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Abstract—Today’s rapid development of supercomputers has
caused I/O performance to become a major performance bottle-
neck for many scientific applications. Trace analysis tools have
thus become vital for diagnosing root causes of I/O problems. This
work contributes an I/O tracing framework with (a) techniques
to gather a set of lossless, elastic I/O trace files for small number
of nodes, (b) a mathematical model to analyze trace data and
extrapolate it to larger number of nodes, and (c) a replay engine
for the extrapolated trace file to verify its accuracy. The traces
can in principle be extrapolated even beyond the scale of present-
day systems and provide a test if applications scale in terms
of I/O. We conducted our experiments on three platforms: a
commodity Linux cluster, an IBM BG/Q system, and a discrete
event simulation of an IBM BG/P system. We investigate a
combination of synthetic benchmarks on all platforms as well
as a production scientific application on the BG/Q system. The
extrapolated I/O trace replays closely resemble the I/O behavior
of equivalent applications in all cases.

I. INTRODUCTION

I/O behavior is one of the key factors that impacts applica-
tion performance, particularly for large-scale high-performance
computing (HPC) and big data analytic applications that rely
on parallel file systems (PFSs). I/O presents a challenge due
to complex interactions of multiple software components [8].
It is thus imperative to understand inefficiencies and determine
bottlenecks in I/O, which is facilitated by tracing and analyzing
I/O performance of parallel applications. However, I/O analysis
in parallel systems is non-trivial due to multiple I/O layers [21]
and multiple I/O patterns. The following general I/O patterns
can be distinguished (processors are synonymous for compute
tasks on nodes): (A) Serial I/O (SIO): Data is aggregated
from all the processors to a single processor, the “spokesper-
son”/proxy, and only the spokesperson performs I/O (PFS). (B)
Parallel I/O, one file per process (N-to-N): All processors
perform I/O simultaneously on individual files (local or PFS),
each with a different name/path. (C) Parallel I/O, shared-
file (N-to-1): Processors perform I/O on a single shared file
simultaneously, each within a disjoint block of the file (PFS).

To understanding I/O behavior, two general types of tech-
niques may be employed:
• Dynamic I/O analysis, such as ScalaIOTrace [17], [24],
which needs to be linked to the original applications and run
together with the applications on high-performance computing
(HPC) systems. Detailed I/O access information can be col-
lected with such a tracing tool. However, the system overhead
of such a tracing tool is significant, especially for a large-scale
production HPC system [23] (e.g., long application execution
time and large number of nodes participating).

• Static I/O analysis: Gather the trace information at compile
time. Although such analysis can be performed without actu-
ally executing the programs, it requires the access to program
sources, which may not be available for some applications. It
may also fail to capture I/O patterns that are dependent upon
runtime calculations.

I/O tracing can also be performed by modeling and predict-
ing applications’ behavior [7]. Unfortunately, such an approach
can only provide overall statistics for an application on a
particular architecture, and may not satisfy the needs for
detailed analysis.
Due to the restrictions of analysis methods mentioned above,
we created a novel tool, ScalaIOExtrap. It obtains the lossless
I/O access behavior of an application running in a large-
scale system without requiring source code. Fig. 1 gives an
overview of ScalaIOExtrap, where RS (Rank Size) defines
the number of ranks of a job’s communicator obtained from
MPI Comm size.

Fig. 1: ScalaIO Framework: Trace, Extrap, Replay

The high level methodology is (1) to gather a set of lossless
and scalable I/O trace files in a relatively small system via
ScalaIOTrace; (2) to analyze the set of trace files and extrapo-
late small files into large size trace files via ScalaIOExtrap; (3)
to calculate the extrapolated data and generate a single trace
file; and (4) to enable I/O replay and verify the correctness of
extrapolation via ScalaIOReplay.

For verifying the accuracy and portability of our approach,
we conducted experiments on three different HPC platforms in
terms of cluster types: (1) a relatively small-scale Linux cluster,
(2) a large-scale IBM BG/Q system, (3) and a simulated
system in the CODES simulation toolkit [10]. We discuss
each of them in Section IV. The results indicate that the
extrapolated trace file captured exactly the same behavior as
performed by the I/O application. Also, ScalaIOExtrap does
not introduce extra overhead to the system, and does not extend
the execution time of the applications, as we only use one
processor to analyze and compute the I/O parameters. For



example, for the trace information collected from the IOR
pseudo application run with 8192 processes, it only takes
less than one second for a single processor to generate the
extrapolated trace file. In contrast, traditional dynamic I/O
analysis tools (e.g., ScalaIOTrace) require 8192 processors
with an entire application run plus more than 200 seconds
at finalization time to gather the equivalent trace information
during inter-node compression (see next section).

II. BACKGROUND

ScalaIOTrace and its extrapolation engine are based on
related work on MPI tracing via ScalaTrace V2 [24], [23] of
which we obtained a copy. In this section, we briefly introduce
these tools and CODES, which is utilized to verify our work.
ScalaTrace is an MPI communication tracing framework for
parallel applications [16]. It utilizes the MPI profiling layer
(PMPI) to intercept MPI calls. ScalaTrace collects lossless,
order-preserving, and space-efficient communication traces by
exploiting the program structure and performing a two-stage
trace compression, i.e., intra-node and inter-node compression
while preserving timing [18].
Intra-node compression captures repetitive MPI events in a
loop using regular section descriptors (RSDs) as a tuple
{length, event1, ...eventn} in constant size [17]. Nested loops
become power-RSDs (PRSDs), i.e., recursively structured
RSDs. Consider the following MPI-IO example:

for( i = 0; i < 10; i++ ) {

MPI_File_open(...);

for( j = 0; j < 100; j++) {

MPI_File_write(...);

}

MPI_File_close(...);

}

A trace of executing this program results in a compressed
trace file consisting of RSD1:{100,MPI File write} and
PRSD1: {10,MPI File open,RSD1,MPI File close}.
RSD1 captures the inner-loop of MPI File write events over
100 iterations. PRSD1 denotes the outer loop for 10 iterations
with MPI File open/close events and the inner loop as RSD1.
Calling contexts of events (signatures of stack back-traces)
allow the distinction between different calling sequences in
applications. Inter-node compression is performed over a radix
tree to unify event parameters for calls. The output trace
is a single file of nearly constant size with sufficient in-
formation to represent all tasks. Parameters of I/O events
are captured as elastic data element representations in Sca-
laTrace V2 [24], which represents trace data as a list of
< valuevector, ranklist > pairs subject to compression.
ScalaTrace records delta times of computation durations be-
tween adjacent trace events instead of recording absolute
timestamps [18], [15], [25], [19]. Optionally, delta time cap-
turing the duration of an event is recorded as well. Delta
time is concisely represented as statistical data of maximum,
minimum, average, and variance of delta times and, to provide
more detail, also as histograms. During event replay, randomly
picked histogram times are emulated to offset native execution
of MPI events with their parameters. The timing of replays thus
closely resembles that of the original application.
ScalaExtrap[23] exploits a set of algorithms and techniques
to extrapolate full communication traces and execution times
of an application at larger scale. Since topology is the basis

of communication trace extrapolation, ScalaExtrap focuses on
identifying the communication pattern of mesh/stencil patterns
by calculating the dimension and corner node of the commu-
nication stencil. To extrapolate a communication parameter,
ScalaExtrap constructs a number of linear equations to indicate
how the topology information is related to the parameter by
employing Gaussian Elimination to solve the equations.
ScalaTrace preserves the delta time between two events and
records the time as multi-bin histograms and extrapolates the
timing information of the application via curve fitting using
four statistical models for each extrapolation: (1) constant, (2)
linearly increasing/decreasing, (3) inverse proportional, and (4)
inverse proportional plus some constant.
ScalaTrace preserves the delta time between two events and
records the time as multi-bin histograms. Such histograms
contain the overall average, minimum, and maximum delta
time. ScalaExtrap also extrapolates the timing information of
the application via curve fitting to capture variation trends of
delta times with respect to the number of nodes as t = f(n),
where t is the delta execution time and n is the total number
of nodes. ScalaExtrap utilizes four statistical models based on
curve fitting for each extrapolation, defines a accuracy metric,
di, per model, and then selects model i best on the best fit,
min(di):
1) Constant: This method captures constant time t = f(n) = c,
and d1 = std.dev./average is used for identification.
2) Linear: This method captures linearly increasing/decreasing
trends t = f(n) = an + b. For curve classification, 1)

d2 =
√
residual/average, where average refers to the av-

erage value of the estimated running times, and 2) a threshold
slope sm = 0.2 such that ∀a < sm t = f(n) = b, are used.
3) Inverse Proportional: This method captures inverse-
proportional trends t = f(n) = k/n. To capture the fit-
ting curve, ScalaExtrap calculates the standard deviation of
ki = ti × ni and then divides by the average value of ki,
where d3 = std.dev./average is used for identification.
4) Inverse Proportional+Constant: This method captures the
time consisting of an inverse proportional phase and a constant

phase t = f(n) = k/n+c and uses d4 =
√
residual/average

for identification.

The Co-design of Exascale Storage System (CODES)
framework [10], [11] is designed for evaluating exascale
storage system design points. The CODES framework explores
the Rensselaer Optimistic Simulation System (ROSS), which
is a discrete-event simulation framework allowing simulations
to be run in parallel [28], [26], [2]. CODES and ROSS have
been used to construct models of the PVFS file system and the
I/O subsystem of the Intrepid IBM BG/P platform in previous
work. CODES can model 1) network behavior, 2) hardware
components and 3) software protocols. The CODES storage
system simulator supports the necessary protocol to handle
application-level file open, close, read, and write operations.

III. DESIGN AND IMPLEMENTATION

I/O analysis is a challenge due to multi-layer I/O stacks
and multiple I/O patterns of programs. In this section, we
introduce (a) capabilities for trace compression, (b) analysis
of the trace and extrapolation into target sizes of nodes,
and (c) replay capabilities on elastic data representations of
MPI-IO and POSIX I/O function calls. In contrast to MPI



communication tracing and past work on extrapolation, we
propose a number of novel tracing techniques necessitated by
the unique characteristics of parallel I/O.

We design the ScalaIOTrace, ScalaIOExtrap and
ScalaIOReplay tools suitable for single program multiple data
(SPMD) programs with mesh/stencil communication patterns.
Each I/O call is regarded as an event, and sequences of such
events are represented as a PRSD using the techniques of
ScalaTrace, ScalaExtrap, and ScalaReplay. Hence, this work
focuses on the parameter level of I/O events.

A. ScalaIOTrace

Lossless tracing is imperative for accurate replay. We
record the delta time between events and I/O calls with all
parameters, except for the actual data that is read/written to a
file system. Applications may interleave MPI-IO (for parallel
I/O) with I/O syscalls, depending on the software layer. Our
objective is to trace and compress I/O at all levels and preserve
event ordering. Yet, different interpositioning techniques are
required per level. MPI-IO is intercepted at the MPI profiling
layer (PMPI). PMPI wrappers trace all parameters of MPI-IO
calls, but some require domain-specific compression detailed
later. POSIX I/O at a lower level is captured via GNU
link time entry interpositioning with domain-specific param-
eter compression (using a “ wrap ” syntax) resembling
that of PMPI. Inside wrappers, parameters are collected and
compressed before the actual POSIX I/O call (“ real ”)
is invoked. Notice that MPI-IO often uses POSIX I/O to
implement its primitives. Wrapping both layers allows us to
detect if a lower layer (POSIX I/O) call is made within one of
the upper layer (MPI-IO) so that inner calls are not replayed
(even though they are traced) as outer ones provide a richer
semantics.

B. ScalaIOExtrap

In order to meet the objective of rapidly obtaining the
I/O behavior of parallel applications at arbitrary scale without
actual execution, we developed ScalaIOExtrap. We exploit
different methods for different types of parameters based on
their characteristics, e.g., for string-based parameters such as
filenames and data-based parameters such as offsets. Scala-
Trace is a lossless and scalable tracing tool. The challenge
of ScalaIOExtrap is how to maintain the properties of
ScalaTrace. We need to extrapolate all processors with exact
parameters. ScalaTrace will generate an identical pattern in a
trace for most SPMD programs regardless of the number of
ranks. For extrapolation, we utilize four trace files of smaller
size as input and assure that they have the same number of
events.

1) High-level extrapolation: Since we assume the patterns
of trace files generated from a SPMD program to be identical
irrespective of the number processors it runs on, we maintain
the event numbers and event names. For example, if the n0th
event is MPI File open for input trace files, then we also
generate an MPI File open as the n0th event for the target
trace file. ScalaTrace records rank lists at the event level.
We exploit Gaussian Elimination introduced in related work
to extrapolate these ranklists for mesh/stencil communication
patterns [23].

Another aspect to be considered, which is unique to Scala-
Trace, is loop iteration. For scalablility, ScalaTrace uses RSDs
during intra-node-compression to generate a loop number
recording the iteration times of each event. For weak scaling
(where the workload assigned to each processor stays constant
as number of processors increases) extrapolation is easy, e.g.,
each rank reads N bytes no matter how many ranks are running,
and the loop iterations will not change regardless of rank size.
However, under strong scaling (where the total workload is
fixed, i.e., the workload assigned to each processor decreases
as number of processors increases) and also for tracing the
lower level POSIX-IO for collective MPI-IO calls [4], loop
iterations will change. In most cases, loop iterations will be
inverse proportional to the size of ranks. We construct a set
of equations based on the number of ranks and loop iterations
to determine their exact relationship and calculate the loop
iterations for a target number of ranks.

2) Elastic string extrapolation: Extrapolation for strings,
especially filenames, is important in ScalaIOExtrap. Filenames
play a major role in distinguishing different I/O patterns (see
Section I). For pattern A (Serial I/O) and C (Parallel I/O,
shared-file), extrapolated filenames are identical regardless
of the number of ranks. Hence, we also generate the same
filenames as for trace files of smaller number of ranks.

For pattern B (Parallel I/O with one file per process,
N-to-N), filenames are traced and compressed as an RSD
[start stride size] pattern. We assume the variables in file-
names have a linear relationship to the rank numbers, which is
common for the N-to-N pattern and even the N-to-N/n pattern.
Example: a) N-to-N pattern: If the filename in the program is
“/dir0/file_<rank>”, the variable is <rank> and it has
a linear relationship to rank numbers, variable = 1×rank+0.
b) N-to-N/n pattern: This means all the ranks are gathered
as groups, and each root of the group acts the “spokesperson”
performing I/O. The variables also have a linear relationship
to rank numbers. Example: A program with four ranks acting
as a group has a filename “/dir0/file_<rank/4>”, i.e.,
the variable also has a linear relationship to the ranks. With
this assumption, we determine that start, stride, size of an
RSD pattern have a linear relationship to rank size. In most
cases, the start and stride do not change (as we observe in
experiments), only size changes with rank size. We simply
generate the equations over the reference of traces and solve
them using Gaussian Elimination.

TABLE I: Offset parameters for Rank0-Rank5

Rank size i=0 i=1 i=2 size i=0 i=1 i=2

Rank0 0 960 1920 0 960 1920
Rank1 240 1200 2160 160 1120 2080
Rank2 4 480 1440 2400 6 320 1280 2240
Rank3 720 1680 2640 480 1440 2400
Rank4 - - - 640 1600 2560
Rank5 - - - 800 1769 2720

3) Elastic data element extrapolation: Elastic data, such
as offset and count , are the most challenging to extrapolate
since (a) we do not know a mathematical model and (b) the
two dimensions of matrix data need to be extrapolated, and (c)
we want to extrapolate exact data for all ranks at target size.

We first motivate the two dimensions of the matrix data.
Since ScalaTrace can perfectly compress trace data both intra-
node and inter-node, the following strong scaling code will
generate the offset parameter in Table I after compression.



for (int i=0; i<3; i++){

offset = rank*(960/rank_size)+960*i;

MPI_File_seek(...offset...);

}

For the column dimension, the values of each column in Table I
denote offsets for different ranks for the same loop iteration
while values per row are offsets of the same rank number for
different loop iterations. Consider an attempt to extrapolate
to 8 ranks: (a) If we only extrapolated in column dimension,
we would not know the value for different loop iterations.
(b) If we only extrapolated in row dimension, we would not
have data for Rank 6 and Rank 7. Hence, extrapolation needs
to span all dimensions of the iteration at once. We create a
mathematical model for column extrapolation using the four
models introduced in Section II plus a new model:

5) offset = ((rank + a)%RankSize) × b, where a
(rank offset) and b (rank stride) are constants, rank
is the rank number and RankSize is the number
of ranks.

We require that the standard deviation of a singular model (1-5)
is zero as we need an exact solution, not an approximate one,
to extrapolate trace data. (This is a deviation from the models
in Section II, which used the smallest standard deviation as
identification for trace generation, but now these models are
reused and augmented with model 5) for extrapolation.) If we
cannot find a model with zero standard deviation, we flag
the base traces to invalid for extrapolation by our method.
While our models cover the common cases, an interface is
provided for users to add their own models for extrapolation
by specifying their own model (function) as a plug-in. Notice
that in later the experiments, no plug-ins were required.

We extrapolate the column dimension for both weak scaling
and strong scaling: Weak scaling is simple since the values will
be same for the different rank sizes. For strong scaling, we
also use the k/n + c model to predict the results for a target
rank size. After obtaining the first parameters from column
extrapolation, we combine them with the row extrapolation
equation and then calculate the remaining parameters.

4) Handles and time extrapolation: As mentioned in Sec-
tion III-A, handles are coded into integers. Here, we use
the same technique as for extrapolating data-based parameters.
Normally, handle extrapolation is simple. E.g., for a file handle,
in either the SIO, N-to-N, or N-to-1 I/O pattern, all ranks
perform the same file open operation regardless of rank size,
which remains unchanged during extrapolation. For strong
scaling, the open operation depends on rank size. We address
this with model-based extrapolation as before. We further reuse
time extrapolation by mathematical modeling (see [23]).

C. ScalaIOReplay

ScalaIOReplay provides time-accurate as well as fast-
forward replay options unique to I/O requirements. A parallel
trace replay of all events across task ranks preserves per-
rank ordering of events. Hence, its replays preserve the I/O
semantics of the original application and may also serve as a
means to verify the correctness of the tracing framework.

1) Bridge from ScalaIOTrace to CODES: Replaying the
extrapolated trace file in a simulation environment allows us
to experiment with replaying traces on future extreme-scale
systems. We integrate our approach into the CODES exascale

Fig. 2: Bridge between ScalaIOReplay and CODES

storage system simulation toolkit to enable extrapolated traces
to be used in a generic replay environment. To enable CODES
to read the ScalaIOTrace file format, we built a bridge (shown
in Fig. 2) between ScalaIOReplay and CODES to convert
the ScalaTrace data structure to the CODES data structure.
CODES is a POSIX-IO-based simulator. To preserve consis-
tency, we ignore the higher level in the I/O stack [21] and
trace lower-level POSIX-IO only during MPI-IO calls with
ScalaIOTrace (Multi-level tracing would otherwise result in
nested events, which are not supported). Let us describe the
concepts of using the bridge: (1) The unique file id for the
CODES workload API is an integer, but for ScalaIOReplay,
the filename is a unique string (see ScalaIOReplay). We exploit
the Jenkins lookup3 hash to generate a hash integer from the
string. (2) ScalaIOTrace does not record the offset of files
if there is no offset parameter in the calls, but the CODES
workload API requires the offset for each I/O call. We record
the offset during open in ScalaIOTrace, and update the offset
for each file operation to ensure that CODES gets the correct
offsets. (3) ScalaTrace is the backbone of ScalaIOTrace. So
ScalaIOTrace traces both I/O events and MPI communication
events, while CODES currently only needs I/O events. MPI
communication events are processed as follows: generate a
synchronization event for each MPI Barrier, and generate a
corresponding delay for other communication events.

The bridge is not only used for connecting ScalaIOTrace
traces with CODES, but also for ScalaIOExtrap traces. Since
any trace for CODES needs to contain only lower-level
POSIX-IO information regardless of whether the application
uses POSIX-IO or MPI-IO, processing of events at the bridge
level is trivial for applications with only POSIX-IO and N-
to-N (MPI-IO) patterns, because the lower-level POSIX-IO
behavior is identical to the upper level (e.g., each POSIX read
or MPI N-to-N read generates a POSIX read). We focus on
how to process MPI collective I/O. Using collective buffering
optimizations, MPI-IO gathers all I/O requests and lets only
the aggregator issue I/O at the POSIX level, which we called
”spokesperson”/proxy in Section I. However, the aggregator
may issue large volumes, which presents a challenge. Consider
a collective MPI-IO call MPI File write() with count=4096,
which means each processor is writing 4096 bytes to a
single file. After applying the collective buffering optimization,
the POSIX-IO information is aggregated as a write of size
4096*16, 4096*32, 4096*48, 4096*64 bytes for RS=16, 32,
48, and 64. Intuitively, we should extrapolate to a single write
with count=4096*1024 for RS=1024. However, this is not the
case in practice. Instead, 16 different aggregators write the
4096*1024 bytes in parallel due to internal buffer thresholds.
To solve this problem, we define a max-blocksize for the
bridge. This max-blocksize depends on the configuration of
MPI, e.g., 262,144 bytes for MPI by default on the BG/Q
platform. Whenever the I/O volume exceeds max-blocksize,
we separate a single I/O call into multiple I/O operations.



IV. EXPERIMENTAL FRAMEWORK

As mentioned in Section I, to verify the correctness of
our approach, we deployed our framework on top of: (1) A
smaller cluster (x86 64) with 1728 cores on 108 compute
nodes. It supports the Network File System (NFS), Parallel
Virtual File System (PVFS2), and a local filesystem. (2)
An IBM Blue Gene/Q system which uses the IBM General
Parallel File System (GPFS). (3) CODES (Simulator): Co-
design of Exascale Storage system [10], [11]. It supports the
Parallel Virtual File System (PVFS/BGP) [10]. We evaluate
the correctness of our approach for the three platforms using
the techniques shown in Fig. 4, Fig. 3 and Fig. 5, respectively,
with respect to the following aspects:
C1 : We compare the extrapolated trace file with the trace file
gathered from ScalaTrace, which is executed at the extrapo-
lated target rank size. Ideally, the two traces file should be
exactly the same (after filtering out minor differences in delta
time). However, the delta execution time we extrapolated will
have some variance. So we ignore the execution time and then
compare the structure of the two trace files.
C2 : We replay all I/O events (i.e., issue I/O calls natively)
using the extrapolated trace file and compare the execution
time with the original program running on same number of
processors. The two (delta) execution times should be a close
match. We simulate communication and computation events
during replay via usleep. Discussion: We could alternatively
replay communication as well. If we did, then overall accuracy
would be better than just reporting I/O, i.e., averaging commu-
nication+I/O actually skews results to increase accuracy. But
we believe that pure I/O extrapolation gives a more honest
indication on the limits of our approach.
C3 : We use Darshan tracing [4], [3] to gather the total I/O
size of the original program and the corresponding replayed
program. We compare the I/O size difference by eliminating
the I/O overhead of the replay engine.
C4 : We feed both the extrapolated traces and traces captured
from ScalaIOTrace with an identical number of ranks into the
CODES simulator and compare the total number of opens,
reads, and writes in experiments.

We chose the following I/O benchmarks and mini-
applications with I/O:
IO-sample (Argonne National Laboratory) features a number
of benchmarks including POSIX-IO (an N-to-N pattern), MPI-
IO (shared N-to-1), and MPI-IO (N-to-N) with calls of derived
I/O datatypes and a variety of I/O calls.
Interleaved Or Random (IOR) (Lawrence Livermore Na-
tional Laboratory) is used for performance testing of parallel
file systems for high performance clusters. IOR provides the
interface for users to verify the overall I/O size, individual
transfer size, file access mode (single shared file, one file per
processor), and whether the data is accessed using a chunk
pattern or an interleaved pattern.
Based on the characteristics of the platforms, we verify our
results differently in different cluster as explained next.

A. Commodity Linux Cluster

We first conduct experiments on a commodity Linux cluster
of 108 nodes, where a node has two AMD Opteron 6128
processors with 8 cores each (16 per node) and an Infini-
Band interconnect between nodes. We varied the number of

target processors during I/O extrapolation and replayed with a
corresponding number of nodes. An identical configuration is
important since I/O bandwidth and contention depend on the
number of tasks per node and the total number of nodes. The
filesystem type also impacts I/O behavior, as our experiments
cover a local filesystem, a shared network filesystem (NFS),
and a Parallel Virtual File System (PVFS2). Fig. 3 depicts the
set of verification experiments conducted on local, NFS, and
PVFS2 filesystems with the same I/O application and the same
input parameters (e.g., I/O Size, I/O pattern) using methods C1
and C2 (as the others are not applicable).

Fig. 3: Extrapolation Verification on Linux Cluster

B. IBM BG/Q

We also conduct experiments on an IBM BG/Q system
with the configuration shown in TABLE II. We also used the

TABLE II: Configuration of IBM BG/Q system

Architecture: IBM BG/Q Cabinets: 4

Processor: 16 1600 MHz PowerPC A2 cores Nodes: 4096

Total cores: 65,536 cores Cores/node: 16

Memory/node: 16 GB RAM per node Memory/core: 1 GB

Darshan I/O characterization tool to record statistics such as
the number of files opened, time spent in performing I/O, and
the amount of data accessed by an application. We further
analyze Darshan logs by using the “darshan job summary”
utility. Finally, we verify the correctness of experiments on the
BG/Q platform as shown in Fig. 4 using methods C1/C2/C3
(as C4 is not applicable). Trace files are 2KB to 10s of KB in
size (due to very effective structural compression via PRSDs).

Fig. 4: Extrapolation Verification on BG/Q

C. CODES

ROSS [27] offers two methods of simulation: the optimistic
and the conservative mode. The optimistic mode is a fast
mode, where “‘reverse function handlers” execute events out
of order without violating any timing dependency. However,
the optimistic mode is not supported for BG/P. Hence, we
utilize the conservative mode without reverse handlers. More
specifically, we conduct simulations on a x86 64 machine,
execute events in order, and capture statistics. By using the
bridge from ScalaIOTrace to CODES, we can feed ScalaTrace
traces into the CODES simulator to support the verification
method shown in Fig. 5.



Fig. 5: Extrapolation Verification on CODES

V. RESULTS

We compare the traces, total I/O volume, statistics and
execution time (e.g., number of total open, read, write, close
operations) of our purposed approach for 16 processes per
node. It is straightforward to compare the first three results,
since no matter how the environment changes, they are fixed
for identical input parameters and number of ranks. However,
execution time comparison is complicated due to significant
time variations even in the same environment and with the
same I/O application due to contention. A residual difference
between the extrapolated trace replay time and observed exe-
cution time is deemed to exist. This difference is calculated as
abs(Textrapolated − Tobserved)/Tobserved, where Textrapolated

is the replay time of the extrapolated traces and Tobserved is the
execution time of the I/O application with the same number
of ranks. In order to minimize contention, we only run one
experiment at a time and collect execution time by averaging
three captured runs.

A. Results on the Linux Cluster

To verify the correctness as well as the accuracy of
ScalaIOExtrap, we conducted our experiments on various
filesystems. As shown in Fig. 3, we compare the traces and
execution times with the filesystems: (1) The local Filesystem
using local data storage devices, (2) the Network Filesystem
(NFS), a shared filesystem that allows a user on a client
computer to access files over a network, and (3) the Parallel
Virtual File System (PVFS2), a file system that distributes its
data over multiple storage nodes.

IO-sample: The IO-sample benchmark features both MPI-
IO and POSIX-IO, as well as the N-to-1 and N-to-N patterns.
Our replay engine can reconstruct the original benchmark
irrespective of I/O patterns and supported I/O libraries. For
a set of input parameters with POSIX-IO (I/O size: 8KB per
processor; iterations: 100) and MPI-IO (iterations: 3; I/O size
: 1M, 2M and 3M bytes per rank, i.e., 8G/16G/24G total), we
gathered traces for 8, 16, 24, and 32 ranks, which comprises
the set of small traces. From the small traces, we extrapolate
and generate traces for 128, 192, 256, and 320 ranks. We
use the UNIX diff utility to compare the ScalaIOTrace and
extrapolated traces with the same number of ranks. Except for
the time extrapolations, they match perfectly. Timings (y-axis)
are shown for different number of ranks (x-axis) in Fig. 6. For
the same I/O size and I/O pattern, the local filesystem takes
the shortest time because it is faster for nodes to access their
local memory. PVFS2 takes the longest time (explained later
for IOR results). The replay time fluctuates with application
execution time. Time inaccuracy is within 5%.

IOR: IOR is a more complex I/O benchmark. We capture
results for different inputs classified as shared-file (chunk pat-
tern), shared-file (interleaved pattern), and file-per-processor.
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Fig. 6: Results of IO-sample in Local, NFS and PVFS2

Both shared-file cases (chunk and interleaved) follow a N-
to-1 pattern. They differ in how they order I/O. Consider
four processors, A, B, C, and D, each of them performing
four I/O operations. Shared-file (chunk pattern) performs I/O
as AAAABBBBCCCCDDDD, while shared-file (interleaved
pattern) performs I/O as ABCDABCDABCDABCD. We select
two patterns since they differ in whether they use the collective
buffering or not. MPI-IO allows users to access non-contiguous
data with a single I/O function call [20]. The interleaved
pattern contains many small, distinct I/O requests that are
densely interleaved, so that MPI-IO uses collective buffering
to transfer the data to the file system from an aggregator for
larger I/O chunks. E.g., if A is the aggregator, then B, C, and
D will send their data to A, and A will write it as one big
chunk. The chunk pattern, in contrast, has a big gap between
written file regions, so MPI-IO has no choice but to issue them
as individual operations to the file system.

We select the I/O size to be TransferSize=128K, and each
processor accesses 2M data. As in the IO-sample benchmark,
we use the UNIX diff utility to compare the traces gathered
from ScalaIOExtrap and ScalaIOTrace for the same number of
ranks. They matched perfectly. We depict the execution times
of IOR (shared-file) in Fig. 7 and Fig. 8.
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Fig. 7: Results of IOR (chunk pattern)

Similar to IO-sample, the execution times for the local file
system are the shortest among all file systems. Chunk/inter-
leaved patterns do not differ for local storage, because nodes
access private resources. The crux is to capture the change in
patterns when scaling, not the size, as I/O is replayed (takes
the same time). Execution time increases due to computation
replayed as delta-time delays, but because of I/O.



128 192 256 320
0

50

100

150

200

Number of Processors

E
x
e
c
u
ti
o
n
 T

im
e
(s

)

 

 

Tobserved (Local)

Textrapolated (Local)

Tobserved (NFS)

Textrapolated (NFS)

Tobserved (PVFS2)

Textrapolated (PVFS2)

Fig. 8: Results of IOR (interleaved pattern)

We also obtain timing results per processor for the N-to-
N pattern (see Fig. 9). When comparing the results shown in
Fig. 7, Fig. 8 and Fig. 9, PVFS2 performs best in terms of per
processor time because N-to-N I/O has the highest degree of
parallelism. Although I/O patterns and file systems are varied
and even though different extrapolation techniques are needed
for different I/O patterns, our extrapolated results match the
actual application. By avoiding contention as much as possible,
we obtain time accuracy within 5%, which means our approach
reflects the behavior of applications quite well.
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Fig. 9: Results of IOR file-per-processor

B. Results on BG/Q

We conduct experiments with 16 processes per node (one
per core). Before comparing traces and execution time, we
assess the total I/O size (see Fig. 4) using the Darshan tracing
tool. By parsing the Darshan log, we obtain the total I/O size of
all reads and writes over all processors. ScalaIOReplay issues
its own I/O to read in traces to memory, which introduces
overhead proportional to its size. We capture the extrapolated
I/O size as: Sreplayed − (Strace × RS), where Sreplayed is
the replayed I/O size captured by Darshan, Strace is the size
of trace read by ScalaIORelay, and RS is the number of
ranks. To emphasize differences for large numbers of ranks,
we separately report IO-sample results for POSIX-IO (N-
to-N pattern) and MPI-IO (N-to-1 pattern). After selecting
input parameters for POSIX-IO (I/O size: 4KB per processor;
iteration times: 100) and MPI-IO (iteration times: 2; I/O size:
64KB and 128KB), we gather traces from 16, 32, 48, and
64 ranks as the small trace set for extrapolation. Execution
time results depicted in Fig. 10 (logarithmic y-axis) indicate
an average time difference of no more than 5%. We also
gather IOR execution time results for shared-file (interleaved),
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Fig. 10: Results of IO-sample on BG/Q

shared-file (chunk), and file-per-processor patterns. We set the
TransferSize=8K and let each processor issue 64KB of I/O.
The execution time results of IOR are shown in Fig. 11. The
BG/Q system uses the General Parallel File System (GPFS),
which is a high-performance shared-disk clustered file system.
GPFS performs better for large I/O operations as seen in
Fig. 11 (again with a logarithmic y-axis). For the same I/O size
and with MPI-IO collective buffering (see Section V-A), the
shared-file (interleaved) pattern is significantly faster than the
shared-file (chunk) pattern, while file-per-processor takes the
longest time. For both the IO-sample and IOR benchmarks, we
also use the UNIX diff utility to compare corresponding traces
(same number of ranks and same input parameters) captured
from ScalaIOTrace and ScalaIOExtrap. Except for the recorded
time, they match perfectly. The execution time results indicate
that the replay time of the extrapolated trace accurately reflects
the execution time of the original application.
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Fig. 11: Results of IOR on BG/Q
We assess how closely our ScalaIOExtrap matches the

original I/O size using the verification from Fig. 4. After
eliminating the ScalaIOReplay overhead, results in Fig. 12
indicate that the total I/O size gathered from ScalaIOReplay is
exactly same as that gathered from an actual application run.

C. Results for CODES

CODES, the virtual HPC simulation system, provides
statistics of the total number of I/O calls per operation (open,
read, write, close, and synchronization). We already compared
the extrapolated results at the structural level. We now compare
the results at the operational level as shown in Fig. 5. Our goal
is to verify the correctness of our approach. Although we can
extrapolate traces to extremely large numbers of ranks and
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simulate it through CODES, we extrapolate to more moderate
numbers of ranks to be able to compare to traces gathered on
actual HPC systems. We distinguish the I/O patterns POSIX-IO
(N-to-N), MPI collective I/O (N-to-1, SIO, N-to-N/n), and MPI
file-per-processor (N-to-N). We capture POSIX-IO results for
IO-sample (see Fig. 13 with a logarithmic y-axis). We compare
the total number of opens, reads, writes, and closes over all
processors between the original and extrapolated traces. Let
N be the number of operations in the Observed (application)
and Extrapolated (replayed) traces, e.g., Observed Nreads
is the total number of reads of the application. We observe that
observed and extrapolated results are identical for POSIX-IO.
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Fig. 13: I/O operations of IO-sample (POSIX-IO)

Collective MPI-IO contains N-to-1, SIO, and N-to-N/n
patterns. (1) For MPI-IO, the N-to-1 pattern reduces processors
to I/O in a single file. (2) For POSIX-IO, if the total I/O
workload is small enough for a processor, one processor acts
as the aggregator, which becomes Serial I/O (SIO). (3) For
POSIX-IO, if the total I/O workload is large, N/n aggregators
are needed, which is the N-to-N/n pattern. By setting the max-
blocksize to 256KB, we obtain the collective MPI-IO results
depicted in Fig. 14 (logarithmic y-axis). The extrapolated
number of I/O operations perfectly matches the number of
observed I/O operations.

We compare the results with and without max-blocksize to
further illustrate the impact of this parameter. Fig. 15 depicts
the difference for extrapolations to 512, 1024, 2048, and 4096
ranks. The max-blocksize does not effect the number of open
and close calls, so we only compare the number of reads and
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Fig. 14: I/O operations of IO-sample (MPI collective I/O)

writes, where R is the observed number of reads; Rw is the
extrapolated number of reads with max-blocksize; Rw/o is the
extrapolated number of reads without max-blocksize; W is the
observed number of writes; Ww is the extrapolated number
of writes with max-blocksize; and Ww/o is the extrapolated
number of writes without max-blocksize. Results indicate that
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Fig. 15: I/O operations of with and without max-blocksize
(IO-sample, MPI collective I/O)

the difference increases as the number of ranks, RS, increases.
The max-blocksize parameter does not effect the total I/O
workload in size, but it adversely affects the performance of
the N-to-1 and N-to-N/n patterns.
We next capture IOR results in file-per-processor mode (see
Fig. 16, logarithmic y-axis). Results indicate that under the
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Fig. 16: I/O operations of IOR (file-per-processor)
file-per-processor (N-to-N) mode, our approach extrapolates
traces correctly as well.



D. Results for ddcMD

The ddcMD multi-physics particle dynamics code is an
scalable code for modeling particle dynamics and includes
advances in high performance scalable I/O. We use a standard
version of ddcMD and its regular checkpoint capabilities at
timestep intervals in a k-to-1 pattern, where k aggregators write
to 1 file. Groups of N/k nodes each send their checkpoint
data to their respective aggregator. Each rank’s I/O size is
16K before aggregation. In order to focus on I/O tracing and
extrapolation, we use usleep to simulate communication and
computation events during replay.

There are three types of non-IO events that need to be
considered for ddcMD during delta-time extrapolation:
• Communication events: These include all MPI communi-
cation functions in ddcMD, namely MPI Send, MPI Recv,
MPI Isend, MPI Irecv, MPI Wait, and MPI Waitall.
• Reduce events: MPI Reduce is used.
• Other events: The time between any other MPI events is
calculated as

total execution time− Communication time
−MPI Reduce time.

This encompasses the time for other MPI events, any compu-
tation time, and the differences between (average) recorded
time and actual execution time. As the latter may diverge
from the average, it is important to compensate for per-rank
difference from the recorded average. This is an important
finding: extrapolation was found to only be accurate with this
compensating term at scale.
For these event types, we record their mean and then ex-
trapolate each of them separately. Since ddcMD requires the
number of processors to be powers of two by input constraint,
we gather results on ACLF for an increasing sequence of
just enough processors to be able to extrapolate. The results
for ddcMD, which include C-style IO for checkpointing,
are depicted in Fig. 17. ScalaIOExtrap automatically selects
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Fig. 17: Results of ddcMD on BG/Q

different curves per event type as a closest fit of a curve for
time extrapolation. For example, communication time, f(x),
resembles a 2nd-order polynomial, f(x) = ax2 + bx + c,
while reduce time follows a 1st-order (linear) relation with
respect to the number of processors, x. With these models, we
observe that as the number of processors increases, the overall
extrapolated execution time under replay is shorter than the
actual execution time of the application. This is due to the
fact that I/O is re-executed during replay while communication
events are not replayed, i.e., only their extrapolated time

is considered. Hence, any synchronization due to collectives
or delay due to blocking point-to-point messages is ignored
during replay. Results show that time accuracy is within 15%.
Trace file are about 30KB in size (constant size from 64-8192
ranks), differences in bytes are due to numbers encoded as
ASCII (variable string length), again due to very effective
structural compression via PRSDs). The cost of intra- and
inter-node compression was 2 and 98 seconds, respectively,
for 4k processors. This cost is incurred only once. Thereafter,
any number of extrapolations can be generated.

VI. RELATED WORK

Leung et al. [9] proposed an analysis framework based
on server-side tracing data. Liu et al. [12] combine filter-
ing techniques with wavelet transforms to characterize noisy
server-side I/O behavior in a lossy (approximate) manner. Our
method utilizes structural compression of client-side I/O traces
in a lossless manner. They trace when and how much data is
transmitted; we add files, patterns, and offsets to that, and then
extrapolate.
Wright and Hammond [22] analyzed the write bandwidth of
MPI-IO as well as POSIX file system calls originating from
MPI-IO at increasing scale by utilizing the RIOT toolkit, which
is able to capture and record I/O operations of applications. In
contrast, we focus on extrapolating I/O traces to arbitrary an
number of ranks.
Eckert and Nutt [6], [5] studied the extrapolation of trace data
of multiple threaded programs on shared memory multiproces-
sors. Instead, our work focuses on I/O traces and is based on
deterministic application execution, i.e., we preserve the causal
orders both for ScalaIOTrace and ScalaIOExtrap.
Mohror and Karavanic [14] assessed different trace reduction
techniques. Their similarity metric (performance) resembles
our wall-clock time. But their per-core metrics appear to
lack scalability. If they were enhanced so that they scaled,
they would be similar to our histograms. Their compression
reduction (based on flat distances) is inferior to the more
general structurally recursive compression of ScalaTrace [24].
But while ScalaTrace/Extrap only traces MPI communication
events, ScalaIOTrace/Extrap traces I/O events, which require
different extrapolation than communication events (see Sec-
tion III). Vijayakumar et al. [21] developed fundamental I/O
tracing capabilities for ScalaTrace. Luo et al. [13] explored
techniques for small-scale extrapolation of I/O traces. Our
paper builds on this related work but contributes novel re-
sults for larger-scale and multi-platform experiments, including
the extrapolation of a single application split into different
workload components by disjoint interpolation functions for
each component, which was shown to be required for larger
applications (ddcMD).

VII. CONCLUSION

We presented the design and implementation of three tools:
(1) ScalaIOTrace is a multi-level I/O tracing approach,
which supports both MPI-IO and POSIX-IO interpositioning.
It captures I/O events as singletons, vectors, and RSDs in an
elastic trace representation, which is stored in a single, lossless,
and order-preserving trace file.
(2) ScalaIOExtrap is an extrapolation tool. By analyzing a
set of smaller traces, modeling the relation between parameters



and the number of ranks, it calculates parameters and generates
a single trace for any number of ranks. Experimental results
demonstrate that structural trace comparison, I/O size, and
the number of operations remain perfectly accuracy while
execution time remains sufficiently accurate.
(3) ScalaIOReplay is a parsing and replay engine, which re-
executes the events of ScalaIOTrace traces in the same order as
an original application. With ScalaIOReplay, users can analyze
the application without the need to scale their source code.

Our results demonstrate that our approach is not only
scalable in terms of ranks but also works across different
platforms. We can generate and then replay extrapolated trace
for large number of ranks by collecting a set of traces with
smaller number of ranks. We preserve event ordering and
time accuracy in these large traces. With this technique,
large-scale communication and I/O performance estimations
can be obtained without modifying the source code of such
applications for these larger scales. We can conclude that our
approach opens up new opportunities for I/O performance
analysis with good scalability and portability. And from the
given experimental results, we can conclude that I/O behavior
of parallel applications can be analyzed from a set of smaller
traces and extrapolated to a trace of arbitrary number of ranks
while retaining correct communication patterns, I/O size, I/O
operations, and execution times for mesh-based communica-
tion patterns. Future work aims at targeting diverging commu-
nication patterns between nodes and fitting other models to
scaling trends, e.g., via plug-ins [1].
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