
Hybrid Leakage and Voltage Reduction under EDF Scheduling

Yifan Zhu Frank Mueller

Department of Computer Science/Center for Embedded Systems Research
North Carolina State University, Raleigh, NC 27695-7534

mueller@cs.ncsu.edu, phone: +1.919.515.7889, fax: +1.919.515.7925

Abstract
Recent trends in CMOS fabrication have resulted in
an increasing need to conserve power of processors.
While dynamic voltage scaling (DVS) is effective in
reducing dynamic power, the latest dies are increas-
ingly dominated by static power. For such processors,
voltage/frequency pairs below a critical speed result in
higher power consumption than entering a processor
sleep mode. Yet, computational demand above this criti-
cal speed is best met by DVS techniques while still con-
serving power.

We develop a novel combined leakage and DVS
scheduling algorithm for real-time systems, DVSleak,
based on earliest-deadline-first scheduling (EDF). Our
method trades off DVS with leakage, where the former
slows down execution while the latter intelligently de-
fers dispatching of jobs when sleeping is beneficial. We
further capitalize on feedback knowledge about actual
execution times to anticipate computational demands
without sacrificing deadline guarantees. This combined
DVS/leakage algorithm results in an average of 45% ad-
ditional power savings over a leakage-oblivious DVS al-
gorithm in experiments. Its benefits over prior schemes
are significant in that it neither requires special hard-
ware support beyond DVS and sleep modes, nor does
it assume execution times equal to their worst-case
bounds.

1. Introduction
Power consumption in a CMOS-based processor con-
sists of three elements: dynamic, static, and short-circuit
power [11]. Most of the previous work on dynamic volt-
age scaling (DVS) only considers dynamic power con-
sumption of a CMOS circuit while ignoring the static
portion [16, 13, 1, 8, 3, 4, 12, 15]. Static power con-
sumption stems from leakage current that exists even in
the absence of logic operations of a circuit. As pointed
out by Jejurikar et al. [7], when voltage supply is re-
duced below a certain threshold value, static power ex-
ceeds the dynamic power and becomes the dominant
cause of power consumption per se. The processor fre-
quency associated with this threshold voltage is called
the critical speed. Above the threshold voltage, the to-

tal energy per cycle increases as the processor voltage
scales up and can operate a at higher frequency resulting
in higher overall performance. But below the threshold
voltage, the total energy per cycle also increases as the
voltage scales down, even through only lower frequen-
cies with lower performance can be sustained. This re-
sult leads us to re-consider two issues when combining
DVS and leakage awareness:

1. It is not energy-efficient to scale down processor
voltage and frequency to an extremely low level, if
that level is below the threshold value / below the
critical speed.

2. Due to leakage power, forcing the processor into
sleep mode may be more energy-efficient than keep-
ing the system idle at a low frequency as long as
the idle period is long enough to compensate for the
shutdown overhead.

Any combined DVS/leakage policy has to take into ac-
count the above issues and should make decisions ac-
cording to the actual power consumption characteris-
tics. These issues have been addressed in previous work
where both static and dynamic power consumption are
reduced [6, 10, 7]. These approaches either assume that
all tasks are running at the same speed to conserve static
power. Or, they use off-line schemes without fully ex-
ploiting the power saving potentials. Lee et al. further
use a greedy method to locally maximize the duration
of alternating idle and busy periods based on the worst-
case execution time [9]. Since actual execution times
often diverge considerably from the WCET, a concep-
tually busy period is actually interspersed with dynamic
slack due to early completion of jobs. The potential of
dynamic slack remains unused. Jejurikar et al. assume
that a power manager, implemented as a controller in
hardware, handles interrupts and sets timers when new
tasks are released [7]. In contrast, our scheme does not
require any special hardware support beyond DVS and
sleep modes, nor does it assume execution times equal
to their worst-case bounds.

In this paper, we present an on-line combined
DVS/leakage control scheme that minimizes both static
and dynamic power consumption. This scheme profits



from our feedback-DVS algorithm that exploits a modi-
fied earliest-deadline-first (EDF) scheduling variant. It
automatically chooses between voltage scaling and a
processor sleep mode according to the run-time execu-
tion scenario of tasks. Voltage scaling is used when dy-
namic power dominates the total power consumption.
Conversely, a processor sleep mode is entered when
static power dominates the total power consumption.
Our scheme also locally adjusts the dispatch time of a
task so that adjacent tasks are either bundled together or
scattered apart to increase the opportunity of entering
the sleep mode.

The rest of the paper is organized as follows. Section 2
introduces the system model. Section 3 presents the mo-
tivation for combined leakage reduction and DVS. Sec-
tion 4 discusses the relationship between speed reduc-
tion and task delaying. Section 5 details the delay policy
of DVSleak, our algorithm. Section 6 shows experimen-
tal results based on simulation. Section discusses related
work, and Section 8 summaries the paper.

2. System Model
This paper targets hard real-time systems with a peri-
odic, preemptive and independent task model. There are
n periodic tasks in the system. Each task Ti in the task
set is defined by a triple (Pi, Di, Ci), where Pi, Di and
Ci are the period, relative deadline, and worst-case exe-
cution time (WCET) of Ti, respectively. While a task
can execute at different processor frequencies, Ci al-
ways refers to the execution time measured at the maxi-
mal processor frequency. We also assume that Di=Pi in
our model. The periodically released instances of a task
are called jobs. Tij is used to denote the jth job of task
Ti. Its release time is Pi ∗ (j − 1) and its deadline is
Pi ∗ j. We use cij to represent the actual execution time
of job Tij . The hyperperiod H of the task set is the least
common multiple (LCM) among the tasks’ periods.

We use the power model of a CMOS circuit first pre-
sented by Martin et al. [11]. The power consumed in
a processor consists of three portions: dynamic power
PAC , static power PDC , and short-circuit power. Short-
circuit power is only consumed during signal transi-
tions and, in practice, is generally negligible [11]. Sim-
ilar power models are also used in related work [7, 14].
Hence, we only consider static and dynamic power in
our model. Dynamic power is given by:

PAC = Ceff V 2
ddf (1)

where Ceff is the average switched capacitance per
cycle, Vdd is the supply voltage, and f is the processor

clock frequency. Static power consumption is given by:

PDC = VddIsubn + |Vbs|(Ijn + Ibn) (2)

where Isubn is the sub-threshold leakage current, Ijn

and Ibn are the drain and source to body junction leak-
age currents.

A DVS-enabled processor is capable of operating at
multiple frequency and voltage levels. Reducing the
voltage also reduces the highest stable frequency sup-
ported by the system. Since the processor frequency de-
termines the speed of the system, we use these two terms
interchangeably in this paper. Static and dynamic power
can be traded off against each other in practice. It has
been shown that there exists a threshold voltage Vth be-
low which execution is no longer energy efficient, i.e.
the voltage should not be scaled below this threshold
value [7]. From the threshold voltage Vth, one can de-
rive a corresponding threshold frequency fth, the crit-
ical speed. Instead of operating at a speed below the
threshold value, it is more power efficient to execute
tasks at or above the critical speed. The transition into
and out of a sleep mode does not come without cost.
Such a transition incurs additional energy consump-
tion, termed sleep overhead from here on. This over-
head is mostly due to warm-up of resources (particu-
larly caches) when resuming execution. Hence, sleep-
ing is only a viable option when the energy saved by
sleeping exceeds that of the sleep overhead itself.

In the following, we assume a deep sleep mode during
which only the interrupt line of a processor remains re-
ceptive. Other parts of the processor, including caches,
are turned off and will lose their state. In our model,
we assume that the processor consumes a negligible
amount of energy when in sleep mode. Power consump-
tion in the sleep mode is documented as being three
orders of a magnitude lower than the power consump-
tion in active mode [5]. Transitioning into and out of a
sleep mode incurs, as a side-effect, cold misses in cache
among other resource refresh overheads. Let Esd be the
additional energy per sleep overhead. Let the overhead
of entering and exiting the sleep mode also be included
in the sleep threshold derived below.

Let pidle be the power consumption when the system is
idle. Then, tth = Esd/pidle defines a sleep threshold. It
is energy efficient to enter sleep mode if and only if the
slack time in the schedule exceeds tth. Otherwise, the
processor should remain idle at a power-efficient DVS
level. These parameters are platform dependent but are
available to the scheduler at system initialization.

In the following section, we describe the DVSleak al-
gorithm, which is integrated into the task scheduler and



contains policies for reducing both static and dynamic
power.

3. Motivation
Our leakage-aware DVS algorithm is based on
feedback-DVS described in detail elsewhere [18, 19].
Instead of executing each task at a uniform speed, a
task’s worst-case execution time is divided into two sub-
tasks, TA and TB, as shown in Figure 1. Their worst-
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Figure 1. Task Splitting

case execution time under the maximal frequency is CA

and CB , respectively. These two subtasks are allowed
to execute at different frequency and voltage levels. TB

always executes at the maximum frequency level fmax,
which allows TA to execute at a lower frequency level
fA than it could without task splitting. Based on this
frequency,

αA = fA/fmax (3)

is the so-called scaling factor by which execution speed
is reduced. By splitting each task into at most two sub-
tasks, we incur at most one speed change for every task
and keep the impact of voltage and frequency switching
overhead to a minimum. The details of the feedback-
DVS scheme can be found in [18, 19]. A task is split in
such a way that its anticipated execution can complete
within the TA portion. If its execution exceeds the antic-
ipated value, there is still enough time reserved in TB

to meet its deadline. With this scheme, we can safely
scale the frequency of TA exploiting the available slack
while TB executes at the maximum frequency following
a last-chance approach [2]. In addition, feedback is used
to collect each task’s previous execution history for the
scheduler to assist in making scheduling decisions for
future tasks. A task’s expected actual execution time is
used to determine the length of the TA subtask of the
next instance. In the following, a task’s expected actual
execution time is also used in our delay policy to decide
when to delay the task’s release time.

To make the DVS algorithm leakage aware, our
feedback-DVS scheme takes into account the impact of
dynamic power as well as the threshold voltage to con-
sider the effect of static power. A naı̈ve scheme is to
mark all voltage and frequency levels below the thresh-
old as invalid, so that whenever the DVS algorithm

wants to assign a speed below that threshold, it uses
the threshold value instead. A task then runs at a higher
speed than its original assignment. It completes earlier
providing more slack (idle time) prior to its deadline. As
long as the slack is long enough to compensate for the
shutdown overhead, the DVS scheduler can put the pro-
cessor into a sleep mode during that interval to further
reduce the impact of the static power consumption.

T1 T2 T3

t1 t2 t3 t4

idle

t

idle

(a) DVS without Delay Policy

T1 T3

t1 t2 t3 t4

T2

sleeping
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(b) DVS with Delay Policy using WCET
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(c) DVS with Delay Policy using Actual Execution Time

Figure 2. Combining DVS and Leakage Savings

Unfortunately, such a naı̈ve scheme does not fully ex-
ploit the energy saving potential. Consider the three
tasks depicted in Figure 2(a). Task T1 completes at time
t1. Task T2 is released at time t2 and completes at time
t3. Task T3 is released at time t4. Let the lengths of both
idle intervals [t1, t2] and [t3, t4] be less than the thresh-
old tth. Hence, the processor is kept in an idle state dur-
ing the above intervals instead of entering a sleep mode.
Both static and dynamic power consumption exist in the
idle state. The processor energy consumption in an idle
state, although lower than the energy consumption in a
non-idle running state, is still significantly larger than
the energy consumed in sleep mode.

To further exploit the savings for both static and dy-
namic power, we adapt the schedule of the system to re-
duce static leakage as much as possible. Consider shift-
ing task T2 to line up with the release time of T3 as
depicted in Figure 2(b). T2 is now activated at time
t2′. The interval [t1, t

′

2] then exceeds the sleep thresh-
old value tth so that the processor enters a sleep state
during that interval. Static power is almost eliminated
while sleeping. The only energy consumption the pro-
cessor pays is dynamic power as well as the wakeup
overhead. Figure 2(b) is the ideal case where T2 com-



pletes exactly before the release of T3, thus maximizing
the processor sleep period. Even if T2 takes less cycles
than expected and completes earlier, delaying the acti-
vation time of T2 costs less energy than the non-delay
policy. As shown in Figure 2(c), if T2 completes earlier,
the processor enters the idle state till the release time of
T3. The energy saved in [t1, t

′

2] due to sleeping makes
the delay policy superior to the non-delay schedule, as
shown in Figure 2(a).

The above example illustrates the benefit of the delay
policy in terms of reduced leakage in a DVS-aware sys-
tem. In the following, we present an algorithm that com-
bines this delay policy with dynamic slack reclamation
and feedback of actual execution times.

4. Speed Reduction vs. Task Delaying
DVS technology modulates the processor speed accord-
ing to the amount of slack or idle time in the sched-
ule. The existence of slack is either due to the under-
utilization of system workload, which can be deter-
mined statically. Or, it is due the early completion of
tasks, which is determined dynamically. A dynamic
voltage scaling algorithm, when integrated with leak-
age saving schemes, needs to address two issues. First,
it needs to determine how to distribute the amount of
slack between speed reduction and task delaying. Sec-
ond, it needs to decide if the release time of a job should
be delayed. This section focuses on the first challenge
while the next section addresses the second one.

Consider the example in Figure 3(a). Lowering the pro-
cessor voltage and frequency, i.e., reducing the applica-
tion speed, decreases the amount of slack available in
the schedule, as depicted in Figure 3(b). Similarly, de-

t
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Ti
t

slack

(a) Schedule without DVS

(b) Speed Reduction

(c) Task Delaying

sleeping

Figure 3. Speed Reduction vs. Task Delaying

laying the activation time of a task by putting the pro-
cessor into a sleep mode also decreases the amount of
slack, as depicted in Figure 3(c). At any time during ex-
ecution, the amount of slack is always a shared resource

between these two competing operations. The DVS al-
gorithm has to define a policy to determine the distri-
bution of the slack between these two schemes. This
dilemma can be solved based on the critical speed (fre-
quency). We prefer a lower frequency over delaying a
task as long as the resulting frequency is higher than
the critical speed, i.e., if such a choice results in lower
energy consumption. Conversely, when our frequency
scaling scheme suggests a speed lower than the criti-
cal speed, we default to the critical speed and activate
the delay scheme. This policy reflects a best effort to
reduce power. According to the above analysis, when-
ever a task completes and a new task Ti is released, our
DVS algorithm uses a feedback-EDF scheme (see [18])
to calculate a frequency level fi. The actual frequency
f assigned to task Ti is defined by:

f = min(fi, fth) (4)

Given the actual frequency of task Ti, a corresponding
voltage can also be determined. But before task Ti is
released, the DVS scheduler has to decide whether or
not the release time of the task needs to be delayed. This
issue is detailed in the following section.

5. Delay Policy
The example in Section 3 seems to imply that a task
should always be delayed as much as possible against
its deadline. This is also the strategy used in previous
work [7, 14]. Such an intuitive approach, however, is not
always the best solution. This is due to the variability of
the actual execution time of tasks. Figure 2(b) shows
the case where the execution time of task T2 equals its
worst-case execution time. In the real world, the actual
execution time of a task is generally shorter than its
worst-case execution time.

A schedule without delay of Ti’s release time leaves
the processor idle in the beginning. Some time later,
the processor enters a sleep mode, as shown in Figure
4(a). Figure 4(b) depicts the effect of a delayed sched-
ule, where the processor enters the sleep mode first and
later on incurs a potentially longer idle period, thereby
consuming more power than in case (a). This effect is
due to the delay policy, which relies on the WCET in-
stead of the actual execution time of Ti to determine the
delay. When a task completes earlier than expected, it
produces additional dynamic slack, which significantly
reduces the benefit of the delay policy.

Taking this short-coming into consideration, we present
the following delay policy as part of our DVSleak al-
gorithm. We observe that at any time t, the DVS algo-
rithm can infer the amount of slack st in the schedule.
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Figure 4. Delay vs. Non-delay

If the ready queue of the scheduler is not empty, the de-
lay policy remains inactive. As shown in Figure 5, the
next task Ti will be released at time tr (tr ≥ t) accord-
ing to the standard EDF scheduling algorithm. With the
knowledge of st, the feedback-DVS algorithm assigns a
processor frequency fA and a scaling factor αA, as de-
fined in Equation 3, for TA, which is the first subtask
of Ti in the task splitting scheme. Since the number of
execution cycles of Ti is also split into two parts, we
have

CA

αA

+ CB =
Ci

αi

(5)

where αi is a unified scaling factor of the entire task
(as if the task had not been split). By introducing αi,
the delay policy of the following task can be easily
integrated into any DVS algorithm. From Equation 5,
we derive αi:

αi =
CiαA

CA + CBαA

(6)

Let ci be the expected actual execution time of Ti pro-
vided by a feedback scheme based on the execution
times of previous instances of task Ti. The latest time
that Ti can complete without missing its deadline is
given by:

td = t + st + Ci (7)

where Ci is the WCET of Ti. Time td can also be
represented as the minimum of the absolute deadline of
the task and the release time of the next task in the EDF
schedule after Ti, i.e.,

td = min(di, tri+1
) (8)

Notice that if the next task is released together with Ti,
there will only be one idle period prior to Ti.

We use the following rule to determine the modified
release time of Ti.

1. Task Ti is released at time tr (as under standard
EDF) if and only if

t td

frequency

Ti
f_i

C_i / a_i

tr

s1 s2

Figure 5. Rules for Task Delaying

(a) td − t − Ci/αi ≤ tth, or,

(b) td − t − Ci/αi > tth and tr − t < tth and
Ci/αi − ci ≥ tr − t.

2. Task Ti is released at time td − Ci/αi (later than
under standard EDF) if and only if

(a) td − t − Ci/αi > tth and tr − t ≥ tth, or,

(b) td − t − Ci/αi > tth and tr − t < tth and
Ci/αi − ci < tr − t.

Rule 1 covers the cases where the release time of task
Ti is not delayed. Conversely, Rule 2 captures the cases
where it should be delayed. Rule 1(a) applies when the
total amount of slack time in [t, td] (equivalent to s1+s2

in Figure 5) is less than the sleep threshold tth. Task
Ti is not delayed since there is not enough slack to
benefit from sleeping, regardless of whether or not the
task is delayed. Rule 2(a) applies when the total amount
of slack is greater than the sleep threshold tth and the
initial slack s1 is at least as large as this threshold, which
ensures that sleeping will be beneficial. By delaying Ti’s
release time to td − Ci/αi, we increase the amount
of slack prior to T’s execution as much as possible to
prolong the initial sleep duration.

Rule 1(b) and Rule 2(b) capture cases where the length
of the first slack s1 is less than the threshold tth while
the overall slack s1 + s2 exceeds this threshold. In these
cases, delaying the release time of task Ti does not al-
ways result in the longest sleep duration. Figures 4(a)
and (b) illustrate the best efforts reflected by Rules 1(b)
and 2(b), respectively. The decision is, in fact, based
on the anticipated portion of unused execution time
(WCET - actual execution time). If this portion is equal
or larger than slack s1, it is beneficial to accumulate
more slack (due to early completion within Ci/αi − ci)
with s2, which does not require the task to be delayed,
as reflected in Rule 1(b). Conversely, if the unused por-
tion is less than slack s1, late slack (s2) is merged with
early slack (s1) by shifting the execution of T to the
latest possible point in time, which lengthens the bene-
ficial sleep duration prior to the shifted task, as reflected
in Rule 2(b). This heuristic approach is relatively simple
but still yields promising results, as will be shown. No-
tice that ci, the expected actual execution time of task
Ti, is provided by the feedback controller according to
previous execution history (see [18] for details).



We combine this task delay policy with the existing
DVS algorithm. By enhancing the algorithm with the
delay policy, we still guarantee the feasibility of the
schedule for the task set, as stated by the following
theorem.

THEOREM 1. If a feasible schedule exists for a task
set under EDF scheduling, the modified schedule after
applying the delay Rules 1 and 2 is guaranteed to be
feasible as well.

PROOF. For any task Ti in the task set, let di be its
absolute deadline. If T meets its deadline under EDF,
then its release time tr satisfies:

tr + Ci + st ≤ di (9)

According to the above relationship and Equation 7, we
know that td ≤ di. Delay Rules 1 and 2 either release Ti

at its original EDF time tr or at time t′r = td−Ci/αi. In
the former case, Ti will not miss its deadline since Ti is
scheduled as in conventional EDF. In the later case, let
Ti’s worst-case execution time after frequency scaling
be C ′

i. Then, C ′

i = Ci/αi. In the worst case, Ti will
complete before

t′r + C ′

i = td − Ci/ft + Ci/αi = td ≤ di (10)

since it will be activated at its new release time t′r and no
other tasks are ready in [t, td] due to Equation 8. Hence,
Ti again completes before its deadline and the task set
can still be feasibly scheduled.

6. Experiments
We implemented our leakage-aware DVSleak algorithm
in a simulation environment, using the power model de-
scribed in Section 2. We assume the processor has four
discrete frequency levels, which are 25%, 50%, 75%
and 100% of fm, which is the maximal frequency sup-
ported by the processor. We use the same approach as in
[7] to compute the corresponding power consumption
as 550mW , 650mW , 990mW and 1480mW for fre-
quency levels 25%, 50%, 75% and 100%, respectively.
The processor enters an idle frequency whenever none
of the tasks are ready. As in previous work [7, 14], the
idle power is assumed to be 240mW, Esd is 483µJ , and
tth is 2ms. The threshold frequency level is set to 41%
of fm.

In order to assess the energy saving potential of our
combined leakage-aware DVSleak algorithm, three dif-
ferent algorithms are implemented in the simulator.

1. A pure feedback-DVS algorithm without any leak-
age power saving [18]. The algorithm does not ob-
serve trade-offs due to the threshold frequency, i.e.,
the frequency can be scaled below this threshold.

2. A feedback-DVS algorithm with a sleep policy. This
algorithm puts the processor into sleep mode when-
ever the idle slack in the schedule is longer than
the sleeping threshold. The algorithm exploits the
threshold frequency in that no tasks will be scaled
below that frequency. Hence, a frequency of 25% of
fm will never be used. However, this algorithm does
not contain any delay policy to postpone the release
of a task.

3. DVSleak, a hybrid feedback-DVS/sleep algorithm
with a delay policy, as outlined in the last section.
This algorithm is the most aggressive one. It not
only puts the processor into a sleep mode. It also
delays the release time of tasks according to our
delay rules. The delay rules increase the length of the
sleep duration, which saves more energy than other
algorithms. Our experimental results show that this
is mostly (but not always) the case. DVSleak also
exploits knowledge about the threshold frequency.

A suite of task sets with synthetic CPU workloads was
used in the experiment. Each task set contains three
independent periodic tasks whose worst-case execution
time varies from 0.1 to 0.9 with an increment of 0.1. The
actual execution time of a task follows four different
patterns.

1. In pattern one, a task’s actual execution time remains
constant between different jobs.

2. In the second pattern, the actual execution time of a
job starts at 50% of the task’s WCET before spiking
to a peak value cm every 10th job and then reced-
ing with a decay of ci = 1/2(t−cm) again. This pat-
tern simulates event-triggered activities that result in
sudden, yet short-term computational demands due
to complex inputs often observed in interrupt-driven
systems.

3. The third pattern differs from the second in its more
gradual decay function ci = cmsin(t + π/2). This
pattern simulates events resulting in computational
demands in a phase of subsequent complex inputs
(with a decaying tendency).

4. In the fourth execution pattern, the actual execution
time of the jobs alternates between two random ex-
tremes every 10 jobs with an average execution time
of ci = ±cmsin(t). This pattern represents peri-
odically fluctuating activities with gradually increas-
ing and decreasing computational needs around ex-
tremes.

For each execution pattern, the task sets’ WCETs were
uniformly distributed in the range [10,1000]. Each
task’s period was chosen so that the worst case utiliza-
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(b) c=50%WCET
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(c) c=75%WCET
Figure 6. Energy Savings for 3 Tasks, Pattern One under Different Actual Execution Times (Constant) and Utilization
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(a) Avg. c=25%WCET
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(b) Avg. c=50%WCET
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(c) Avg. c=75%WCET

Figure 7. Energy Savings for 3 Tasks, Pattern Two under Different Actual Execution Times (Variable) and Utilization

tion of the task set varies from 0.1 to 1.0 in increments
of 0.1.

In order to make a comparison, we also calculate a
lower bound on energy for each utilization case. In
the schedule for the lower bound, the entire task set
runs at either the ideal optimal speed or the critical
speed, whichever the greater. The number of times the
processor gets into sleep or idle state is also minimized
by assigning a longest busy interval for the task set,
which equals the maximal response time of the longest
period task. Such assumptions make it possible to derive
a lower bound on energy overhead for processor state
transitions.

Figure 6 depicts the energy consumption of the three
different algorithms with execution pattern one, as well
as the lower bound energy consumption for each uti-
lization case. We see significant energy savings at low
utilization because of the existence of large amounts of
slack. Putting the processor into sleep mode saves as
much as 80% more energy than the pure DVS algo-
rithm, which leaves the processor running in idle mode,
sacrificing both dynamic and static energy. When the
utilization increases to 0.6 and larger, the sleep policy
alone is not attractive since there is not enough ad-hoc
slack in the schedule anymore. On average, only 10%

more energy is saved over pure DVS. DVSleak with its
combined sleep and delay policy, in contrast, shows its
strength by saving 50% more energy on average than
the pure DVS scheme and 40% more energy on average
than the pure sleep policy. It is interesting to note that
the delay policy performs at par with the sleep policy for
several cases, such as the 0.1 and 0.2 utilization cases.
Figure 6(b) and 6(c) also show that the delay policy even
costs more energy than the non-delay policy at 0.9 uti-
lization, where already limited slack is further reduced
by the delay policy, which results in higher processor
frequencies than that of a pure sleep policy.

Figure 7 depicts the energy consumption of these three
DVS algorithms under execution pattern two. In con-
trast to pattern one, execution times vary dynamically
among different jobs, which results in higher energy
consumption than pattern one in corresponding cases.
When we look at the energy savings of the three DVS
algorithms, we see that DVSleak again shows its ad-
vantage under medium and high utilization. Even with
varying workloads, the delay policy generates more op-
portunities for sleeping than any of the other policies. It
saves 40% more energy on average than the pure DVS
algorithm. For both execution patterns, the energy con-
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(a) Avg. c=25%WCET
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(b) Avg. c=50%WCET
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(c) Avg. c=75%WCET

Figure 8. Energy Savings for 10 Tasks, Pattern Two under Different Actual Execution Times (Variable) + Utilization
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(a) Pattern 2
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(b) Pattern 3
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(c) Pattern 4
Figure 9. Energy Savings for 3 Tasks, Dynamic Pattern 2/3/4 when Average Execution Time = 50% WCET

sumption produced by DVSleak is also very close to the
lower bound in most of the utilization cases.

We further increase the number of tasks in a task set
from 3 to 10. The increase in number of tasks limits the
effectiveness of the delay policy. It cannot produce suffi-
ciently long intervals to benefit from sleeping. Nonethe-
less, Figure 8 illustrates that DVSleak exhibits stable
savings in energy irrespective of the number of tasks. It
achieves almost the same amount of savings over pure
DVS observed for 3 tasks (Figure 7). The energy sav-
ings over the pure sleeping algorithm are not as signifi-
cant as that for 3 tasks. Still, DVSleak saves 10% more
energy on average than the sleep policy for 10 tasks.
These results clearly show the adaptiveness and stabil-
ity of DVSleak under different workloads.

Figure 9 compares the performance of different algo-
rithms under three different dynamic patterns when the
ratio of average execution time to WCET is fixed. Al-
though the three patterns (patterns 2, 3, and 4) follow
different fluctuations in execution time, DVSleak works
equally well for all patterns. It saves 15% more energy
on average than the sleep policy and 30% more energy
on average than the pure DVS algorithm. Overall, the
combined sleep and delay algorithm, DVSleak, exhibits
stable performance under different patterns due to the

feedback control scheme used in our DVS algorithm,
which adjusts automatically according to workload vari-
ations.

These experiments provide a better understanding of the
three policies. The pure sleep policy and DVSleak do
not show much difference under extremely low or ex-
tremely high utilization cases. In the former case, there
is always enough slack for turning off the processor, no
matter whether we delay the release time of a task or
not. In the later case, there is hardly any slack at all, no
matter how the release time of a task is delayed. Using
the sleep policy alone in such a case is sufficient by it-
self to achieve virtually the same reduction in energy as
the combined policy, albeit at a lower algorithmic com-
plexity. At medium utilization, DVSleak excels due to
its combined sleep and delay policy to show its true po-
tential of energy savings.

7. Related Work

Static power consumption caused by leakage current
has attracted much attention in recent years. Conven-
tional scheduling strategies are modified to be leakage-
aware, which saves the system energy together with dy-
namic voltage scaling algorithms. Lee et al. [10] pro-
posed greedy methods to locally maximize the duration



of alternating idle and busy periods based on the worst-
case execution time [10]. Algorithms are integrated into
conventional dynamic priority scheduling and fixed pri-
ority scheduling policies. Their algorithm is most effec-
tive when many relatively short inter-task idle periods
that can be grouped together. But since actual execu-
tion times often diverge considerably from the WCET,
a conceptual busy period will actually be interspersed
with idle due to dynamic slack inflicted by early com-
pletion of tasks. The potential of such dynamic slack
remains unused.

Quan et al. described an enhanced DVS algorithm to
reduce both dynamic and static power consumption
[14]. A latest release time of each job in the task set
is computed off-line and subsequently used by an on-
line scheduler. Their approach is based on fixed-priority
scheduling while ours is based on dynamic priority EDF
scheduling. Their online scheduler always delays the re-
lease time of a task to its latest start time (last chance) as
long as the processor is idle. Such an aggressive scheme,
as shown in this paper, is not always the most energy ef-
ficient solution. In our algorithm, we make delay deci-
sions based upon the actual execution time of tasks via
feedback, which is more energy efficient on average.

Jejurikar at al. enhanced EDF scheduling with a pro-
crastination algorithm [7]. A delay interval is calculated
for each task, which only considers static task set in-
formation and may result in a pessimistic schedule. Our
scheme is integrated with the online scheduler and is
able to convert dynamic slack, generated due to the crit-
ical speed threshold or the early completion of tasks,
into idle or, preferably, sleep time. Their approach also
assumes that a power manager, implemented as a con-
troller in hardware, handles interrupts and sets timers
when new tasks are released. In contrast, our scheme
does not require any special hardware support beyond
DVS and sleep modes, nor does it assume execution
times equal to their worst-case bounds.

Zhang et al. presented a compiler-supported solution
to reduce leakage energy consumption [17]. Data-flow
analysis is employed to identify basic blocks that do not
utilize a given functional unit, which is temporarily de-
activated by compiler-generated software instructions.
While their solution targets micro-architectural effects
within a processor, our approach takes a macro-level
view that temporarily puts the processor, including all
of its resources, into sleep mode.

8. Conclusion
Static power consumption has shown to be a critical
design concern in dynamic voltage scaling algorithms.
Static power is caused by leakage current, which even

exists in the absence of logic operations in a CMOS cir-
cuit. In this paper, we presented a combined leakage
reduction and DVS algorithm, DVSleak. We pointed
out that greedily delaying the release time of a task to
put the processor into sleep mode does not necessarily
yield the most energy-efficient solution. The delay de-
cision has to be made considering a task’s dynamic ex-
ecution behavior. Hence, a static delay policy does not
suffice. DVSleak uses on-line information to derive a
combined DVS and leakage-aware schedule. After the
DVS scheme has assigned a speed for a task, the de-
lay policy determines task’s release time according to
its expected actual execution time, which is provided by
a feedback controller. Our experiments show that such a
combined algorithm saves 50% more energy on average
than a pure DVS algorithm. The combined sleep and
delay policy saves 40% more energy on average than
a pure sleep policy. We are currently pursuing an im-
plementation on an IBM PowerPC 405LP board under
Linux with support for DVS and various sleep modes
[19].
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