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Abstract. Massive manycore embedded processors with network-on-chip (NoC)
architectures are becoming common. These architectures provide higher process-
ing capability due to an abundance of cores. They provide native core-to-core
communication that can be exploited via message passing to provide system scal-
ability. Despite these advantages, manycores pose predictability challenges that
can affect both performance and real-time capabilities.
In this work, we develop efficient and predictable group communication us-
ing message passing specifically designed for large core counts in 2D mesh
NoC architectures. We have implemented the most commonly used collectives
in such a way that they incur low latency and high timing predictability mak-
ing them suitable for balanced parallelization of scalable high-performance and
embedded/real-time systems alike. Experimental results on a single-die 64 core
hardware platform show that our collectives can significantly reduce communi-
cation times by up to 95% for single packet messages and up to 98% for longer
messages with superior performance for sometimes all message sizes and some-
times only small message sizes depending on the group primitive. In addition,
our communication primitives have significantly lower variance than prior ap-
proaches, thereby providing more balanced parallel execution progress and better
real-time predictability.

1 Introduction
The future of computing is rapidly changing as manycore processors are becom-
ing ubiquitous. Massive manycore platforms with NoC architectures are starting
to penetrate high-performance systems, three-tier servers, network processing and
embedded/real-time systems. These architectures provide a significant advancement
due to an abundance of cores, which requires mesh-based NoCs for scalability. This
allows a large number of cooperating tasks to be scheduled together. Tasks can employ
group communication via messages over the NoC to achieve scalability and reduced la-
tency. Their on-chip mesh NoC speeds are at par with processor clock frequencies as a
hop between neighboring tiles/cores takes 1-2 cycles, which is a game changer in terms
of communication. But such meshes are not without challenges as link contention and
flow control become potential bottlenecks.

Poor group communication implementations can result in increased and highly vari-
ant latency due to NoC contention resulting in loss of predictability and imbalance in
execution progress across cores. When multiple pairs of cores communicate, they may
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experience contention due to wormhole routing: After opening a source-destination path
along a route, any other communication trying to use links on this path remains blocked
until the former connection is closed. Such situations can be avoided using intelligent
scheduling of each round of message exchanges.

For example, consider 9 cores taking part in all-to-all communication as in Figure 1.
The task on core 3 is trying to send to the task on core 8, and the task on core 4 is trying
to send to the task on core 2. This results in 2 messages, one from 3→ 8 and another
from 4→ 2. When sent at the same time, contention on link 4→ 5 due to wormhole
routing results in a delay for one of these messages as they are arbitrated within the NoC
hardware routers. Thus, sending tasks experience highly variable latencies. The effect
shown in this example is amplified with increasing NoC mesh sizes. Such situations can
be avoided using intelligent scheduling of each round of message exchanges.

Fig. 1: NoC Contention

Furthermore, NoC architectures provide multiple message queues and networks [1–
4]. On the TilePro64 [2], the User Dynamic Network (UDN) uses dynamic routing to
forward messages from a source core to a destination core on Manhattan path follow-
ing first the X- and then the Y-direction (X/Y-dimension ordered routing). The Static
Network (SN) uses statically configured routes to forward packets received on each
link. SN is faster than UDN in terms of packet forwarding speed (1 vs. 2 cycles), but is
difficult to program and has route setup overhead.

This work contributes the design and implementation of group communication for
large core counts utilizing 2D mesh NoC architectures. We employ efficient algorithms
to reduce communication latency and exploit advanced NoC hardware features to pro-
vide better performance. We also ensure that communication uses contention-free paths
and that no deadlock may occur. Deadlocks may occur due to head-of-line and path-
based blocking, they are avoided by credit-based backpressure monitoring [5, 6] or by
ensuring absence of link contention (this work, for collectives, only). We have imple-
mented five commonly used group communication primitives [7].

Our Barrier, Broadcast and Reduce use a communication tree in which the cores are
arranged as nodes and share a parent-child relationship. The communication tree is used
to send messages to/from the root. The Barrier and Reduce implementations utilize the
UDN, whereas Broadcast uses the SN. Our implementation of Alltoall exploits simple
pattern-based communication, common in MPI [7] runtime system implementations, to



send messages concurrently, yet without contention, to reduce communication latency.
This neither requires dynamic computation of a routing schedule nor incurs scheduling
overhead or memoization of large routing tables. Our implementation uses message
passing over the NoC of a TilePro64 and Intel SCC but is generic enough to be adopted
to any 2D mesh NoC.

Experimental results on the TilePro hardware platform show that our implementa-
tion has lower latencies and less timing variability (lower variance) than prior work.
We compared the performance of our implementation in micro-benchmarks against
OperaMPI [8], a reference MPI implementation for the Tilera platform. Performance
improvements of up to 95% are observed in communication for single packet messages
with significantly higher timing predictability (lower variance), which supports more
balanced execution progress for high-performance computing (HPC) and helps meet
deadlines in embedded/real-time scenarios. Our port to the Intel SCC achieves similar
results compared to the vendor libraries [9].

2 Design and Implementation
Our work assumes a generic, generalized 2D mesh NoC switching architecture similar
to existing fabrics with high core counts [1–3, 9]. Each core is composed of a compute
core, network switch, and local caches.

NoC Message Layer (NoCMsg): Our implementation provides an MPI-style mes-
sage passing interface for NoCs. This facilitates basic point-to-point communication
and supports our group communication. The NoC message layer implementation op-
tionally provides flow control support. In our design, we turn off flow control when not
required by program logic to further improve performance.

Group Communication Primitives: The key ideas behind our design of group
communication primitives are to (1) reduce contention in the NoC; (2) exploit pattern-
based communication to exchange messages concurrently; (3) reduce the number of
messages by aggregation; and (4) leverage hardware features to improve performance.
Due to these objectives, it is not feasible to simply resort to binomial trees for most col-
lectives or other algorithms such as recursive doubling for allreduce since these algo-
rithms are contention agnostic and will result in reduced performance over contention-
sensitive NoCs.

We implemented the group communication on the Tilera TilePro64 and ported it to
the Intel SCC [9] to demonstrate that our implementation is generic and can be extended
to any 2D mesh NoC architectures.

2.1 Alltoall and Alltoallv

Alltoall/Alltoallv employ pattern-based communication, which allows several sets of
tasks to exchange messages concurrently without contention as many exchanges split
into multiple rounds.

The rounds are comprised of (1) direct (2) left and (3) right rounds. The direct round
is further split into two subrounds. In subrounds, each task sends messages only along a
straight path to its partner task. Tasks exchange messages along the X direction in direct
subround 1 and along the Y direction in direct subround 2. In left rounds, each task
sends messages along the X direction followed by the Y direction such that their path



follows a counter-clockwise direction. In right rounds, each task sends messages along
the X direction followed by the Y direction such that their paths follow a clockwise
direction. These cases are depicted in Figure 2. The XY dimension routing ensures that
these directions are maintained consistently.
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Fig. 2: Alltoall Rounds

The implementation details are sketched in Algorithm 1. In each round, the number
of hops the message is forwarded is incremented until all tasks are covered. To begin,
each task starts the direct subround one with one hop. The current column is selected by
function Select-col. Tasks exchange messages with their neighbors one hop away along
the X direction. This is done to ensure that the exchange is free of contention. The select
functions operate as follows: Given a horizontal distance (e.g., two), determine the sub-
set of cores via modulo arithmetic (example: every even core / rank modulo 2) that are
active, followed by others round (example: every odd core / rank+1 modulo 2). Once
the round has been completed, a barrier is forced between all tasks. The barrier ensures
absence of contention across rounds. Subsequent rounds for other directions follow.
The algorithm is unique in its absence of contention, which is key to the performance
improvements we observed compared to naive exchange sequences with contention.

2.2 Barriers

We utilize modified 3-ary tree-based barriers that distribute the work evenly among
nodes to minimize cycle differences upon barrier completion. In a 2D mesh, nodes have
a most 4 neighbors so that in a barrier tree, any interior node receives a message from
one neighbor and relays this message to 3 others. This provides maximal link coverage
with minimal tree height (which is optimal). Hence, the tree is 3-ary on the interior, 4-
ary for the root (to be precise) and of lower degree (2/1/0) for nodes close to the leaves
and leaves themselves. The root of this tree is placed in the center of the NoCMsg grid
to minimize latency (hops). The tree is constructed as part of the initialization process.
Children notifying their parents when they have entered the barrier, up to the root.



Algorithm 1 Alltoall: x,y are task ranks; myrow,mycol are Cartesian coordinates of x.
1: function NOCMSG-ALLTOALL

2: Xmax← gridwidth; Y max← gridheight
3: for xhops← 1,Xmax do // DIRECT SUBROUND 1 (DR1)
4: currcol = Select-col(DR1, xhops) // SELECT COLUMN FOR THIS ROUND

5: if mycol == currcol then . my column’s turn
6: UDN-xchg(x+xhops, y); UDN-xchg(x-xhops, y)
7: end if
8: Barrier()
9: end for

10: for yhops← 1,Y max do // DIRECT SUBROUND 2 (DR2)
11: currrow = Select-row(DR2, yhops) // SELECT ROW FOR THIS ROUND

12: if myrow == currrow then . my row’s turn
13: UDN-xchg(x, y+yhops); UDN-xchg(x, y-yhops)
14: end if
15: Barrier()
16: end for
17: for yhops← 1,Y max do // LEFT ROUND (LR)
18: for xhops← 1,Xmax do // SELECT ROW, COLUMN FOR THIS ROUND

19: currrow = Select-row(LR, yhops); currcol = Select-col(LR, xhops)
20: if myrow,mycol == currrow,currcol then
21: UDN-xchg(x-xhops, y+yhops); UDN-xchg(x+xhops, y-yhops)
22: end if
23: Barrier()
24: end for
25: end for
26: for yhops← 1,Y max do // RIGHT ROUND (RR)
27: for xhops← 1,Xmax do // SELECT ROW, COLUMN FOR THIS ROUND

28: currrow = Select-row(RR, yhops); currcol = Select-col(RR, xhops)
29: if myrow,mycol == currrow,currcol then
30: UDN-xchg(x+xhops, y+yhops); UDN-xchg(x-xhops, y-yhops)
31: end if
32: Barrier()
33: end for
34: end for
35: end function

Once the root has received notifications from all children, it broadcasts a notification
back down the tree by replying to its children and returns from the barrier call, as do
the children. UDN is used to send/receive synchronization packets and their replies.
Figure 3 shows an example of a barrier tree for a 4x4 grid.

Flow control is not needed in barriers as a prerequisite of entering a barrier is that all
outstanding sends/receives of local cores have completed. The synchronization packet
is small enough so that the core can drop an entire synchronization packet into its out-
put queue. It can then start a blocking send operation that halts the core’s pipeline until
synchronization packets become available. This technique significantly reduces syn-
chronization costs when all cores are ready, yet conserves power when they are not.



Fig. 3: Barrier Tree: Setup

2.3 Broadcast

Our Broadcast uses the SN of the TilePro64. The SN is more intricate to program and
suffers from route setup overhead. However, message forwarding incurs zero overhead
(due to a static route configuration). Since broadcast has a single sender and multiple
receivers, the number of route configurations is low. This was the motivation behind
using SN for the broadcast implementation.

We designed a tree-based algorithm rooted at the task performing the broadcast.
Each task determines the root’s row and column and configures the SN route. The route
setup in the root is such that the message from the core is sent on its available links.
All the tasks in the same column as the root have their route configured such that they
receive from the root along the Y direction and send the message along other available
links. Tasks in other columns receive along one X direction and send the message along
the other X link.

For example, let the task with rank 5 initiate a broadcast. Then, its routes are set
up to send the message from the core to all the links. The routes of tasks on cores in
column one will be set up such that they send out the received message along the X and
Y directions. The routes in all the other tasks will be set up in such a way that they will
receive and forward along the X direction. This results in a broadcast tree as shown in
Figure 4. Different nodes have different route setup depending on their relative position
to the root node. The root node is highlighted in red. The blue nodes receive along the
Y direction and send along X direction (East and West). The green nodes receive along
the X direction (from West) and send along the X direction (toward East). All the other
nodes have receive along the X direction.

Fig. 4: Broadcast Tree: Static Routes Configuration



The static route of each task is configured inside the Broadcast call such that the
message from the root flows to each leaf task. Our current implementation requires
only a single route configuration per task and is contention-free.

2.4 Reduce and AllReduce
Our Reduce is similar to the barrier. The reduction operation is performed along the
tree. Each child task sends its partial result upward toward the root. The root reduces
the partial results to obtain the final result. The construction of the reduction tree is
different from that of the Barrier. The reduction tree maps to a NoC grid such that
the root task becomes the root of the tree. The tasks along its row become first-level
children. The tasks in each column become second-level children to the first-level ones.
Via recursive refinement, the algorithm extends to larger meshes, where more levels
would be employed.

For example, let rank 5 be the root for the reduction operation. The tasks along its
row become the first-level children (in this case, tasks with rank 4,6 and 7). These first-
level children become children of the root. Each column will therefore have a root or
a first-level child. All the other tasks become children of the root or first-level children
along their column. In the example, rank 5 becomes the root with ranks 1,4,6,7,9 and
13 as its first-level children. Rank 4 will have ranks 0,8 and 12 as 2nd-level children etc.
This reduction-tree setup is shown in Figure 5. To avoid contention we impose rounds
of communication per level and distance: distance 2 cores to level 1 send their values
first (e.g., core 15), followed by distance 1 (e.g, core 11); followed by distance 2 cores
to root (e.g., core 7) and distance 1 (e.g., core 6). Each of these four rounds has no link
contention by tree construction.

Fig. 5: Reduction Tree: Setup

A reduction tree constructed in this fashion has two major advantages: (1) The im-
plementation is simple and scalable and (2) the entire reduction takes place in two steps
irrespective of the size of the NoC grid. The first step occurs in parallel for the root and
its 1st-level children, where they receive and reduce values from their respective 2nd-
level children. In the second step, the root will receive partial results from the 1st-level
children and perform the reduction operation.

AllReduce is an extension of Reduce. It is implemented by performing a Reduce
relative to rank 0, followed by a broadcast from rank 0 to all other tasks in the group.

3 Framework
Experiments were conducted on a 700MHz 64-core Tilera TilePro processor (TilePro
64) and the Intel SCC. Our implementation is written in C and the programs were



compiled with Tilera’s MDE 3.03 tool chain/Intel’s ICC at the O3 optimization level
with respective C/C++/Fortran compilers. Some cores are used for specific purposes
and are not available to run user programs restricting the maximum grid size to 7x7 on
Tilera. In our experiments, grid sizes ranging from 2x2 to 7x7 were utilized allowing
for a total of six configurations (omitting rectangular, non-square configurations, which
are also valid).

OperaMPI implements the MPI 1.2 standard [10] for C. It is layered over Tilera’s
iLib, an inter-tile communication library that utilizes the UDN NoC network. The iLib
library is vendor-supplied software and allows developers to easily take advantage of
many features provided by the Tilera architecture. Message passing is one such feature.
Point-to-point messages are directly supported by iLib closely resembling the equiva-
lent MPI semantics. Internally, iLib utilizes interrupt-based virtual channels and com-
plex packet encodings to synchronize senders and receivers to set up such point-to-point
communication. However, iLib only supports a limited number of collective operations,
namely broadcast and barrier. Hence, OperaMPI creates virtual overlays (e.g., bino-
mial trees for reductions, recursive doubling for allreduce) to implement more complex
MPI collectives, which result in NoC contention in contrast to our approach. OperaMPI
has been evaluated against the IBM, Intel, MPICH and SPEC MPI test suites. Some
of these results and implementation details (such as tree reduce/alltoall) are discussed
in [8], which provides a fair foundation for comparison to OperaMPI. Furthermore, Op-
eraMPI is the only working MPI implementation on Tilera and other ports (MPICH or
Open MPI) are not only beyond the scope of this work but would be subject to the same
NoC design/implementation choices we made.

Results of NoCMsg, our scalable and predictable NoC messaging framework, and
the third-party OperaMPI and RCKMPI [11, 12] were compared for Tilera and SCC,
respectively. NoCMsg traffic is routed over the UDN/SN with 1-2 cycles and 1 cycle
per hop, respectively, using polling instead of relying on iLib/OperaMPI interrupts with
messages packaged in 128 byte flits.
4 Experimental Results
We experimented with of NoCMsg group communication repeating each run 21 times
and reporting averages on the Tilera TilePro64 and also the Intel SCC [9] to demonstrate
portability. We report the Tilera results first.

4.1 Single packet messages

The benchmark timing results for single packet messages are depicted in Figures 6-
10 for 5 collectives. Time on the y-axis is plotted logarithmically in microseconds for
averaged benchmark runs over different number of tasks (equal to cores) in the range
from 4 to 49. Tables 1 and 2 depict execution time variances for each micro-benchmark
for varying number of tasks for NoCMsg and OperaMPI, respectively.

We observe that as the number of tasks increases, the execution time of group com-
munication increases. In case of Opera, the increase in runtime is significant for larger
number of tasks. In comparison, our NoCMsg implementation is highly efficient, and
increases in runtime are gradual. For Alltoall, our pattern-based approach effectively
eliminates network contention resulting in a reduction of execution time by about 62%
(from 2027 down to 761) for a 7x7 grid size with a variance of 0.4 to 5.6 depending on
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Fig. 6: Timing Results for Alltoall
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Fig. 7: Timing Results for Reduce
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Fig. 8: Timing Results for AllReduce
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Fig. 9: Timing Results for Barrier
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Fig. 10: Timing Results for Broadcast
the numbers of cores used. This variance is several orders of magnitude lower than that
of the OperaMPI particularly for larger number of cores.

Barrier and Broadcast are our most efficient collectives with up to 98% reduction in
execution time, i.e., Opera takes up to two orders of magnitude longer due to contention.
Broadcast uses the SN with a single route setup (to configure the communication tree,
setup time included) and minimal routing overhead. The SN is typically faster than the
UDN, which makes Broadcast our most efficient and predictable collective in compar-
ison. (Over UDN, broadcast would be close to the time of a barrier.) Execution time
increases only by a factor of 3.5 as the grid size is gradually changed from 2x2 to 7x7
with a variance of less than 0.6 for all cases.
Table 1: NoCMsg Runtime Var. [µs2]

Num tasks 4 9 16 25 36 49
Alltoall 0.7 0.4 0.7 5.6 1.3 1.6
Barrier 0.5 0.8 0.4 1.6 1.1 5.6

Broadcast 0 0 0.2 0.24 0.53 0.12
Reduce 0.2 0.12 1.1 1.06 3.96 7.27

AllReduce 1.34 2.29 2.49 26.77 31.55 50.82

Table 2: OperaMPI Runtime Variance [µs2]

Num tasks 4 9 16 25 36 49
Alltoall 3 984 18 2277 133330 622903
Barrier 750 303 29385 1838 2911 32117

Broadcast 7 57 259 4541 3004 3869
Reduce 545 686 21 2007 9980 3431

AllReduce 11 51 49 3839 5536 7517



Our implementations of Reduce and Allreduce have 97% and 98% lower execution
time, respectively, than OperaMPI for all tested grid sizes, i.e., OperaMPI is up to nearly
two orders of magnitude slower. However, these collectives have a larger variance than
others due to the two-step reduction employed by Reduce operations.

4.2 Varying message sizes
Figures 11-15 depict the averaged performance for varying message sizes and number
of tasks (cores) for both our NoCMsg implementation and OperaMPI, the reference
implementation. Notice that execution times are plotted on a logarithmic scale on the
y-axis. The solid lines represent execution times for NoCMsg while the dotted lines
represent execution times for OperaMPI. The legend further indicates the number of
tasks, i.e., key N4 represents NoCMsg with 4 tasks while O4 depicts OperaMPI with 4
tasks with the same color coding for identical grid sizes (in the same order as the line
graphs). The range of grid sizes ranges from 4 to 49 total number of tasks (cores).

Figure 11 shows the execution time of the Alltoall collective for message sizes up
to 4KB, which is an inset to Figure 12, the latter of which extends to 1MB sizes. The
execution and communication times increase with an increase in message size for both
NoCMSg and OperaMPI. Our NoCMsg implementation of Alltoall performs very well
for small messages with savings between 43%-62% up to a threshold (256 bytes to 4KB
depending on message size and number of tasks, see Figure 11). Yet, as message sizes
increase, performance degrades, and for message sizes greater than this threshold, Op-
eraMPI outperforms NoCMsg (see Figure 12). This is because our Alltoall implemen-
tation is split into rounds of exchanges followed by barrier synchronization to ensure
absence of contention. For large messages, this results in noticeable overhead. Oper-
aMPI’s Alltoall implementation is split into N-1 stages, where N is the total number
of tasks. At each stage, one task takes a turn to send to a partner. While their setup is
subject to contention to create a virtual channel, transmission proceeds without con-
tention once a channel has been created, which provides higher bandwidth for large
messages. Yet, prior work has shown that typical applications tend to utilize collectives
with very small message payloads [13], which indicates that our NoCMsg covers the
critical path for most applications and nicely complements OperaMPI’s advantage for
large messages.

The timing results for Reduce and Allreduce are shown in Figures 13 and 14, re-
spectively. The execution time of our implementation is 48%-98% lower than that of
OperaMPI for all message sizes up to 1MB (and beyond), i.e., OperaMPI is up to two
orders of magnitude more costly. However, the gap gradually decreases to about one
order of magnitude difference. Asymptotically, the performance results of the two im-
plementations approach each other for very large (but, in practice, unrealistic) message
sizes. The implementation of Reduce in OperaMPI uses a communication tree but does
not map it to the NoC in a contention-free manner. The resulting contention causes
larger communication/execution times. The same observation also holds for AllReduce,
a Reduce followed by a Broadcast. Since Reduce dominates the communication and ex-
ecution time in AllReduce, its behavior is the same as Reduce.

We also compared our version to one that uses recursive doubling. Figure 16 in-
dicates that the former outperforms the latter for larger core sizes while the latter to
results in less setup overhead and thus better performance for smaller number of tasks.
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Fig. 11: Alltoall: Inset Msgs ≤ 4 KB
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Fig. 12: Alltoall: Varying Msg Sizes
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Fig. 13: Reduce: Varying Msg Sizes
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Fig. 14: AllReduce: Varying Msg Sizes
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Fig. 15: Broadcast: Varying Msg Sizes

# tasks reduce+bcast recursive doubling
4 13.57 4
9 16.29 6
16 25.43 10
25 26.71 26
36 30.29 51
49 33.00 56

Fig. 16: Allreduce Variants: Avg. Time [usec]

Collectives tend to involve all tasks in a code, so scalability is key. At 49 cores, the
former is almost twice as fast as the latter and has lower asymptotic behavior indicating
a higher potential for scalability. We identified the absence of contention in our design
as the main contributor of the reduced time over doubling.

Figure 15 represents the execution time of Broadcast for different message sizes.
OperaMPI implements Broadcast using a tree-like communication pattern, where the
root task initiates the broadcast by sending the message to another task. The two tasks



send the message to another two tasks. This transitive distribution of messages con-
tinues and eventually terminates after log(N) steps, where N is number of tasks. This
communication tree approach is efficient but does not map to the NoC in a contention-
free manner. Similar to Reduce, there is always contention resulting in larger commu-
nication and execution time. Our Broadcast implementation uses SN unlike OperaMPI,
which uses UDN. Routing overhead in SN is lower than that in UDN. This also con-
tributes to better performance and lower execution time. From the NoCMsg curve, we
can see that the execution time remains constant for message sizes up to 256 bytes
since only 1-2 flits are required (latency bound). Beyond 256 bytes, the execution time
of NoCMsg Broadcast increases at a higher rate than that of OperaMPI as it transitions
from being latency to being bandwidth bound. This continues up to a message size of
128KB, after which the rate of increase in execution time with increase in message size
is nearly same for both NoCMsg and OperaMPI (bandwidth bound). Again, the exe-
cution times of the two implementations approach each other asymptotically for very
large (but, in practice, unrealistic) message sizes.

Overall, these results show that our NoCMsg implementation is ideal for all / small
message sizes depending on the collective primitive. As prior work has indicated,
typical MPI applications utilize collectives with very small message payloads [13],
and embedded/real-time applications follow a similar trend for numerical, actuator-
based control systems. This underlines the contribution of our work for high-end and
embedded/real-time applications alike as NoCMsg provides better performance and
timing predictability than prior related work for the common case, and, moreover, for
realistic 2D meshes without wrap-around network links at grid boundaries.

4.3 NAS Parallel Benchmark

We used NPB version 3.3 to evaluate our implementation. NPB by default uses strong
scaling, where input sizes stay fixed for different numbers of cores. We used strong
scaling due to input constraints for MG (input class A, to mostly remain on chip in L2
cache) and our own weak scaling inputs for all other benchmarks [14]. Weak scaling
ensures that the computational work per core remains the same as the number of cores
cooperating in a parallel application is increased. We choose inputs to remain resident
in private L2 so that results measure the NoC properties rather than being dominated by
off-chip memory traffic.

Figure 17 depicts the results for MG with strong scaling. MG is memory intensive
and uses long- and short-distance inter-processor communication. The number of pro-
cesses grows as a power of 2 resulting in 5 different grid sizes. We observe that NoCMsg
is faster than OperaMPI for all grid sizes. Strong input scaling causes the total time to
reduce as the number of tasks increases. For small task sizes, NoCMsg is much faster
than OperaMPI. As the number of tasks increases, the time difference decreases. This
is because MG is memory intensive with limited inter-process communication, and for
large grid sizes the performance improvement due to efficient communication declines.

We used weak scaling for IS, FT, CG and LU. IS sorts integer numbers and per-
form frequent all-to-all collective communication for rebalancing. FT is a discrete 3D
Fast Fourier Transform solver for partial differential equations using all-to-all commu-
nication. CG estimates Eigenvalues using the conjugate gradient method with irregular
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Fig. 17: NPB MG: Strong Scaling
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Fig. 18: NPB IS: Weak Scaling
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Fig. 19: NPB CG: Weak Scaling
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Fig. 20: NPB FT: Weak Scaling
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Fig. 21: NPB LU: Weak Scaling

memory accesses and communication. LU is a computational fluid dynamics code with
stencil-style point-to-point communication.

For IS and CG (Figures 18+19), the execution time of NoCMsg is lower than that of
OperaMPI. Performance benefits include both collectives and point-to-point improve-
ments with improvements due to collectives (this paper) and point-to-point messages
(for the latter, see [5, 6]). The difference in execution time increases with as the num-
ber of tasks grows since inter-process communication dominates. For FT (Figure 20),
small differences in execution time between NoCMsg and OperaMPI are due to larger
messages sizes.

For LU (Figure 21), OperaMPI is faster than NoCMsg for small numbers of tasks
when computation dominates total execution time. As the number of tasks increases,
the inter-task communication starts to dominate the total execution time. The execu-
tion time of NoCMsg grows slower than that of OperaMPI, indicating that for larger
numbers of tasks NoCMsg provides better performance.



4.4 Portability

The Intel SCC is a single chip with 48 cores connected by a 6x4 mesh with x/y
dimension-ordered routing, where each of the 24 routers is attached to one tile with
two local cores [15, 9]. There is no cache coherence across the mesh; instead, message
passing is supported via bare-bones message with RCCE and MPI-style communica-
tion with RCKMPI [11, 12]. The mesh is subject to link contention (as was Tilera) but
also core contention due to two cores sharing a single router. We ported NoCMsg to the
Intel SCC using the same design philosophy in that link (and, for the SCC, also core)
contention should be avoided in the implementation of any collective communication
primitive, which is not the case for RCCE and RCKMPI collectives. We were able to
ensure absence of contention using pattern-based collectives in communication rounds
over one-sided put/get primitives of RCCE, which is the lowest level of communication
on the SCC.

Figures 22-25 depict the effective throughput for different message sizes for RCCE,
RCKMPI and NoCMsg (from bottom to top), averaged over 10,000 runs each. We ob-
serve that NoCMsg results in 2-5 times higher maximum throughput depending on the
type of collective as NoCMsg approaches the theoretical bandwidth of the SCC. (Fig-
ure 22 is lacking RCCE results since the API does not support alltoall natively.) This
throughput is constrained by the shared MPB SRAM buffer of 384KB, which is split
into 8KB regions per tile, and the mesh frequency of 1066MHz. Peaks are reached ear-
lier for [All]Reduce (4KB) than for Broadcast/Alltoall (128KB and 196KB) due to the
cost of reductions vs. significant link contention for Alltoall, whereas Broadcast levels
out at 15 MB/s but remains high. This is larger than the individual MPB size, which
shows that the MPB streams multi-packet messages efficient as long as the data is L2
cache resident, i.e., not exceed 256KB.

Figure 26 shows that the execution time of broadcasting a 236KB message remains
constant even as the number of cores increases due to pattern-based communication
whereas that of RCCE and RCKMPI is one to four orders of magnitude higher for
48 cores. (Notice that 16 or more cores show nearly the same performance. The mesh
only has 24 routers, and from 24 to 48 cores, a single copy between core pairs over their
pair-wise local bus interconnect suffices.) Figure 27 depicts the time of a 48-core barrier
for each core involved in this collective. We observe that barriers are also 2-3 orders of
magnitude faster under NoCMsg compared to RCCE/RCKMPI. We also see that barrier
completion varies between even and odd cores, which is visible by the jagged curve for
NoCMsg. This is due to two cores sharing a router, where the odd core is served first
and then signal its sibling (even) core. The jagged lines for RCCE/RCKMPI are not
visible since the y-axis is logarithmic.

Overall, NoCMsg is shown to be portable in its code base and results in significantly
better throughput and performance for collectives than contention-oblivious communi-
cation methods.

5 Related Work
Communication patterns and communication trees as a means to implement collective
operations have been well studied [16]. Barnett’s broadcast [17] is loosely based on
spanning binomial trees. Yang’s tree-based multicast [18] constructs a quad-branch
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Fig. 22: Throughput for Alltoall
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Fig. 23: Throughput for Reduce
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Fig. 24: Throughput for AllReduce
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Fig. 25: Throughput for Broadcast
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Fig. 26: Broadcast Timing over Cores

����

�����

������

��
�
��
�
�

�

��

���

� � � � � �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�
	


��
�
��

������

��	
����

����
����

���
����

Fig. 27: Timing Results per Core for Barrier

multicast (QBM) tree, a logic tree rooted at the source node of a multicast and has four
subtrees. Our implementation of Broadcast uses a communication tree in a contention-
free manner. But unlike QBM, our approach does not require special registers/buffers in
the routers, support of double-X/Y routing and changes to message headers. QBM also
cannot handle alltoallv. Topology-aware collectives [19] reduce but cannot eliminate
congestion for HPC interconnect whereas our work eliminates any contention.

Several approaches apply graph theoretic concepts to build efficient trees, e.g., a
multi-level broadcast tree using extended dominator nodes (EDN) [20] but requires an
expensive all-port instead of the current single-port NoC communication architectures.



Barriers were implemented in hardware for IBM’s BlueGene [21]. Router-based
barriers [22, 23] require long headers to carry the information of multiple destinations
and incur additional processing at each node. Tree-based barriers [24] partition the 2D
mesh into four overlapping quadrants using the chosen root node as the origin whereas
Barrier Tree for Meshes (BTM) utilizes a 4-ary synchronization tree constructed in a
recursive manner [25]. Our implementation of barrier also uses a tree rooted at a chosen
root node, but, unlike the others, neither requires a 2D division into submeshes nor relies
on special registers for tree construction.

Our implementation of alltoall exploits pattern-based communication to concur-
rently exchange messages between partners. On the surface, this approach shares de-
sign strategies with Thakur’s direct algorithm [26], which assigns mesh nodes ordinal
numbers 0..N-1 in a row-major fashion. During step k, for k = 1..N−1, the node with
ordinal number i sends a message to the node whose ordinal number is an exclusive
or (XOR) of i and k. This results in a communication pattern similar to ours under di-
mension order routing. Unlike our approach, their direct algorithm suffers from link
contention, which is also the case for BG/L’s random lists [27].

Others split tasks into disjoint communication groups [28–31]. Our implementa-
tion also uses a bottom-up approach, but neither requires a grid division into smaller
submeshes nor results in contention.

More recent approaches focus on building static schedules for alltoall communica-
tion [32]. Some approaches perform path selection, core mapping and time-slot allo-
cation intelligently to resolve conflicts on shared networks [33]. Others exploit time-
division multiplexing on NoCs to solve the slot and path selection problem and this
avoid contention [34]. Unlike these approaches, our implementation neither requires
dynamic route calculations nor offline pre-calculations nor storage of large routing ta-
bles. Our tree-based implementations rely on the relative position of nodes to the root
and take advantage of 2D mesh topology to map a tree in a contention-free manner,
which is novel. This keeps our implementation simple, generic and scalable with mini-
mum overhead.

6 Conclusion

We designed a set of efficient and predictable group communication primitives using
message passing utilizing NoC architectures. The primitives employ highly efficient
algorithms to provide contention-free communication and utilize advanced NoC hard-
ware features. These primitives improve performance and reduce imbalance for HPC
applications while providing higher timing predictability for embedded/real-time sys-
tems.

Our implementation of the most commonly used collectives reduces the commu-
nication time over a reference MPI implementation on TilePro64 by up to 95% for
single packet messages and up to 98% for larger messages. NoCMsg has superior per-
formance over OperaMPI irrespective of message size for all but one collective: For
Alltoall, NoCMsg performs better for message sizes up to 256 Bytes while OperaMPI
performs better for larger messages. The evaluation of NPB codes shows that NoCMsg
outperforms OperaMPI for actual workloads. Our NoCMsg for the Intel SCC shows or-
ders of magnitude increases in performance and 2-5 times higher throughput. NoCMsg



thus nicely complements prior work that is efficient at larger (yet less common) message
sizes for this case. Additionally, the variance of execution times for our implementation
is several orders of magnitude lower than that of the reference MPI implementation,
making our implementation ideal for balanced high-end as well as embedded/real-time
applications. And instead of assuming ideal NoC symmetry with wrap-around links on
the 2D boundaries, our work addresses realistic 2D meshes without wrap-around, such
as present in contemporary NoC hardware designs.
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