



imental results have been gathered for 1D, 2D and
3D stencil benchmarks, codes from the NAS Parallel
Benchmark and the Raptor application.

The 1D stencil has a one-dimensional logical space
based on a task’s MPI rank. For each time step in the 1D
stencil, a task will communicate to its two left neighbors
and two right neighbors (three-point stencil). The com-
munication step consists of sending and receiving from
these neighbors. A task will only proceed to its next step
after both the sends and receives for the current step are
complete.

The 2D stencil has a two-dimensional logical space
where a logical address is calculated as
x = rank/dimension, y = rank mod dimension.
Communication occurs with all eight neighbors (includ-
ing diagonal neighbors) for a nine-point stencil. See 1D
stencil for other details.

The 3D stencil has a three-dimensional logical space
where a logical address is calculated as
x = rank mod dimension, y = rank/dimension,
z = rank/dimension2. Communication occurs with
all 26 neighbors (including diagonal neighbors) for 27-
point stencil. See 1D stencil for other details.

The NAS Parallel Benchmark (NPB) codes were se-
lected from NPB version 3.2.1 for MPI [9]. The CG,
EP, FT and IS codes worked without problems on BG/L
while the remaining benchmarks (BT, DT, LU, MG, SP)
experienced compilation or execution problem, some of
which may be unique to the BG/L system environment
on the compute nodes with their proprietary non-POSIX
compliant kernel and libraries. (We expect to eventually
have results for all of the NPB.)

Raptor is a framework implementing a modern
Godunov method for shock-flow simulations in a
C++/Fortran hybrid with optional adaptive mesh refine-
ment (AMR) support [3]. It supports MPI and Pthreads
parallelization and communicates on a 27-point stencil
using asynchronous communication. We utilize the MPI
capabilities in a hydro-dynamics simulation using the
same input while varying the number of processors.

Experiments are conducted on a 1024-node BlueGene/L
(BG/L) machine. This architecture has severe limita-
tions on memory [1]. Hence, any traces generated may
only consume small amounts of the available core mem-
ory. The memory consumption of the compression sub-
system is measured and reported as task-0 (root node of
the reduction tree), minimum, maximum, average value.
Furthermore, the size of trace files is reported. Two sets
of experiments were conducted. First, the number of
processors (nodes) were varied to assess the effects of
instrumentation (PMPI wrappers) on trace file sizes and

memory usage. The number of processors was chosen
as powers of two (for NPB codes and raptor) ornd pro-
cessors (for the stencil benchmark) for ad-dimensional
stencil with a base ofn, e.g., 73 = 343 nodes. Second,
the number of time steps is varied to assess the effect of
the number of iterations on trace file sizes.

Additional experiments were conducted to assess the
cost of writing compressed traces, one per node, to a
parallel file system. While cross-node merging primar-
ily inflicts time overhead, writing per-node traces to the
file system may result in large storage and I/O require-
ments. We also measured the time for writing to I/O
nodes over a Lustre parallel file system, which is the
fastest global file system available on this BG/L ma-
chine.

5. Experimental Results
We conducted three sets of experiments to assess the ef-
fectiveness of our compression techniques, to determine
the overhead of cross-node compression and to verify
the correctness (lossless compression) of our approach
during replay.

5.1 Trace Sizes and Memory Requirements

Fig. 5 depicts the size of trace files and the memory re-
quirements on a per-node basis on BlueGene/L (BG/L)
for the tests described in the previous section.

Figures 5(a), 5(c) and 5(e) depict the trace file sizes of
the 1D, 2D and 3D stencil codes, respectively, for vary-
ing stencil sizes (number of nodes). Trace sizes are re-
ported on a logarithmic scale for the nodes (a) without
compression, (b) only with task-level (intra-node) com-
pression and (c) with the additional step of inter-node
compression. We observe a significant increase of two
orders of magnitude in storage space without compres-
sion in the tested node range. Task-level compression
reduces this overhead by two orders of a magnitude, but
the increasing trend in size over the number of nodes
is retained (increase of two orders of magnitude again).
Hence, neither approach is scalable with the number of
nodes. The fully compressed trace sizes, in contrast, are
constant in size independent of the number of nodes,
which illustrates that our combined intra- and inter-node
compression technique scales well. The resulting trace
sizes, 2KB, 4KB and 12KB, for 1D, 2D and 3D stencils,
concisely represent MPI events. This is in contrast to
0.3-19MB, 0.3-29MB and 2MB-61MB for the respec-
tive stencil sizes in the absence of compression (ranges
for the smallest and largest stencil sizes). Increases be-
tween stencil sizes reflect the number of distinct patterns
required to represent corner nodes, boundary nodes and
interior nodes as RSDs.
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(a) 1D Stencil Trace File, Varied Number of Nodes
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(b) 1D Stencil Memory Usage, Varied Number of Nodes
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(c) 2D Stencil Trace File, Varied Number of Nodes
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(e) 3D Stencil Trace File, Varied Number of Nodes
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Fig. 5. Trace File Size and Memory Usage per Node on BlueGene/L



As BG/L is a memory-constrained architecture with
only 512 MB RAM per node, keeping the memory pres-
sure low during on-the-fly compression is as important
as the resulting trace file size. Figures 5(b), 5(d) and
5(f) depict the memory usage reflecting the intra- and
inter-node compression components for the 1D, 2D and
3D stencil benchmarks, respectively, over varying sten-
cil sizes. Minimum, average, maximum and task-0 (root
node) memory usage is reported over all nodes. Within
each of these categories, memory usage is constant over
different node sizes, which reinforces the claim of scal-
ability of the approach. The average usage decreases as
the number of nodes grows, which is a result of increas-
ing height in the reduction tree where more nodes are
at lower levels performing less inter-node compression
work and, hence, requiring less memory. Besides the av-
erage, all other numbers remain constant when the num-
ber of nodes grows. The memory requirements at task-0,
the root node, are generally close to the high watermark
of memory usage, though, occasionally, a node at level
1 (child of the root) may require insignificantly more
memory. We measured a minimum (maximum) memory
usage of 1.6KB (6.4KB), 1.6KB (11.4KB) and 1.4KB
(26KB) for the 1D, 2D and 3D stencil problems, respec-
tively. Notice that this metric includes the merge queues
for intra- and inter-node compression but excludes stor-
age of the actual trace, which is reported as trace file
sizes, as discussed before.

Figure 5(h) depicts the memory usage for Raptor con-
firming most of the prior benchmark observations for a
complex application code. In addition to the previous
observations, a slight increase in the maximum mem-
ory usage of 38MB to 55MB for 128 and 1024 nodes,
respectively, can be seen. This increase is due to mi-
nor inefficiencies of cross-node compression currently
being addressed, as is the total amount of memory re-
quired due to the severely memory-constrained nature
of BG/L nodes.

Figures 6(c) and 6(g) depict the trace file size for the
NPB codes EP and IS, respectively. Without or with
intra-node compression only, trace sizes increase expo-
nentially. Yet, Full compressing with cross-node merg-
ing results in constant trace sizes. There are only few
and very regular communication calls in these codes,
i.e., only collectives, except for a pipeline of sends and
asynchronous receives along the chains of ranks. Fig-
ures 6(d) and 6(h) depict the memory requirements for
full compression. The amount of memory used remains
unchanged irrespective of the position of a node in
the compression tree. Hence, our technique compresses
well without additional memory cost for upper-level
nodes in the tree.

Figures 6(a) and 6(e) depict the trace file size for the
NPB codes CG and FT, respectively. CG requires sig-
nificantly larger trace sizes without compression due
to a large number of point-to-point communications,
some of which are asynchronous. FT, on the other hand,
benefits more significantly from cross-node compres-
sion, which is due to all-to-all collectives that are con-
solidated across nodes. Both codes show the smallest
trace sizes for full compressing. Nonetheless, all tech-
niques show exponential increases (at different magni-
tudes), which indicates that there is room for improve-
ment to obtain near-constant trace sizes. We have found
shortcomings in our intra-node compression that later
prevents cross-node merging,e.g., when absolute refer-
ences instead of relative indices are used. Figures 6(b)
and 6(f) depict the corresponding memory requirements
for full compression, which vary significantly (one to
two orders of magnitude) depending on the node lo-
cation in the reduction tree. This reconfirms the prior
observation that inefficiencies in the intra-node scheme
adversely affect cross-node merging at this time.

Figure 5(g) depicts the trace file size as the number of
time steps is varied for the 3D stencil problem,i.e., as
the iteration bound of the outer-most convergence loop
is varied while the number of nodes remains constant
at 125 processors. While the uncompressed trace does
not scale, both task-level (intra-node) and full compres-
sion provide constant-size, scalable results. This con-
firms that the number of loop iterations has no effect on
compression after RSDs and PRSDs are formed, irre-
spective of inter-node compression. Results for the other
benchmarks are equivalent and, therefore, omitted here.

5.2 Verification of Correctness during Replay

Additional experiments were conducted to verify the
correctness of our approach. We replayed compressed
traces to assess if MPI semantics are preserved, to verify
that the aggregate number of MPI events per MPI call
matches that of the original code and that temporal
ordering of MPI events within a node are observed.
The results of communication replays confirmed the
correctness of our approach to this respect.

During replay, all MPI calls are triggered over the same
number of nodes with original payload sizes, yet with
a “random” message payload (content). This inflicts
comparable bandwidth requirements on communica-
tion interconnects, albeit with potentially different con-
tention characteristics. Communication replay also pro-
vides an abstraction from compute-bound application
performance, which is neither captured nor replayed.
This makes the replay mechanism extremely portable,
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even across platforms, which can benefit rapid proto-
typing and tuning.

The replay mechanism opens up tremendous opportu-
nities beyond the verification of correctness. As men-
tioned before, it may be utilized for rapid prototyping of
communication tuning as well as for assessing commu-
nication needs of future platforms for large-scale pro-
curements. We are currently pursuing these directions,
among others to improve communication performance
in a systematic, yet experimental manner on BG/L and
to support procurement of large scale machines, possi-
bly in the context of current NSF large-scale computing
infrastructure calls.

6. Related Work
RSDs have been used to describe data references in a
loop [4]. The idea of PRSDs originates from on-the-
fly memory trace compression [5]. While that work
introduced the general concepts and an algorithm for
compressing regular data references, our work uses
an entirely different algorithm. Our task, compressing
events composed of MPI call IDs and their parameters,
is considerably more complex. We also use semantic-
specific encodings, such as for MPIWaitsome, which
are unique to the trace domain. Furthermore, our work
is the first one to utilize the structural information re-
tained during compression,i.e., our replay mechanism
relies on this unique compression property.

The mpiP tool consists of a lightweight profiling library
for MPI applications that collects statistical information
about MPI functions,i.e., aggregate metrics are reported
[8]. Hence, structural information and event ordering
are not preserved. There are many other tools that report
aggregate information, often based of the profiling layer
of MPI, as is the case with mpiP. None of these tools are
suitable for lossless tracing and later replay.

Vampir is a commercial tool set including a trace gen-
erator and a display engine to visualize MPI communi-
cation. However, traces are generated in local files such
that total trace file size increases linearly with both the
number of MPI calls made and the number of tasks. This
limits the applicability as scalability is compromised.

Paraver and Dimemas is an MPI tracing tool set from
the University of Barcelona. Paraver provides function-
ality similar to Vampir and its trace generator has sim-
ilar limitations. Dimemas is a discrete event based net-
work performance simulator that uses Paraver traces as
input. It is the most similar existing tool to our replay
mechanism. However, it does not provide the ability to
replay traces on actual systems. Instead it uses a proces-
sor ratio and network latency and bandwidth parameters

to simulate the application’s MPI usage on a theoretical
alternative system. Our tool set provides scalable MPI
tracing; the traces could be used in a discrete event sim-
ulator like Dimemas as well as with our replay mecha-
nism.

MRNet is a software overlay network that provides effi-
cient multicast and reduction communications for paral-
lel and distributed tools and systems [6]. MRNet uses a
tree of processes between the tool’s front-end and back-
ends to improve group communication MRNet intro-
duces additional complexity, which we decided to avoid
in our initial prototype. MRNet would support on-the-
fly and asynchronous trace compression across tasks.
By using MRNet, we would further reduce the memory
pressure of our trace generator. We plan to use MRNet
in the final version of our tool set.

A characterization of MPI communication patterns for
the NAS parallel benchmarks has determined that com-
munication end-points are, if not static, almost exclu-
sively persistent and hardly even dynamic [7]. Here,
persistent denotes a set of end-points that, once deter-
mined dynamically, does not change anymore. This is
consistent with our findings and explains why our com-
pression techniques are scalable within the domain of
SPMD programs.

7. Conclusion
One of the central problems in petascale computing is
posed by the requirement for communication to scale to
hundreds, if not thousands of nodes. However, commu-
nication patterns of large-scale scientific applications
are often too complex to analyze at the source-code
level. While tools exist to analyze aggregate metrics sta-
tistically in a scalable manner, temporal ordering and
structural information are generally lost in such an ap-
proach. Other tools employ traces, which grow signifi-
cantly in size as the problem size (number of iterations
to convergence) increases and become harder to commit
to global file systems as the number of nodes increases.

In contrast to prior work, we promote a trace-driven ap-
proach to analyze MPI communication that scales by
extracting full communication traces of near constant
size regardless of the number of nodes while preserv-
ing structural and temporal-order information of events.
We employ representations of regular section descrip-
tors, power-sets of them and a multitude ofrelativeen-
coding techniques to enable compact representations of
MPI event sequences. A first intra-node compression is
followed by inter-node compression over a reduction
tree to result in a single trace file that fits into a frac-
tion of the core memory of a node. Experimental results
on BlueGene/L confirm our claim of near constant size



compression for microbenchmarks and a full-sized ap-
plication. We assessed the correctness of our approach
by verifying temporal orderings and aggregate counts
of MPI events using our unique replay mechanism. This
replay mechanism may aid performance tuning of MPI
communication and facilitate projections of network re-
quirements for future large-scale procurements.

To the best of our knowledge, our contributions of near
constant-size representation of MPI traces in a scalable
manner combined with deterministic MPI call replay
are without any precedence.
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