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Abstract. Contemporary operating systems heavily rely on single system im-
ages with shared memory constructs that may not scale well to large core counts.
We consider the challenge of distributed job allocation, where each job is com-
prised of a set of tasks to be mapped to disjoint cores. A naive solution performing
fragmented allocations may quickly escalate to deadlocks, where jobs hold and
wait for cores in circular dependencies. To tackle these challenges, we propose
a deadlock free distributed job allocation protocol. We have devised two policies
for avoiding deadlocks, namely active cancellation and sequencer-based atomic
broadcast. The protocol and the two policies have been implemented and eval-
uated on a Tilera TilePro64 processor with 64 cores on a single socket. Results
show sparse job allocations to incur lower overhead for active cancellation while
sequencer-based atomic broadcast has less overhead for denser allocations.

1 Introduction
While Moore’s law has held for a considerable time in microprocessor design, it has
reached its limits and may not keep pace with the ever increasing processing demand.
Nonetheless, multicore/manycore processors have the potential to enjoy continued per-
formance increases to meet future processing needs while reducing/constraining power
consumption. Current trends in the industry indicate that the number of cores that fit on
a single chip is rapidly increasing. With current single microprocessor chips packing
64+ cores on a die [1–3] and specialized computing devices, e.g., graphic processing
units (GPUs), already support over 1000 core today.

Current multicores fall short of their scalability potential. One reason for this stems
from reusing conventional Single System Image (SSI) OS designs for multicore archi-
tectures. With SSI, resources are aggregated to present a single view of the OS envi-
ronment while data access and communication are realized via shared memory over
traditional bidirectional buses. This approach delivers some performance increases in
the natural evolution from single core up to 16 cores, but it deteriorates rapidly when the
number of cores increases further [4]. Recent work [5, 6, 4] shows that coherent shared
memory may not scale well to large core counts. They instead promote the usage of scal-
able message passing for OS communication in large-scale manycores. Intel’s Knights
Landing (KNL) next-generation Xeon Phi provides L2 cache coherence via SSI, which
may lead to contention at the mesh interconnect, similar to the overheads of shared
memory shown to exceed those of simple message passing over the network-on-chip
(NoC) for 16 cores or more in previous Tilera research [4, 7]. Based on these observa-
tions, we conjecture that future large-scale NoCs may support shared memory partitions
only for partitions of 8-16 cores complemented by message passing across partitions.
This would depart from an SSI design and necessitate a distributed paradigm, which
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then requires a distributed job allocation approach for parallel codes to be executed, the
focus of this work. An alternative solution would be hierarchical locks for non-uniform
memory access (NUMA) systems [8], but this would still require a centralized job al-
location strategy with limitations on scalability whereas a distributed approach is more
general We believe that research on distributed designs for NoCs is essential for now as
the implications of scalability limitations persist.

In this work, we propose a novel protocol to tackle the challenges of job allocation
in a distributed system. Allocating jobs of tasks on a partitioned multi-resource system
is known to be NP-hard, even for prioritized jobs [9].The problem is further compli-
cated in a distributed system due to the distributed nature of job generation. A naive
approach allowing fragmented allocations could quickly lead to deadlocks in the job
allocation algorithm. Our distributed job allocation protocol with two policies, active
cancellation and sequencer-based atomic broadcast, takes a well disciplined approach
in solving these issues. First, we avoid deadlocks by enforcing a globally unique order
to resolve conflicting job allocations. Second, we split the job allocation problem into
two subproblems: 1) query and reserve available resources; 2) find a good task-to-core
mapping. Such a split enables effective heuristics [10, 11] to tackle NP-hard task-to-
core mapping while our distributed job allocation protocol reserves cores for the job.

While our distributed job allocation protocol is generic in scheduling any applica-
tion, we use Message Passing Interface (MPI) [12] applications as our standard work-
load in this work for the following reasons: All ranks (tasks) of an MPI program need
to start execution at the same time. Such a workload demands guaranteed availability of
cores to start execution or waits until they are available. This allows us to model the job
wait time as the overhead of the distributed job allocation protocol. And enables more
flexible execution models where tasks are dynamically created in a distributed manner,
e.g., using fine-grained task graphs to track dependencies.
In summary, this paper, makes the following contributions: (1) We propose the Pico-
kernel Adaptive and Scalable Operating System (PICASO) to address the scalability
challenges of future manycore processors. (2) We analyze the distributed job allocation
problem and present a protocol with two policies, active cancellation and sequencer-
based atomic broadcast. (3) We evaluate the solutions on the Tilera TilePro64 through
a set of benchmarks to analyze the performance and scalability.

2 PICASO
PICASO features a distributed message passing system comprised of pico-kernels per
core. Pico-kernels are worker cores that execute a job’s user tasks. A set of pico-kernels
are managed by a micro-kernel. Micro-kernels are dedicated cores for control purposes,
e.g., to manage a set of pico-kernels and schedule jobs in coordination with other micro-
kernels. Let a micro-kernel domain be the set of pico-kernels governed by this micro-
kernel. Micro-kernels are typically topographically centered within its domain.

A pico-kernel reports only to its parent micro-kernel. A micro-kernel, on the other
hand, apart from controlling its set of pico-kernels, also co-ordinates with other micro-
kernels. An advantage of such a system is the decentralization of control, where each
micro-kernel may engage in fast and autonomous decisions on managing its set of pico-
kernels. Since pico-kernels are just worker cores, we use the terms pico-kernels and
cores interchangeably in this work. Fig. 1 shows how a PICASO system with micro-
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Fig. 1. Sample micro kernel (uk) plus pico kernel abstraction for manycores

and pico-kernel abstraction can be organized in a large-scale manycore system. In con-
trast to other manycores, PICASO partitions the available cores into different domains
represented by different colors. Each domain has a topologically centered core chosen
to be the micro-kernel. The chosen micro-kernels (in red) manage their set of pico-
kernels. All external interactions occur only between micro-kernels.

3 Distributed Job Allocation
We use the following terminology in our discussion: (1) A task is the basic unit of
execution. (2) A job consists of a collection of tasks. (3) The home micro-kernel of a
particular job is the micro-kernel where the job submission was initiated.

Assumptions: In this work, we consider jobs that require to be co-scheduled, i.e.,
these jobs consist of inter-dependent tasks that need to be concurrently executed on
different nodes/cores. An example would be jobs of MPI programs, where all associated
tasks need to start execution at the same time. Such a job allocation process can be
divided into two steps: (1) Query available idle cores and reserve them for this job. (2)
Devise the best possible task-to-core mapping from the available cores. Our focus in
this paper is on the former part. Once enough cores are reserved for a job, methods and
results from prior work [10, 11] can be applied to find the best task-to-core mapping
for a given job. However, the problem becomes more complicated when extended to a
distributed system due to the nature of job generation.

Conventional solutions involve a centralized resource manager that handles all job
allocations. All cores continuously report their availability to this entity. Such an ap-
proach does not scale to a large number of cores due to (1) contention at the centralized
entity (because of the incessant status updates) and (2) a single point of failure. More
importantly, it allows for only a single job submission portal. These restrictions are un-
desirable for large core counts where jobs generate allocations queued up at different
cores throughout the system.

Our proposed pico-/micro kernel distributed system abstraction partitions the avail-
able cores between different micro-kernels. This domain-specific delegation of schedul-
ing capabilities to micro-kernels enables jobs that can be locally satisfied within a single
micro-kernel domain to be handled by fast and autonomous decisions.

For jobs requiring more cores than can be locally satisfied, the home micro-kernel,
where the particular job is submitted, co-ordinates with other micro-kernels to devise



the allocation of cores to this job. Multiple job requests submitted at different micro-
kernels could compete with each other for resources. Hence, we need a co-ordination
protocol to resolve these conflicts and to choose the next job to execute loosely based on
a globally unique order. This global unique order could be based on user-defined priority
or a First Come First Serve (FCFS) policy. Such an ordering guarantees fairness and
avoids starvation. Adhering to loose ordering rather than strict allows non-conflicting
job allocations to proceed in parallel, thereby increasing the system utilization.

But a lack of such co-ordination protocols may lead to deadlocks. Deadlocks can
happen when multiple jobs submitted at different micro-kernels hold different subsets
of cores and wait for more cores to become available. Yet, none are able to proceed
because all cores have been allocated to jobs without meeting the full allocation request
of any single job in full. Fig. 2 shows a deadlock condition with two micro-kernel
domains. Each domain has initially 8 pico-kernels (worker cores) available. In step 1,
two job submissions require 12 and 16 cores, respectively. In step 2, each job first holds
on to available local cores and sends out a request for more cores. In step 3, each micro-
kernel is blocked waiting indefinitely for responses to their requests. Since none of the
job requests are fully satisfied, the system remains deadlocked.

Job 1 submitted at uk-1 
requesting for 12 cores 

Job 2 submitted at uk-2 
requesting for 16 cores 

job1 job1 job1

job1 job1

job1 job1 job1

job2 job2 job2

job2 job2

job2 job2 job2

Step 1: Simultaneous job submissions at uk-1 and uk-2

Step 2: Grab local cores & send core alloc req (solid circular arcs)
Alloc req: uk-1 -> uk-2 (job1, 4 cores) + uk-2-> uk1 (job 2, 8 cores)

Deadlock: uk-1 waits for cores from uk-2 (job1) + uk-2 waits for uk-1 (job2)
Step 3: Hold & wait for cores: circular (dashed) dependency -> deadlocks

uk-1 uk-2
Circular 

dependency !

Note: uk-1 : micro kernel 1, uk-2: micro kernel 2 each having 8 free cores at their disposal

Fig. 2. Deadlock: 2 simultaneous jobs submissions (uk = micro-kernel)
Random back-off schemes could be used to recover in case of potential deadlocks.

In such a method, different micro-kernels yield their cores and retry their job alloca-
tions after waiting for a randomly chosen back-off time. This probabilistically avoids
a deadlock again, but fails to guarantee a bound on completion time for the allocation
algorithm. A more serious issue is potential starvation of jobs that require large alloca-
tions as they might never be satisfied. Therefore, a job allocation algorithm that avoids
starvation with an upper bound on completion time is required.

4 Deadlock-free Job Allocation
We have devised a distributed job allocation protocol for large-scale manycores. Two
policies for deadlock avoidance are proposed, namely (1) active cancellation and (2)
sequencer-based atomic broadcast. Both of these policies require that a globally unique
order be established. For example, we could use timestamps of the job submission time
along with the micro-kernel identifier to devise a globally unique job identifier, or we



could use user-defined priorities in conjunction with a method to break ties for match-
ing priorities. For the discussion in this work, we will refer to job priority based on a
globally unique job ordering rather than a user-defined priority. In the following sec-
tions, we examine the two different approaches, compare their capabilities and finally
conclude with a detailed performance evaluation.
4.1 The Main Scheduling Loop
Algorithm 1 shows the main scheduling loop. It performs two main functions: (1) Pro-
cess any incoming message, and (2) in the absence of an incoming message, schedule
pending job requests submitted at this micro-kernel.

Algorithm 1 Scheduling loop at each micro-kernel
while TRUE do

post nonblocking receive for fixed size header
repeat

if policy == active cancellation then
schedule job via active cancellation // (2)

else if policy == atomic broadcast then
schedule jobs via atomic broadcast // (2)

end if
until fixed size header is received
receive entire message body (blocking) // (1)
call respective message handler routine

end while

The scheduling loop uses message passing as the only means of communication be-
tween micro-kernels, and between a micro-kernel and its set of pico-kernels. There can
also be architecture-specific optimizations for micro- to pico-kernel communication,
not shown here.

The significant message types of the distributed job allocation protocol are as fol-
lows: Core Allocation Request: Sent by the home micro-kernel of the job. The request
is propagated to all micro-kernels via an efficient request propagation scheme. Core
Allocation Response: Sent by a micro-kernel when it commits certain cores to a partic-
ular job. Job Spawn Request: Sent by the home micro-kernel when it devises the best
task allocation for the given job. This request follows the same propagation path earlier
traversed by the Core Allocation Request. Micro-kernels that are not part of an alloca-
tion, release their reservations for this job when they receive this request. Job Cancel
Request: When the active cancellation policy is used, this message is sent by the home
micro-kernel if it determines that there is an higher priority job to be satisfied first (see
Subsection 4.2). Submit Job to Sequencer: Under the sequencer-based atomic broad-
cast policy, all micro-kernels use this message to submit their job requests to the fixed
sequencer (see Subsection 4.3).
4.2 Active Cancellation
The periodic active cancellation procedure works as follows: Any micro-kernel that
launches a job requiring more than the locally satisfiable cores sends a core allocation
request to all its neighbors. This request is propagated to all other micro-kernels via an
efficient request propagation scheme (see Section 4.4). A greedy policy is employed,
i.e., the request to each micro-kernel always asks for the total number of cores required



for the job, even if other micro-kernels have already simultaneously allocated a subset
of cores for this job. This policy frequently allocates more cores than needed for a job,
but guarantees a successful allocation (of cores committed to this job) and facilitates
termination (unlike non-greedy approaches).

The algorithm handles the arrival of a higher priority core allocation request as
follows: Each micro-kernel maintains a wait queue based on the globally unique order
consisting of both the job requests it has sent out and the job requests it has received.
All incoming job requests are inserted in the wait queue as per the globally unique
ordering. If the new request is the head of the wait queue, it first checks if this request
has a higher priority than any job request it has sent out earlier. If so, it engages in
active cancellation of the lower priority job changing it to the BLOCKED state pending
a renewed request. This frees up resources otherwise allocated to unsuccessful lower
priority job requests. Finally, the micro-kernel commits as many cores as it can afford
for this job request by responding with the committed cores to the home micro-kernel of
this particular job request. The micro-kernel contributes new cores to this commitment
whenever its resources become free. This scheme satisfies multiple job requests loosely
based on the global ordering but also offers a relaxation to this hard criteria by allowing
a lower priority request to proceed if its allocation is satisfied quickly enough before a
higher priority job overrides it in the wait queue. This relaxation is allowed under the
assumption that any job using a successful allocation will eventually complete, after
which time the resources it was given becomes available for the next high priority job
in the wait queue (bounded by the longest job).
4.3 Sequencer Based Atomic Broadcast
This method is inspired by the sequencer based atomic broadcast as explained in Défago
et al. [13]. In this method, a micro-kernel is elected to be the single sequencer of the
system. All job requests, even if submitted at different micro-kernels, are in turn for-
warded to the sequencer to ensure globally unique ordering . The sequences sends the
request to all the micro-kernels only once it has determined which job to execute next.
Our approach differs here. Instead of broadcasting the request, we use a custom built
request propagation scheme as explained in Section 4.4. This ensures that the job allo-
cations happen in order without any collisions. Less conflicts directly translate to fewer
messages compared to active cancellation. But since each micro-kernel has to send re-
quests to the sequencer, it leads to contention at the sequencer and additional delays
even for small allocation requests, which could have been solved with just a few neigh-
boring micro-kernels. As we show in Section 7, this additional overhead translates into
real performance benefits only in case of dense and large job allocations.
4.4 Pattern-Based Message Propagation
An efficient method for propagating request messages, such as core allocation and job
spawn requests from any given source to all other micro-kernels in a 2D mesh topol-
ogy, is required. Multi-casting messages from a given source to all micro-kernels is
inefficient as this involves sending individual messages to each micro-kernel, unless
hardware support for multi-casting exists [14]. Therefore, we have designed and imple-
mented two alternatives: 1) a fixed pattern-based propagation scheme and 2) an adap-
tive pattern-based propagation scheme. We use the term nodes when introducing these
schemes, as they not only apply to micro-kernels but any set of nodes in a 2D mesh



topology. The adaptive pattern-based propagation scheme has the advantage that it does
not expect nodes to be arranged in a 2D mesh topology.

Fixed pattern-based propagation When a message needs to be sent to all nodes in a
2D mesh processor NoC, the source sends the message only to its neighboring nodes.
Each neighbor in turn propagates the request to its next set of unvisited neighbors fol-
lowing a predefined pattern over a minimum spanning tree. The pattern depends on
the placement of the initial source of the message. Consider Fig. 3(a). The source ini-
tially sends the request to all its neighbors with an embedded information to propagate
the request toward the East (and North if in column 1). Each node receiving this mes-
sage propagates the request as per the embedded information. Similarly, if the source
is located at bottom-right, the propagation will be toward West(+North) etc. Fig. 3(b)
shows the pattern when the source is located at the center, in which case each arm takes
the responsibility of propagating the request in all four directions. Following such a
predefined pattern avoids duplicate requests, which waste link resources and increase
processing time at the nodes.

(a) Fixed pattern, source: lower left (b) Fixed pattern, source at center (c) Adaptive pat-
ternFig. 3. Pattern-based request propagation schemes

Adaptive pattern-based propagation This scheme involves an initialization phase
responsible for forming the adaptive pattern. In this phase, an empty message is for-
warded from the given source to all its neighbors. Each neighbor in turn broadcasts
the message to all of its next set of neighbors until all the nodes have been visited. At
this point, each node has received the given message from multiple sources. It chooses
one among these sources as a preferred source and informs it. The preferred source re-
members this decision and forwards all messages it receives to this node. The criteria
to choose the preferred source can be based on various policies, e.g., the first received
request or shortest distance from the source to this node, to name a few. At the end
of the first phase, every node has identified its preference from which source it wishes
to receive a request in the future; or, alternatively, each node has remembered a list
of neighbors to forward a message to that was received from a particular source. This
forms an adaptive pattern (spanning tree) ensuring each node receives a message only
once. An advantage of such adaptive patterns compared to fixed patterns is that the pat-
terns could be adaptively rearranged in case of link failures. The initialization phase
needs to be run only once during the system startup or when recovering from faults,
hence reducing the overhead by amortizing the costs.

As an example, consider the pattern shown in Fig. 3(c) for a 3×3 tile with numbered
nodes. This pattern is formed with 1 as the source node and forwarding paths from nodes
1 to 2 & 4, 2 to 3 & 5, 4 to 7, 5 to 8 & 6 and 8 to 9.



5 Implementation
The distributed job allocation protocols are applicable to any system of inter-networked
cores, even heterogeneous cores [1, 14]. But for the purpose of implementation and ex-
perimentation alone, the job allocator has been optimized for a 2D-mesh architecture,
such as the Tilera TilePro64 [1, 2]. The Tilera TilePro64 processor has 64 tiles inter-
connected with a 2D-Mesh NoC interconnect. Each tile has a processor engine running
at 700 MHz, a switch engine for routing on the NoC over five different network inter-
connects and a cache engine. The User Dynamic Network (UDN) interconnect is the
only one available for user-generated messages. We use the services of the NoCMsg
[4] library. NoCMsg provides a deadlock free, scalable and efficient low-level message
passing layer over UDN with an MPI like interface. This motivated our design choice
and, hence, our scheduling loop. The protocols and the messages were designed entirely
around these MPI like interfaces. This, in itself, makes our design generic enough to be
ported to other message passing libraries as well.

For our experiments, we use an ordering based on a FCFS policy. Each tile on the
TilePro64 has synchronized clocks. Hence, we use the time-stamp of the job submission
along with the unique micro-kernel identifier of the job’s home micro-kernel as a tie
breaker for job submissions.

6 Evaluation Framework
We use the TilePro64 processor [1] for our evaluation. While the TilePro64 supports 64
tiles, at least two tiles are reserved exclusively by Tilera’s hypervisor for administrative
tasks and Input/Output operations. The maximum square tile size that can be reserved
for user tasks is 7× 7. We choose a square tile size so as to eliminate possibilities of
discrepancies due to other asymmetric tile sizes. Overall, the Tilera platform limits our
evaluation to 49 cores. Tilera supports a subset of Linux (but not a fully compatible
Linux design) for system calls that go through the hypervisor. Job allocation, however,
becomes the responsibility of the user to pin tasks to specific cores. We lift this bur-
den via our distributed job allocation design, which is agnostic of Tilera’s Linux layer
and generalizes to any distributed OS design. We support two different experimental

Fig. 4. PICASO system, 6×6 tile on TilePro64
frameworks for testing the performance of the job allocator, (1) a real task mode, and
(2) a partial simulation mode. The real task mode supports execution of jobs that are
MPI programs from the NAS Parallel benchmarks (NPB). Fig. 4 shows the real task
mode on the Tilera TilePro64 processor. This small PICASO system on a 6× 6 tile
has been divided into four regions. Each region has a topologically centered micro-
kernel managing a set of 8 pico-kernels. Thus, a combination of NPB of power of two
sizes (1,2,4,8,16 and 32) can be executed. This platform is primarily used to assess the
schedulability of real user tasks.



The limited number of usable cores on the TilePro64 constraints our scalability
tests on the real task mode. To overcome this, we have developed a partial simulation
framework, where we consider all cores in the reserved tile as micro-kernels without
pico-kernels. Task execution is simulated by timers triggering a job completion message
after a certain user-defined execution time. This simulation platform is justified by the
fact that the distributed job allocation protocol requires only micro-kernel interaction.
Our results could be directly translated to the real task mode combining them with the
pico-kernel management overheads obtained in the real task mode. Partial simulation
assesses our protocol with up to 49 micro-kernels on a 7×7 tile.

The following sections detail the experiments/results under the real task mode and
the partial simulation mode for different job allocation mixtures.

7 Experimental Results
The distributed job allocator and user programs are compiled as applications with O3
optimizations using Tilera’s C/C++/Fortran compilers of the Multicore Development
Environment (MDE) 3.03.
7.1 Performance Analysis
We first analyze the performance of both proposed schemes under partial simulation.
We execute a set of job loads.For each job, we measure the job allocation overhead
as the wait time of the job from the time of submission to the time it receives all the
resources to execute. This wait time includes both the overhead of the distributed job
allocation protocol and the time spent waiting for the earlier job allocations to termi-
nate and to release its cores. Our focus is to measure the overhead of the distributed
job allocation protocol in isolation. Hence, for performance tests, we use an initial state
where no jobs are active. We then trigger simultaneous job submissions from different
micro-kernels as they have the highest probability to result in fragmented allocations.
This creates a workload for our protocol triggering its deadlock avoidance subsystem.
Note that all our experiments cover cases where the job allocations require large num-
bers of cores that need more than one micro-kernel domain to be fully satisfied. Recall
that job allocations, which could be satisfied within a single micro-kernel domain, have
a constant overhead.

For all our experiments, the reported job wait times are averaged over 15 runs. The
maximum relative standard deviation observed in these experiments was less than 20%,
except for the experiment in Fig. 5(b) with a relative standard deviations of up to 41%.
We discuss this exception and other significant experimental details in the following
relevant sections.

In our experiments, we compare both our proposed polices, active cancellation and
sequencer-based atomic broadcast, against one another. When reporting the relative
performance improvement or degradation, we always follow the convention of compar-
ing active cancellation against sequencer-based atomic broadcast as follows: Let the
overhead of active cancellation be denoted as Oac and the overhead of sequencer-based
atomic broadcast be denoted as Oab. Then the relative performance change of active
cancellation is given by: (Oab−Oac)

Oab
×100%

7.2 Overhead for Sparse Job Allocations
This experiment uses the partial simulation mode. Job allocation requests are generated
simultaneously from the four extreme corners of a 7× 7 tile. These requests can be



satisfied with just a few nearby micro-kernels even before the conflicting job requests
arrive from the other corners. Hence, in most of these cases, cancellation of the lower
priority job request may not even be required as all the simultaneously submitted jobs
are satisfied without the need for global ordering. Conversely, with sequencer-based
atomic broadcast, all requests have to still go to the single sequencer, which can only
serve one request at a time so that serialization delays impact these small job allocations.
This experiment proves that active cancellation provides best performance in scenarios
where sparse job submissions can proceed in parallel.

In the following set of experiments, we consider two scenarios: Jobs that can be
execute in parallel and jobs that need to be executed serially one after another.
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Fig. 5. Overhead for Parallel Allocations

Jobs executing in parallel Figures 5(a) and 5(b) depict the scenario where each job
can proceed in parallel. For the four jobs (x-axis), their corresponding job wait times are
depicted (y-axis). The job wait time does not include execution times of prior jobs as
all these jobs execute in parallel. Hence, the measured job wait time can be considered
as the exclusive protocol overhead. We observe a relative decrease in the job wait times
for active cancellation when compared to sequencer-based atomic broadcast.

In the 1st experiment (Fig. 5(a)), each job requires a number of pico-kernels (cores)
that is satisfied with available cores from 3 out of a total of 49 micro-kernel domains. We
observed a relative performance improvement for active cancellation over sequencer-
based atomic broadcast of 23% for the 1st job, 76% for the 2nd job and 83% for the 3rd
and 4th jobs. The serialization at the sequencer results in “backpressure” that aggregates
latency (compared to resolving requests in parallel).

In the 2nd experiment (Fig. 5(b)), each job requires a number of pico-kernels (cores)
that is satisfied with available cores from 12 out of the total 49 micro-kernel domains.
The relative performance improvement of active cancellation over sequencer-based
atomic broadcast for the four jobs were: 21% for the first job, 58% for the second job,
73% for the third job and 48% for the fourth job. For active cancellation, we observe
a maximum relative standard deviation of 41% in this experiment, which is explained
as follows: The wait time of each job depends on how many cancellations are required
after the first job has been successfully allocated. In some runs, we observe that a lower
priority job request propagated fast enough to succeed in its allocation before a higher
priority job triggers cancellation. In these cases, the job wait times for the lower priority
jobs are reduced. They are otherwise above average if more cancellations occur.



Jobs executing serially When jobs execute serially, job wait times depend largely on
execution times of preceding jobs. When prior jobs take a long time, this becomes the
main contributor to the job wait time. Conversely, when the execution time is lower
than the minimum job allocation overhead, then the overhead of the distributed job
allocation protocol is the main contributor to the job wait time. Hence, for the next two
experiments, we consider both short and long running jobs. Short running jobs help
assess the actual overhead of the two polices. Long running jobs demonstrate that for
serially executing jobs, this performance improvement is not entirely carried over as a
reduction in the job wait times.
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Fig. 6. Overhead for Short Jobs

Short Running Jobs: We set the job execution times to 0.001 seconds, which is
below the minimum overhead observed. Fig. 6(a) depicts a case where each job requires
a number of pico-kernels (cores) that is satisfied by exactly 24 out of the total 49 micro-
kernel domains. Hence, two out of the four jobs can run in parallel. As not all jobs
can run in parallel, allocations of the lower priority jobs require cancellation so that the
allocation of higher priority jobs is satisfied. This results in an additional overhead for
active cancellation compared to sequencer-based atomic broadcast of ≈ 17% and ≈
12%, respectively, for the first two jobs, but considerably less for the next two jobs (7%
and 4%, respectively). Fig. 6(b) depicts the case where all jobs require a number of pico-
kernels (cores) that is satisfied by exactly all available 49 micro-kernel domains and,
hence, execute serially one after another. Here, active cancellation incurs additional
overhead as lower priority job allocations need to be canceled to enforce the globally
unique order. The overhead for active cancellation is≈ 12% for the 1st job and reduces
considerably to 4% for the 2nd job, and then to ≈ 1% for the 3rd/4th jobs.

Long Running Jobs: For these experiments, we set the job execution times to 0.5
seconds, which is much higher than the overhead of the distributed job allocation pro-
tocol. Hence, in these cases, the execution time is the main contributor to the job wait
time. During the initial execution delay for the spawned jobs, the job allocation pro-
tocol reorders the job wait queue. Therefore, subsequent jobs are spawned as soon as
the earlier jobs complete with a minimal overhead. Fig. 7(a) depicts a case where each
job requires a number of pico-kernels (cores) that is satisfied by exactly 24 out of the
total 49 micro-kernel domains. Hence, two out of the four jobs can run in parallel. Job
wait times are depicted on the y-axis on a logarithmic scale. Here, active cancellation
incurs an additional overhead of 17% and 13%, for the first two jobs, respectively. The
additional overhead for the next two jobs is very minimal (0.03% to 0.05%). Fig. 7(b)



depicts the case where all jobs require a number of pico-kernels (cores) that is satisfied
by exactly all available 49 micro-kernel domains and, hence, execute serially one after
another. Job wait times are depicted on the y-axis on a logarithmic scale again. Here,
active cancellation incurs an additional overhead of ≈ 12% for the first job but only
0.01− 0.04% for subsequent jobs. Hence, the above experiments show that for long
running jobs, which execute serially one after another, the performance gain achieved
by sequencer-based atomic broadcast is minimal.
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Fig. 7. Overhead for Long Jobs

7.3 Job Allocation Overhead for Increasing Tile Sizes
In this experiment, we scale the tile size (n×n) from 2× 2 to the maximum supported
size of 7×7. Per tile size, we generate n simultaneous job requests, each requiring pico-
kernels (cores) satisfied by exactly n micro-kernel domains. E.g., in a tile size of 2×2,
there will be 2 simultaneous job requests requiring pico-kernels (cores) satisfied by 2
micro-kernels each, and in a tile size of 7×7, there will be 7 simultaneous job requests
requiring pico-kernels (cores) satisfied by 7 micro-kernels each. This experiment shows
the additional overhead for jobs that can ideally execute in parallel.

The results depicted in Fig. 8 compare the job wait times of the first and last jobs for
active cancellation and atomic broadcast. Here, the job wait times are depicted on the
y-axis for different tile sizes on the x-axis. We observe that the wait time for the first
among the n jobs is consistently lower for active cancellation as it does not incur the
overhead of submitting all job requests at the sequencer. We observe a reduction in the
job wait time of the first job from 6% for a tile size of 2×2 to up to 60% for a tile size
of 7×7. For the sake of analysis, let us assume that the highest priority job overrides
all other jobs in their home micro-kernels before any of the lower priority jobs gets a
chance to execute. In this case, there will be one initial request sent for the highest pri-
ority job. For all other lower priority jobs, there will be n−1 initial requests plus n−1
cancel and finally n−1 repeat requests sent in total. Thus, all subsequent jobs incur this
additional overhead. Notice that significant performance gains in spawning the first job
compensates for this additional overhead for subsequent jobs to a large extent. Com-
pared to sequencer-based atomic broadcast, we observe a slight increase in the job wait
times for active cancellation (1−12% for smaller tile sizes, i.e., 2×2 and 3×3). But
for larger tile sizes, we observe a more significant reduction in the overhead for active
cancellation (up to 15%). This experiment reinforces our earlier finding that as long as
multiple simultaneous job submissions can execute in parallel, active cancellation has
a lower overhead compared to sequencer-based atomic broadcast.
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Fig. 9. Worst case for n simultaneous jobs
7.4 Worst-case Conflict Resolution for n Simultaneous Jobs
In this experiment with n simultaneous job submissions, we measure the conflict res-
olution time for the first job to execute. We use a fixed tile size of 7× 7 in the partial
simulation mode. As all the cores are considered to be micro-kernels in this mode, a
maximum of 49 micro-kernels are available. All job submissions require a large num-
ber of pico-kernels (cores) that can only be satisfied by the cores available in all the 49
micro-kernel domains. In this worst-case scenario, the sequencer-based atomic broad-
cast scheme provides the best performance. The sequencer-based atomic broadcast
scheme just has to wait for the job allocation request with the highest priority to arrive.
It can then send out core allocation requests one after another. The maximum overhead
occurs when the highest priority job request is the one that reaches the sequencer last.
Compare this to the considerable overhead in active cancellation. Here, in the worst-
case, the n− 1 lower priority job requests together could have reserved all available
cores in all micro-kernels. But none would have reserved enough to proceed execut-
ing. Hence, for the highest priority job request to execute, it has to override each of the
lower priority job request in all other micro-kernels by sending job cancel requests. In
the worst-case, n− 1 cancellation requests need to be sent before the first job can get
enough cores for its allocation to be satisfied. We see this reflected in Fig. 9. The wait
time for the first job is shown on the y-axis and x-axis depicts n, the number of simul-
taneous job submissions. We observe that the worst-case performance is better for the
sequencer-based atomic broadcast scheme once the number of micro-kernels simulta-
neously requesting allocations exceeds 1/4th of the total number of micro-kernels.

7.5 Experiments with NPB Codes in Real Task Mode
The real task mode on the TilePro64, introduced in Section 6, consists of 4 micro-
kernels, each managing a set of 8 pico-kernels. We can execute jobs that require a
maximum of 32 cores in this mode. To confirm the pattern observed under the partial
simulation mode, we conduct similar, yet scaled down experiments in real task mode.

Job Allocations executing in parallel Here, two jobs (NPB FT Class=S size=16) run
in parallel in two different micro-kernel domains with inputs chosen to be L2 resident
(to ensure that experiments are not dominated by DRAM memory latencies). Each job
requires 16 cores, which can be satisfied in parallel. We measure the average job wait
time. This wait time is exclusively due to the protocol overhead as it does not include



any resource wait time. This experiment is an approximation of the sparse job allo-
cations explained in the context of the partial simulation mode. We observe results
following the same pattern: Under active cancellation, less overhead is incurred com-
pared to sequencer-based atomic broadcast. These results are shown in Fig. 10. The
y-axis depicts job wait time for the two jobs executing in parallel (x-axis).
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Fig. 10. Real task mode: Parallel Job Alloc.
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Fig. 11. Real task mode: Serial Job Alloc.

Job allocations executing serially In this experiment, four jobs (NPB FT Class=S
size=32) requiring all the 32 cores available from all of the four micro-kernels are
submitted simultaneously. These job submissions compete for all resources and are
eventually serialized to execute one after another. Thus, this experiment is similar to
the partial simulation mode experiment in Section 7.4, which measured the worst-case
conflict resolution time for n simultaneous job submissions. We obtain similar results,
where sequencer-based atomic broadcast performs much better than active cancella-
tion. Fig. 11 shows these results with the exclusive job wait time on the y-axis for the
four jobs on the x-axis. Exclusive job wait time is calculated here as the actual job wait
time minus execution times of all prior jobs. This metric provides the job allocation
overhead in isolation. A purely centralized approach should perform inferior. But our
sequencer approach uses a centralized approach enhanced by contention-free commu-
nication over a spanning tree of micro-kernels (Fig. 3), which scales further.
7.6 Performance of Pattern-Based Propagation
To evaluate the impact of scalability of pattern-based message propagation, a simple
experiment was devised. A request is broadcasted to all nodes (cores) in a 7× 7 tile
(max. 49 nodes). The time to broadcast this request and receive a reply from all end-
points in the reverse path of broadcast is measured. The results in Fig. 12 compare the
time taken on the y-axis against the number of nodes to which the message is broad-
cast on the x-axis. Four different schemes are compared: (1) A naive broadcast scheme
(The source sends m individual messages to m recipients.); (2) distributed flooding (The
source sends the message to all its neighbors who multi-cast the message to their neigh-
bors until all nodes have received the message.); (3) fixed pattern-based propagation
(see Section 4.4); and (4) adaptive pattern-based propagation (see Section 4.4). We re-
sort to analysis to determine scalability in number of cores on our single chip platform.

For our analysis, let us assume a tile size of n×n. One sender needs to broadcast
the message to the remaining n2−1 recipients. Among the different schemes, the naive
broadcast scheme tends to be the most time consuming. In this scheme, a single source
node sends the message to all the recipients and waits for replies from each of them.
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Fig. 12. Different request propagation schemes
This increases the load on the single source. The number of individual end-to-end mes-
sages on the NoC equals the number of recipients of the broadcast, i.e., n2− 1. But it
is important to note that, on a 2D mesh topology with X-Y dimension ordered routing,
the messages are sent over the same link multiple times resulting in unnecessary link
utilization. We can easily observe that as the same X-Y path is traversed multiple times,
there is heavy contention on a few links that become the bottleneck.

Distributed flooding performs slightly better. In this method, the load on the single
source node is reduced as all nodes contribute to forwarding the message. Also, the
message is sent exactly once over each link. But the number of individual messages on
the NoC is comparatively larger than that of the naive broadcast scheme. For a tile size
of n× n, the total number of messages equals the total number of links on the NoC,
i.e., 2n(n− 1). Hence, after a threshold point, the cost of distributed flooding tends to
increase and is as costly as the naive broadcast scheme. This trend was observed in Fig.
12, when the number of nodes is greater than 43.

Fixed pattern-based propagation, where messages propagate in a predefined pat-
tern, uses the least number of individual messages, namely n2− 1. The fixed pattern
reduces the number of links used to n2−1 and the message is sent exactly once on each
link. Also, the load on the single source node is considerably reduced as each recipi-
ent forwards the message further. Hence, pattern-based propagation consumes the least
amount of time (see Fig. 12).

In the adaptive pattern-based propagation scheme, the number of individual mes-
sages is n2−1, which is the same as in the fixed pattern-based scheme. Also, the scheme
ensures that the message is sent only once per link. Even the additional cost in setting up
the adaptive pattern is amortized over multiple runs. Hence, the adaptive pattern-based
scheme performs as good as the fixed pattern-based scheme (see Fig. 12). The adaptive
pattern-based scheme is only slightly costlier than the fixed pattern-based scheme. This
is explained as follows: Depending on the adaptive pattern formed, certain nodes may
need to forward the message to more than one recipient (unlike the fixed pattern-based
scheme). E.g., nodes 2 and 5 incur this additional processing time in Fig. 3(c).

8 Related work
Manycores have sparked many OS redesigns [15–18, 6, 5, 19, 20]. Our micro-kernel and
pico-kernel abstraction is design for larger number of cores and was inspired by FOS



and Barrelfish [6, 15], where application and OS services run on physically separate
cores. In contrast to FOS, we benefit more from spatial locality as pico-kernels (cores)
only need to communicate with their parent micro-kernel. We follow the core of the
design principles postulated by Peter et al. [21] for designing multi-core schedulers.
We even go one level further and take a purely distributed message passing approach as
the primary means of communication via adoption of NoCMsg [4] for low-level mes-
saging. Boyd-Wickizer et al. [20] analyze and fix scalability issues in the Linux kernel
for several system applications and show that good scalability up to 48 cores could be
achieved by modest changes. However, their workload consisted of embarrassingly par-
allel codes, such as independent Apache threads and parallelized “make” commands.

The compute chip of BlueGene/Q [22, 23] has 16 cores for executing application
tasks, one core dedicated to OS services and one (disabled) to increase manufacturing
yield. This is similar to our approach of dedicated micro-kernels for OS services and
applications. Our design differs as we propose multiple dedicated micro-kernels man-
aging the cores in a manycore chip rather than across nodes. Kobbe et al. [24] provide
agent-based allocation on a multicore for malleable applications, where cores of a job
are governed by a single agent. ADAM [25] also uses an agent-based approach but re-
quires a global (centralized) agent coordinating smaller agents per cluster of cores. Our
approach is much finer grained with multiple micro-kernels coordinating the allocation
of a job in a distributed manner. It is also lighter weight than agent-based allocation in
Grid/Cloud computing, which use complex allocation schemes with high latency un-
suitable for on-chip allocation [26, 27].

Job schedulers for HPC clusters, such as the TORQUE resource manager [28],
SLURM [29] and the Maui scheduler [30], use similar algorithms for resource allo-
cation and employ backfilling algorithms to increase utilization. These cluster sched-
ulers are centralized while Mesos [31] only allocates a subset of requested resources
and Omega [32] allows parallel schedulers to access shared state in a lock free manner.
All of them have scalability limitations due to shared/centralized state (covered by our
sequences-based approach in experiments), while our advanced design follows a dis-
tributed/message passing design and scales. Omega employs an optimistic concurrency
control and has parallel scheduling capabilities. But atomic updates to the shared state
serialize scheduling decisions. Instead, we allow individual micro-kernels to be sched-
uled in parallel and resolve conflicts only when needed. Our techniques and algorithms
also have been tailored and optimized to benefit from the on-chip communication of
NoC processors. Job co-scheduling for High-end computing (HEC) systems often use
a single job submission portal [33, 34], which requires a centralized resource manager
that does not scale. Tang et al. [35] propose a distributed job co-scheduler for HEC
systems. They propose to resolve deadlocks by yielding the resources after a predefined
wait time subject to deadlock (see Section 3). Our approach differs as we avoid dead-
locks in job allocation and guarantee a definite completion time for the distributed job
allocator. NoC architectures like the Kalray MPPA-256 [14] have specialized support
for multi-casting, which can vastly improve the performance of our distributed job allo-
cation protocol as job requests propagate fast resulting in fewer cancellations for active
cancellation. Most NoC architectures ([1, 3]) lack hardware support for multi-casting,
while our efficient pattern-based request propagation schemes can be applied to them.



9 Conclusion
We introduce PICASO, a distributed message passing system, to meet the scalabil-
ity challenges of future manycore processors and demonstrate the ease and usability
of such a system in managing large numbers of cores on a single chip. We study the
distributed job allocation problem and propose a protocol with two policies, active
cancellation and sequencer-based atomic broadcast. Both policies avoid fragmented
allocations (that would otherwise lead to deadlocks) and guarantee allocations loosely
following a global order. Experimental TilePro64 results indicate that for sparse job al-
locations the active cancellation scheme provides lower overhead while for denser job
allocations the sequencer-based atomic broadcast scheme provides lower overhead.
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