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Abstract—Increasing parallelism and transistor density, along
with increasingly tighter energy and peak power constraints,
may force exposure of occasionally incorrect computation or
storage to application codes. Silent data corruption (SDC) will
likely be infrequent, yet one SDC suffices to make numerical
algorithms like iterative linear solvers cease progress towards the
correct answer. Thus, we focus on resilience of the iterative linear
solver GMRES to a single transient SDC. We derive inexpensive
checks to detect the effects of an SDC in GMRES that work
for a more general SDC model than presuming a bit flip. Our
experiments show that when GMRES is used as the inner solver
of an inner-outer iteration, it can “run through” SDC of almost
any magnitude in the computationally intensive orthogonalization
phase. That is, it gets the right answer using faulty data without
any required roll back. Those SDCs which it cannot run through,
get caught by our detection scheme.

I. INTRODUCTION

Incorrect arithmetic or corruption of stored data could have
dire effects on the execution of a numerical algorithm. Exper-
iments show that a single bit flip in memory can cause certain
algorithms to “crash” (terminate abnormally, due to invalid
states or actions detected by the application or operating
system), “stagnate” (keep running but fail to make progress),
or, worst of all, produce the wrong solution, silently.

Rather than focusing exclusively on bit flips, this work
studies the impact of Silent Data Corruption (SDC) on the
Generalized Minimal Residual Method (GMRES) iterative
linear solver. The source of the corruption, while interesting,
gives no insight into its impact on the algorithm and the
correctness of its result. By generalizing bit flips in floating-
point data into potentially unbounded numerical errors, we
are able to use mathematical analysis both to reason about
algorithms’ behavior should an SDC event occur, and to
harden them against the event’s effects.

Fortunately, some numerical algorithms only need reliability
for certain data and phases of computation. If the system can
guard just those parts of the algorithm in space and time, then
the algorithm can compute the right answer — or at least be
able to detect failure and report it “loudly” — despite faults
in unreliable phases of execution. This suggests a “layered”
approach to the design of reliable numerical algorithms. A
reliable outer layer can recover from faults in a less reliable
inner layer. If the solver spends most of its time in unreliable
mode, it can mitigate the cost of reliable computation in the
outer mode. We begin the analysis with GMRES, and then
extend it to the Fault-Tolerant GMRES (FT-GMRES) inner-
outer iteration.

We present the following contributions:
• We use mathematical analysis of the GMRES algorithm

to construct a detector that bounds the error that SDC
may introduce.

• We combine the above detection scheme with the sandbox
reliability model presented in [1].

• We illustrate experimentally that bounded error originat-
ing in the faulty inner solve has little impact on time-to-
solution.

A. Silent Data Corruption

In this work, we address a very specific type of fault, i.e.,
a fault that silently introduces bad data, while not persistently
tainting the data that was used in the calculation. For example,
let a = 2 and b = 2, then c = a + b = 10, while simplistic,
this model presumes no knowledge of the nature of the fault,
only that c is incorrect. This model assumes that the machine
is unreliable in an unpredictable way, and therefore we are
skeptical of the output it presents. This type of unreliability
can be mitigated via redundant computation and introspection,
but then the cost of running the algorithm increases drastically.

B. Faults, Failures, and Persistence

Our goal is to ensure that should transient SDC occur, we
either obtain the correct solution or make the fault not silent by
alerting the user. We consider two perspectives: the user and
the system. A fault occurs at the system level, e.g., a bit flips
or a node crashes. A fault becomes a failure if it impacts the
user. Figure 1 depicts a visual taxonomy of how we consider
faults and the scope of our work. We further classify faults
into those that interrupt the user’s program (hard faults), and
those that do not immediately or ever interrupt the user’s code
(soft faults). A hard fault results in a failure if the user is
running an application (though a checkpoint / restart recovery
system can “mask out” hard faults, making them not failures).
In contrast, the very nature of soft faults implies that they
may emit no indication that something has gone wrong. In the
event that soft faults allow the program to continue execution
with tainted data, we must understand how algorithms behave
in the presence of faulty data. Furthermore, if the algorithm
uses tainted data and still obtains the correct solution, then
the fault does not constitute a failure. If the soft fault leads to
an incorrect solution, then the fault leads to a silent failure,
which is an outcome we wish to make very rare or impossible.
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Fig. 1: Taxonomy of faults and scope of this work.

We further classify soft faults by how long the underlying
hardware remains faulty. Persistent faults arise from hardware
that is permanently faulty, e.g., a stuck bit in memory, or the
Intel Pentium FDIV bug [2]. Sticky faults indicate hardware
that is faulty for some duration but returns to normal operation.
Transient faults occur once, and while the fault is transient the
effect of the fault may be persistent.

II. PROJECT OVERVIEW

To quantify the possible effects of a single silent data
corruption event in GMRES, we propose a multifaceted
approach. We combine the sandbox reliability model from
[1], Flexible GMRES from Saad [3], and mathematical
analysis of the GMRES algorithm to create a nested solver
strategy that combines an unreliable inner solver with a
reliable outer solver, while enforcing that, should SDC occur
in the unreliable phase, the error is bounded. We then show
through experiments how our scheme “runs through” single
SDC events in the unreliable solver. Using this approach, we
ultimately seek to present analyses of solvers such that we
can quantitatively choose solvers based on their resiliency to
single events of SDC.

This paper is organized as follows:
1) In Section IV, we describe the sandbox reliability model.
2) In Section V, we present standard GMRES, and un-

cover through mathematical analysis an invariant in the
Arnoldi process contained within GMRES.

3) We describe how to check this invariant when using
Modified Gram-Schmidt orthogonalization.

4) In Section VI, we introduce Saad’s Flexible GMRES
and Bridges et al.’s FT-GMRES, and explain the relation
between flexible solvers and the sandbox reliability
model.

5) In Section VII, we compose a nested solver using the
Trilinos framework [4], and present experimental results
illustrating how our invariant check impacts time-to-
solution.

A. Assumptions and Justification

We restrict SDC to the numerical data used and generated by
the algorithm. We explicitly exclude faults in control flow, data
structures, loop counters and other metadata used to implement
the algorithm. The reason for this exclusion is that these issues
represent a different class of problems.

Our assumption that SDC occurs only once is fundamental.
The implied source of SDC is typically a bit flip, but we do
not restrict our model to silent bit upsets, given that there
is limited data available today to base such a model on. We
justify our choice of single transient SDC, based on what we
do know about bit flips and the reliability of the system:

1) Hardware employs techniques to ensure that so-called
“single event upsets” (SEUs) – that is, bit flips – do not
occur. Therefore, it is expected that SEUs will be rare
events.

2) If we can understand the best- and worst-case scenarios
for the error that an SDC can contribute, we will have
a baseline to conjecture about multiple bit flips, i.e.,
multiple occurrences of SDC.

3) There currently is no solid theory, e.g., a statistical dis-
tribution, of the rate at which bit flips occur. Therefore,
speculation about flip rates may or may not prove useful.

4) Assuming a particular fault rate makes bold assertions
about future hardware, especially given the reluctance
of hardware manufacturers to divulge this information.

By following this research path, we are able to avoid the
pitfalls presented in items 3 and 4 above, and we are able
to isolate the impact of SDC without other factors polluting
our analysis.

III. MOTIVATION

Energy and peak power increasingly constrain modern com-
puter hardware, yet hardware approaches to protect computa-
tions and data against errors cost energy. This holds at all
scales of computation, but especially for the largest parallel
computers being built and planned today. This results from a
confluence of factors:
• Increasing parallelism (and therefore more components

to fail) [5], [6]
• Decreasing transistor feature sizes, making individual

components more vulnerable
• Extremely tight peak power requirements [7], limiting the

use of hardware redundancy to increase reliability
As these trends continue, hardware vendors may succumb
to the temptation to expose incorrect arithmetic or memory
corruption to application codes [8], [7], [9]. Some studies
already indicate that this behavior is appearing at the user
level [10]. In fact, some researchers actively promote relaxing
hardware correctness to save energy [11].

A. Relation to Prior Work

Much of the prior work on fault-tolerant iterative solvers has
taken the approach of assuming some fault model for bit flips,
and then injecting bit flips into specific numerical operations



[12], [13], [14], or treating the application as a black box
and injecting bit flips arbitrarily [15]. A popular operation
to analyze is sparse matrix-vector multiply [12], [14], a key
kernel in iterative linear solvers. These approaches typically
engineer a response that mitigates, detects, or detects and
corrects bit flips injected following the assumed fault model.
The focus in this type of research has been to detect errors,
and then respond – e.g., correct the tainted values, or roll
back and resume computation from an assumed valid state –
assuming that the fault does not occur frequently enough to
cause stagnation.

In addition, all prior work on sparse iterative methods is
based on a fault model that assumes multiple bit flips injected
at some rate. Most studies are also carried out with little care
for whether the bit flipped is a 0 → 1 or a 1 → 0, and most
studies flip bits at random locations. We question many of
the assumptions made, and in general question the research
approach.

1) SDC is a Rare Event: We begin by questioning models
and experiments that assume SDC happens at a sufficiently
high rate for multiple events to occur in a single linear solve.

We have a strong reason to believe that SDC is a rare event.
Hardware incorporates a fairly large amount of safeguards
in-place to protect data and instructions. For example, Intel
provides the Machine Check Architecture, which provides
reporting of bit errors at the register, cache (L1-L3), QuickPath
Interconnect, and DRAM (via ECC) layers. We do not attempt
to conjecture about the likelihood of bit flips, rather we turn
to the theoretical basis that an algorithm is built on, and study
how the algorithm behaves when perturbed within the bounds
imposed by mathematical analysis.

Current research by Michalak et al. found SDC occurred
rarely [16]. They placed a Roadrunner node in front of a
neutron cannon and bombarded it with particles. While the
neutron fluxes are far beyond realistic, their observations
showed a startlingly low occurrence of SDC, while outright
node failure occurred far more frequently. Why then has
current SDC research focused on failure rates?

In practice, SDCs should remain rare, even at extreme scales
of parallelism. Nevertheless, little if any current research has
attempted to explain how a single SDC event impacts an
algorithm and ultimately the solution. Research on how to
counter multiple bit flips has not provided additional insight
on the cause/effect relationship.

Also, an application may attribute much of its run time to
linear solves, but typically these are multiple linear solves,
e.g., an implicit time stepping algorithm that solves a nonlinear
system at each time step. For example, see Müller and Scheichl
where a nonlinear system of size 1010 is solved and the linear
solver is restricted to 0.003 seconds per solve [17].

2) Fault Models and Silent Data Corruption: At a higher
level, we challenge the research approach of assuming a
fault model for SDC. By definition, the origin of silent data
corruption is unknown, with one such origin being a silent
bit flip. Instead of characterizing SDC, the studies propose
solutions to a problem we understand only poorly. It is our

goal first to analyze the effects of SDC, and then to propose
both specific algorithmic techniques and general heuristics
that minimize its impact, should it occur. With this ability,
mathematicians, scientists, and engineers can take quantifiable
steps to develop algorithms and applications that are inherently
resilient to SDC.

In numerical algorithms using IEEE-754 floating-point data,
regardless of the cause, SDC will produce either numeric
values or the non-numeric infinity (Inf) and not-a-number
(NaN) values. Injecting bit flips will produce either type of
error, making the act of injecting a bit flip to study transient
SDC unnecessary as the outcome could have been achieved by
merely setting the memory location equal to some value. We
know from the IEEE-754 specification precisely what numeric
values are possible, and given the mystery of how, when, and
where SDC originates, any of the possible floating-point values
are plausible.

We advocate a drastically different approach, namely that
SDC impacts the underlying mathematical assumptions that
guarantee convergence of an algorithm. Rather than focusing
on detecting binary errors, we treat bit flips as numerical errors
and evaluate how these errors relate to the theoretical basis
that the algorithm is built on. In this sense, we filter values
that are theoretically impossible, while accepting variations
that are allowable by the theory. While our approach does not
“solve” the SDC problem, we exploit modern mathematical
techniques, so-called flexible solves, to cope with the bounded
error we “run through”.

B. Invariants as Detectors

Numerical algorithms often have invariants that they can
check inexpensively to decide whether hardware faults have
corrupted an intermediate result enough for it not to be useful.
For example, Chen [18] performs additional computation and
parallel communication in order to check invariants of the
iterative linear solvers GMRES [19], CG, and BiCG. If those
invariants are violated, the solver can roll back one or more
iterations and resume from the last known correct point. In this
work, we develop invariants that require no additional parallel
communication and very little extra computation to check.
This reduces the amount of state needed to roll back correctly,
since we can afford to check these invariants at every iteration.
In fact, GMRES (and variants, like “Flexible GMRES”) keeps
enough state on its own that, unlike in Chen’s work, we do
not need to save anything to a persistent store.

Checking invariants naturally fits into the layered approach
we mentioned in the introduction. In the case of FT-GMRES,
the outer solver (based on Flexible GMRES [3]) can check
the results of the unreliable inner solves by computing a
residual reliably. The outer solver will never compute the
wrong answer, no matter what the inner solves do. We present
findings in this paper that indicated that a layered approach
coupled with our theory-based detector can tolerate a single
SDC event with little (if any) impact on convergence.



IV. SANDBOX RELIABILITY

Relaxing reliability of all data and computations may result
in all manner of undesirable and unpredictable behavior. If
instructions, pointers, array indices, and Boolean values used
for decisions may change arbitrarily at any time, we cannot
assert anything about the results of a computation or the side
effects of the program, even if it runs to completion without
abnormal termination. The least we can do is force the fault-
susceptible program to execute in a sandbox. This is a general
idea from computer security, that allows the execution of
untrusted “guest” code in a partition of the computer’s state
(the “sandbox”) that protects the rest of the computer (the
“host”) from the guest’s possibly bad behavior. Sandboxing
can even protect the host against malicious code that aims
to corrupt the system’s state, so it can certainly handle code
subject to unintentional faults in data and instructions.

Sandboxes ensure isolation of a possibly unreliable phase
of execution. They allow data to flow between reliable and
unreliable phases of execution. Also, they let the host force
guest code to stop within a predefined finite time, or if the host
suspects the guest may have wandered astray. This feature is
especially important in distributed-memory computation for
preventing deadlock and other failures due to “crashed” or
unresponsive nodes. In general, sandboxing converts some
kinds of hard faults into soft faults, and limits the scope of
soft faults to the guest subprogram.

Sandboxing may be implemented in different ways. For
example, the guest may run in a virtual machine on the same
hardware as the host, or the host may be implemented as
redundant processes or systems. Guests may run on a fast but
unreliable subsystem, and the controlling host program may
run on a reliable but slower subsystem. We do not specify or
depend on a particular implementation of sandboxing in this
paper.

The fault-tolerant inner-outer iteration, described in Section
VI, uses the sandbox model. There, the guest program per-
forms the task “Solve a given linear system.” The host program
invokes the guest repeatedly for different right-hand sides,
and the host performs its own calculations reliably. Finer-
grained models of reliability may improve the accuracy of
the inner solves, which is what our detector in Section V-B
accomplishes.

The sandbox model of reliability makes only two promises
of the unreliable guest: it returns something (which may not be
correct), and it completes in fixed time. These already suffice
to construct a working fault-tolerant iterative method, as we
will show in Section VI. However, detecting faults or being
able to limit how faults may occur would also be useful. These
finer-grained models of reliability can be used to improve
accuracy of the iterative method, or to prove more specific
promises about its convergence.

V. GMRES
The Generalized Minimum Residual method (GMRES) of

Saad and Schultz [19] is a Krylov subspace method for solving
large, sparse, possibly non-symmetric linear systems of the

form Ax = b. GMRES is based on the Arnoldi process [20],
which can also be used to approximate a matrix’s eigenvalues
and eigenvectors. GMRES has the convenient property that
the residual norm of the approximate solution at each iteration
is monotonically non-increasing, assuming correct arithmetic
and storage. Its use of orthogonal projections and normalized
(to length one) basis vectors also has advantages, that we will
discuss below.

We begin this section by explaining how to use properties of
the Arnoldi process to detect faults in an iteration of GMRES.
We then apply the SDC models we developed above to show
how to scale the linear system in a way that enhances fault
detection and bounds the possible error of the major computa-
tional kernels. We will show in future work that these bounds
by themselves do not suffice to bound the solution error.
Nevertheless, they can, if one makes inexpensive changes to
how GMRES computes the solution update coefficients.

A. Fault Detection via Projection Coefficients

The norms and inner products that occur in each iteration
of the Arnoldi process in GMRES have a bounded absolute
value. The bound depends on the norm of the preconditioned
matrix, which is inexpensive to estimate. We use this bound to
detect faults in all the major computational kernels in GMRES.

Algorithm 1 GMRES
Input: Linear system Ax = b and initial guess x0

Output: Approximate solution xm for some m ≥ 0
1: r0 := b−Ax0. Unpreconditioned initial residual vector
2: β := ‖r0‖2, q1 := r0/β
3: for j = 1, 2, . . . until convergence do
4: vj+1 := Aqj . Apply the matrix A
5: for i = 1, 2, . . . , j do . Orthogonalize
6: hi,j := qi · vj+1

7: vj+1 := vj+1 − hi,jqi

8: end for
9: hj+1,j := ‖vj+1‖2

10: if hj+1,j ≈ 0 then
11: Solution is xj−1 . Happy breakdown
12: return
13: end if
14: qj+1 := vj+1/hj+1,j . New basis vector
15: yj := arg min

y
‖H(1:j + 1, 1:j)y − βe1‖2

16: xj := x0 + [q1,q2, . . . ,qj ]yj . Compute solution
update

17: end for

B. Bounds on the Arnoldi Process

We start our analysis by bounding the dot product which
determines the i-th upper Hessenberg entry, hi,j of the j-
th Arnoldi iteration. The Arnoldi process is expressed on
Lines 3–14 in Algorithm 1. At its core is an orthogonal-
ization kernel, which we have chosen to be the Modified
Gram-Schmidt (MGS) process. Classical Gram-Schmidt or
Householder transformations may also be used. As we will



demonstrate, our bound is invariant of the orthogonalization
algorithm chosen.

The MGS process begins on Line 5 and completes on
Line 8. To bound hi,j on Line 6, we exploit a property of
orthogonal projections. It is well known that linear transforms
utilizing orthogonal matrices are isometric. That is, they pre-
serve the length of the vectors. In Rn, the dot product of a
vector with a unit-length vector is bounded by the length of
the first vector. This means that each hi,j entry is bounded
by the length of the vector that starts the orthogonalization
process (the vector we wish to make orthogonal). To clarify
what “starts” the orthogonalization process means, we step
back from an algorithmic formulation, and instead write the
orthogonalization kernel as a mathematical expression. For
clarity, we will use the Classical Gram-Schmidt expression:

w =
[
I−QTQ

]
u (1)

In Eq (1), the vector u is what “starts” the orthogonalization
process, and w is the resulting vector, which is orthogonal to
all vectors in Q, where Q = {q1, . . . ,qj}.

Returning to Algorithm 1, what “starts” the orthogonaliza-
tion process is the vector resulting from Line 4. If we can
bound the length of this vector, then we know the maximum
absolute value that hi,j can take. Since we want to bound the
length of the resulting vector, we take the induced `2 norm,
‖vj+1‖2 =

∥∥Aqj

∥∥
2
,

‖vj+1‖2 ≤ ‖A‖2
∥∥qj

∥∥
2
. (2)

We can further reduce the bound, recognizing that the basis
vector qj is a unit vector, i.e., ‖q‖2 = 1. We may deal with
‖A‖2 in several ways:

1) ‖A‖2 is defined to be the largest singular value, e.g.,
σmax(A), or

2) the 2-norm is bounded above by the Frobenius norm,
which is likely cheaper to compute than the largest
singular value.

This leads us to an upper bound on all entries in the upper
Hessenberg matrix

|hi,j | ≤ ‖A‖2 ≤ ‖A‖F . (3)

The bound presented in Eq. (3) is crucial, as it demonstrates
that the upper Hessenberg entries are bounded entirely by the
input matrix. In Section VI, we discuss Flexible GMRES with
GMRES (Algorithm 1) as a preconditioner. In this scenario,
the bound presented is invariant for all applications of the
preconditioner, or, in other words, the bound depends only on
the input matrix.

C. Bound Application

We have shown what the theoretical upper limit is for the
values in the upper Hessenberg. This essentially tells us what
is theoretically possible inside the Arnoldi process. Using
this approach to construct an SDC detector is significant. By
building a detection scheme in this way, we know precisely
what errors we can detect, and, more importantly, we know
what is not detectable.

The important factor to keep in mind is that exactly how an
error is committed is irrelevant, the norm bounds allow us to
filter out values that are invalid by theory — we either detect
a large error or commit a small error, and in Section VI we
will demonstrate how restricting the magnitude of the error
committed allows Flexible GMRES to tolerate the error.

D. Error Detection

In the context of error detection, we can only detect an error
that exceeds the bound on the upper Hessenberg entry hij . To
do this, we insert a conditional between Lines 6 and 7 and
Lines 9 and 10 and test whether |hij | ≤ ‖A‖F . Should this
condition be invalid, then we assume that we have committed
an error at some point.

VI. FT-GMRES

This section describes the Fault-Tolerant GMRES (FT-
GMRES) algorithm, a Krylov subspace method for an iterative
solution of large sparse linear systems of the form Ax = b.
FT-GMRES computes the correct solution x even if the system
experiences uncorrected faults in both data and arithmetic [1].
It promises “eventual convergence”, i.e., it will always either
converge to the right answer, or (in rare cases) stop and report
immediately to the caller if it cannot make progress. FT-
GMRES accomplishes this by dividing its computations into
reliable and unreliable phases, using the sandbox model of
reliability described in Section IV. Rather than rolling back
any faults that occur in unreliable phases, as a checkpoint
/ restart approach would do, FT-GMRES “rolls forward”
through any faults in unreliable phases, and uses the reliable
phases to drive convergence. FT-GMRES can also exploit fault
detection in order to correct corrupted data during unreliable
phases.

A. FT-GMRES is Based on Flexible GMRES

FT-GMRES is based on Flexible GMRES (FGMRES) [3].
FGMRES, presented in Algorithm 2, extends the Generalized
Minimal Residual (GMRES) method of Saad and Schultz [19]
by “flexibly” allowing the preconditioner to change in every
iteration. An important motivation of flexible methods are
“inner-outer iterations,” which use an iterative method itself
as the preconditioner (e.g., use GMRES as a preconditioner).
In this case, “solve qj := Mjzj” Line 4 means “solve the
linear system Azj = qj approximately using a given iterative
method.” For example, suppose GMRES is implemented as a
function x = gmres(A,b), meaning solve Ax = b for x.
Then Line 4 is equivalent to zj = gmres(A,qj).

This inner solve step preconditions the outer solve (in
this case FGMRES). Changing right-hand sides and possibly
changing stopping criteria for each inner solve means that if
one could express the “inner solve operator” as a matrix, it
would be different on each invocation. This is why inner-outer
iterations require a flexible outer solver.

Flexible methods let the preconditioner change significantly
from one iteration to another; they do not depend on the
difference between successive preconditioners being small.



Algorithm 2 Flexible GMRES (FGMRES)
Input: Linear system Ax = b and initial guess x0

Output: Approximate solution xm for some m ≥ 0
1: r0 := b−Ax0 . Unpreconditioned initial residual
2: β := ‖r0‖2, q1 := r0/β
3: for j = 1, 2, . . . until convergence do
4: Solve qj = Mjzj . Apply current preconditioner
5: vj+1 := Azj . Apply the matrix A
6: for i = 1, 2, . . . , k do . Orthogonalize
7: hi,j := qi · vj+1

8: vj+1 := vj+1 − hi,jqi

9: end for
10: hj+1,j := ‖vj+1‖2
11: Update rank-revealing decomposition of H(1:j, 1:j)
12: if H(j + 1, j) is less than some tolerance then
13: if H(1:j, 1:j) not full rank then
14: Did not converge; report error
15: else
16: Solution is xj−1 . Happy breakdown
17: end if
18: else
19: qj+1 := vj+1/hj+1,j

20: end if
21: yj := arg min

y
‖H(1:j + 1, 1:j)y − βe1‖2

22: xj := x0 + [z1, z2, . . . , zj ]yj . Compute solution
update

23: end for

This is the key observation behind FT-GMRES: flexible iter-
ations allow successive inner solves to differ arbitrarily, even
unboundedly. This suggests modeling faulty inner solves as
“different preconditioners.” Taking this suggestion leads to FT-
GMRES.

There are flexible versions of other iterative methods besides
GMRES, such as CG [21] and QMR [22], which could also
be used as the outer solver. We chose FGMRES because it is
easy to implement, robust, and can handle nonsymmetric linear
systems. Experimenting with other flexible outer iterations is
future work.

B. Sandbox Reliability

FT-GMRES further specifies different reliability for inner
and outer solves. Only inner solves (Line 4) are allowed to
run unreliably. FT-GMRES expects that inner solves do most
of the work, so inner solves run in the less expensive unreliable
mode. Inner solvers need only return with a solution in finite
time (see Section IV). That solution may be completely wrong
if errors occurred.

This inner-outer solver approach reduces disruption of exist-
ing solvers. The outer FGMRES iteration wraps any existing
solver with any preconditioner that it might be using as the
inner solver. Any solver works, but since we have developed
a fault detector in Section V, we chose GMRES as the inner
solver.

C. FGMRES’ Additional Failure Modes

FGMRES (and therefore FT-GMRES) have an additional
failure mode beyond those of standard GMRES. On Line 11 of
standard GMRES (Algorithm 1), hj+1,j = 0 indicates that the
current iteration produced an invariant subspace. This means
either that we converged to the exact solution, or that the
solve cannot make further progress given the initial guess. For
FGMRES, if the quantity hj+1,j = 0, this does not necessarily
indicate either case. This is because H(1:j, 1:j) is always
nonsingular in GMRES if j is the smallest iteration index
for which hj+1,j = 0, whereas in FGMRES, H(1:j, 1:j)
may nevertheless be singular in that case. (This is Saad’s
Proposition 2.2 [3].) This can happen even in exact arithmetic.
It may occur due to unlucky choices of the preconditioners,
e.g., M−1

j = A and M−1
j+1 = A−1. In practice, this case is

rare, even when inner solves are subject to faults. Furthermore,
it can be detected inexpensively, since there are algorithms for
updating a rank-revealing decomposition of an m×m matrix
in O(m2) time (see e.g., Stewart [23]). This incurs no more
time than it takes to update the QR factorization of the upper
Hessenberg matrix at iteration m. The ability to detect this
rank deficiency ensures “trichotomy” of FGMRES: it either

1) converges to the desired tolerance,
2) correctly detects an invariant subspace, with a clear

indication (hj+1,j = 0 and H(1:j, 1:j) is nonsingular),
or

3) gives a clear indication of failure (detected rank defi-
ciency of H(1:j, 1:j)).

We base FT-GMRES’ “eventual convergence” on this tri-
chotomy property. In the following section, we will discuss
how the techniques used to detect the third failure case can
also be used to keep the inner solves’ solutions bounded, as
long as faults in the inner solves are bounded.

D. Fault Tolerance via Regularization

Both GMRES and Flexible GMRES compute the solution
update coefficients (yj in all algorithms) by solving a small
least-squares problem. This problem originates from projecting
the matrix A onto the Krylov basis, so we call it the projected
least-squares problem. At iteration k (counting from k = 1),
it has the form

Find y satisfying min
y
‖Hky − βe1‖2, (4)

where Hk is a k + 1 by k upper Hessenberg matrix, y the k
coefficients of the solution update, β the norm of the initial
residual vector, and e1 the length k+1 vector whose first entry
is one and whose remaining entries are zero.

Saad and Schultz [19] solve this problem by a structured
QR factorization. This method lets implementations keep the
intermediate reductions of Steps 1 and 2 at each iteration.
This makes the cost to compute the solution update O(k2)
coefficients rather than O(k3). However, it can produce un-
boundedly inaccurate coefficients if the upper triangular matrix
Rk is singular or ill-conditioned. In GMRES without faults,
this does not normally occur if the matrix A is not numerically



rank deficient. A numerically rank-deficient upper Hessenberg
matrix normally indicates convergence1 at the iteration where
it becomes rank deficient.

Linear least-squares problems like (4) always have a solu-
tion. However, a singular upper Hessenberg matrix may make
the solution set infinite, with unbounded norm. Unbounded
norm in GMRES’ update coefficients means unbounded error
in its solution to Ax = b. A nearly singular upper Hessenberg
matrix may similarly result in large inaccurate coefficients, by
increasing sensitivity to rounding error in the triangular solve.
In Section VI-C, we recommended detecting this case by us-
ing a rank-revealing decomposition that supports incremental
updates in order to preserve the O(k2) cost while detecting
rank deficiency. This only detects whether the matrix is close
to singular; it does not prescribe a policy for handling (near)
singularity.

We define this policy by introducing an additional con-
straint, that the solution to (4) have minimum norm. We can
do this by using a rank-revealing decomposition that truncates
zero singular values. We can also introduce a tolerance in order
to allow small but nonzero singular values. This approach
bounds the update coefficients as a function of the largest
singular value of the upper Hessenberg matrix, divided by the
least singular value not truncated. This is more robust than
Saad and Schultz’s method, where “robust” means “insensi-
tivity to errors in the input.”

We can apply the robust technique to the upper triangular
system Rky = zk, after computing and applying the Givens
rotations. This is equivalent (in terms of accuracy with respect
to rounding error) to a rank-revealing factorization of Hk, and
lets us easily switch “robustness” on or off for experiments. We
implemented the following approaches to solve Rky = zk:

1) Standard triangular solve (Saad and Schultz’s approach)
2) Attempt a standard triangular solve, and only use a rank-

revealing method if its solution has Inf or NaN values
3) Always use a rank-revealing method

For our experiments, we used a singular-value decomposition
as the rank-revealing factorization, as an easier to implement
and more accurate substitute for the factorization suggested
in our previous work. We recommend either Approach 1
or 3. Approach 2 conceals the natural error detection that
comes with IEEE-754 floating-point data, without detecting
inaccuracy or bounding the error.

VII. RESULTS

To evaluate FT-GMRES and our inner solver bound we
explore the impact on time-to-solution (iteration count) given
a fault in all inner solves. To perform these experiments we
developed a two-level solver (“nested solver”) that uses FT-
GMRES as the outer solver, and GMRES as the inner solver
(preconditioner). We used the Trilinos framework [4] with FT-
GMRES and GMRES implemented as Tpetra operators.

1It may also indicate that the algorithm cannot make further progress for
the user’s choice of initial guess, given A and b.

A. Sample Problems

We have chosen two sample matrices to demonstrate our
technique. To ensure reproducibility, we did not create either
of these matrices from scratch, rather we used readily available
matrices. The first matrix is fairly common and arises from the
finite difference discretization of the Poisson equation. This
matrix is symmetric and positive definite, meaning that it could
be solved using the Conjugate Gradient method. We generated
this matrix using MATLAB’s built-in Gallery functionality.
The second matrix chosen presents a more realistic linear
system. The mult dcop 03 matrix comes from the University
of Florida Sparse Matrix Collection [24]. It arises from a
circuit simulation problem. The matrix is nonsymmetric and
not positive definite, meaning Conjugate Gradient could not
be used to solve the system. The matrix is fairly small, but is
very ill-conditioned, which means that small perturbations may
have a large impact. We have summarized the characteristics
of each matrix in Table I. Note that we have included the

TABLE I: Sample Matrices

Properties Poisson Equation mult dcop 03

number of rows 10,000 25,187
number of columns 10,000 25,187
nonzeros 49,600 193,216
structural full rank? yes yes
nonzero pattern symmetry symmetric nonsymmetric
type real real
positive definite? yes no
Condition Number 6.0107× 103 7.27261× 1013

Potential Fault Detectors
‖A‖2 8 17.1762
‖A‖F 446 42.4179

potential fault detectors in Table I. These represent the upper
bound on what is acceptable for an upper Hessenberg entry.

1) Significance of Test Problems: The test problems above
represent two classes of matrices: symmetric positive definite
(SPD) and nonsymmetric. Different linear solvers require ma-
trices to have specific attributes. Conjugate Gradient expects
an SPD matrix, while GMRES can accept both symmetric
and nonsymmetric matrices. Relevant to this work, the H
matrix discussed throughout this paper has a unique structure
if the input matrix is symmetric. By structure, we refer to
the nonzero pattern of H. For nonsymmetric systems, H is
upper Hessenberg, while for SPD systems, H is tridiagonal
(a special case of upper Hessenberg), e.g., see Figure 2. The


× × × ×
× × × ×
0 × × ×
0 0 × ×
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× × 0 0
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Fig. 2: Upper Hessenberg and tridiagonal matrices.

fact that solving the Poisson matrix with GMRES should
create a tridiagonal matrix is key. This means that specific dot
products in the orthogonalization phase should create entries



“near zero”. If we perturb those entries (as we are about to
do) we can see large penalties in time to solution.

B. Time to Solution Experiments

In this experiment, we solve a linear system and determine
how many iterations are required to obtain a solution. This
is a failure-free run that tells us how many outer iterations
(and inner iterations) are required to obtain a solution. We
then solve the same linear system again (same matrix, right-
hand side, and initial guess), and, on the first iteration of the
first inner solve, we perturb the upper Hessenberg entry (hi,j)
on the first iteration of the orthogonalization loop (Line 6 in
Algorithm 1). We then repeat this process, applying the fault
on all possible inner solve iterations on the first step of the
orthogonalization process. Note that each experiment injects a
single occurrence of SDC.

For example, in Figure 3 the x-axis denotes a specific
experiment. The x-axis range is determined by how many
outer iterations are required to obtain a solution in a failure-
free environment (the aggregate number of inner iterations is
25 × num outer). The y-axis denotes the number of outer
iterations required to obtain a solution given a specific error
injected. The three top subplots represent error introduced at
the start of orthogonalization, while the lower three subplots
represent error introduced at the end of orthogonalization.

The choice to inject the fault on the first iteration of the
orthogonalization loop is justified as follows: By faulting
early in the orthogonalization phase, you “corrupt” the basis
vector from the start, i.e., because we choose Modified Gram-
Schmidt the fault will “taint” all subsequent iterations of the
orthogonalization loop (worst-case scenario).

1) Fault Values: To inject a fault, we only need to modify
or replace the current hi,j in Algorithm 1 Line 6 with an
incorrect value. Directly injecting NaN or Inf reveals nothing,
since we can clearly detect such faults. We inject an SDC that
that represents 3 classes of faults, and these fault values are
relative to the correct value:

1) very large, h̃i,j = hi,j × 10+150,
2) slightly smaller, h̃i,j = hi,j × 10−0.5, and
3) very small (nearly zero), h̃i,j = hi,j × 10−300.

In this experiment, we only record how many iterations it
takes to obtain a solution. It should be noted that for this
experiment parallelism is not a factor, and we are interested
in observing how the solvers behave when perturbed. In
particular, this experiment investigates the solver’s behavior
when undetectable faults are injected, and it demonstrates a
benefit from filtering obviously faulty (i.e., large) values. In the
following figures, class 2 and 3 faults represent undetectable
faults, while class 1 represents a case that we could detect and
to which we could respond, e.g., by halting the application or
restarting the inner solve.

C. Faults in an SPD Problem

Figure 3 illustrates the case of using GMRES to solve
an SPD system of equations. In a failure-free solve FT-
GMRES required 9 outer iterations, with each inner solve
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(a) SDC on the first iteration of the Modified Gram-Schmidt loop.
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(b) SDC on the last iteration of the Modified Gram-Schmidt loop.

Fig. 3: Number of outer iterations required for convergence
when solving a Poisson equation given a single SDC event
injected in the orthogonalization phase of the inner solve.
Vertical bars indicate the start of a new inner solve.

performing 25 inner iterations. In this case, H should be
tridiagonal, meaning that in Figure 3a for the first inner solve,
the first entry created by the Modified Gram-Schmidt (MGS)
loop, h1,∗, should be zero from inner iteration 3 onward. In
contrast, Figure 3b faults on the last iteration of the MGS
loop, and the last entry in this column of H can theoretically
be nonzero.

1) Faulting on the First Modified Gram-Schmidt Iteration:
In Figure 3a, we see a large penalty in time to solution for
large faults. This is due to making entries in H that should be
zero, clearly nonzero. In contrast, if we only slightly perturb
these “near zero” entries (class 2 and 3 errors), we see very
little impact on time to solution. The largest increase in outer
iterations is two, while the majority of experiments resulted
in no increase in time to solution. It should be noted that if
our fault detector on hi,j was used, the top plot (large fault)
would not be possible.

2) Faulting on the Last Modified Gram-Schmidt Iteration:
Faulting on the last Modified Gram-Schmidt iteration is much
different from faulting on the first for an SPD problem,
because the last hi,j entry created in the orthogonalization
phase could theoretically be nonzero. From figure 3b we see



that the worst case is that we incur one additional outer
iteration. Considering both faults at the start and end of the
MGS process, we see that with our detector we see a maximum
increase in outer iterations to be 2, in contrast if our detector
were not used, we see increase in outer iterations of 5.

D. Faulting in a Nonsymmetric Problem

We now consider a problem that is not symmetric, meaning
that all hi,j we perturb may be zero, but could also be nonzero
— but each entry in H is still subject to the bound from
Eq. (3). In a failure-free solve FT-GMRES required 28
outer iterations, with each inner solve performing 25 inner
iterations. As in our prior analysis, we consider faults in
both the first and last iteration of the Modified Gram-Schmidt
process.

1) Faulting on the first Modified Gram-Schmidt iteration:
As expected, in Figure 4 we see a very different characteristic
for faults on the first MGS iteration. For large faults we see a
maximum increase in time to solution to be 2 outer iterations.
For small faults, we see that the first iteration of the MGS of
the first inner solve is extremely vulnerable to small faults.
For class 2 and 3 faults, we see a maximum increase in outer
iterations of 4. If we ignore the first 3 iterations of the inner
solve we see at most 1 additional outer iteration. The worst-
case increase in time to solution actually occurs on the 2nd

inner solve iteration, and we leave to future work further
analysis of the Arnoldi process to explain this phenomenon.
This indicates that additional robustness should be added at the
very start of the first inner solve, and we discuss this briefly
in our summary.

2) Faulting on the last Modified Gram-Schmidt iteration:
Faulting on the last iteration of the orthogonalization loop
again presents a worst case compared to faulting early. That
is, by faulting on the last orthogonalization iteration, we see
an increase in outer iterations in more cases. We do not the
see the sharp increase in iteration count for faults early in the
first inner solve iterations. Note, that the first MGS iteration
is also the last on the first inner solve iteration, and as stated
previously, the first iteration did not exhibit a large increase
in iterations.

E. Summary of Findings

A common feature seen between both SPD and nonsymmet-
ric solves is that faulting early in the first inner solves’ orthog-
onalization is universally bad, resulting in a 33% increase in
time to solution for the Poisson problem and 14% increase
in time to solution for the mult dcop 03 problem. These
percent increases are not general findings, but we believe this
characteristic will hold true in most, if not all, cases. This may
indicate that additional effort should be expended early in the
first inner solve.

1) Performance Characteristics of GMRES: The amount
of work per-iteration of GMRES increases linearly. This is
seen in Algorithm 1 in the orthogonalization phase, where the
inner loop iterates from 1 to j. Adding redundant computation
early in the inner solve would have minimal performance

impact because the orthogonalization kernel has substantially
less work to perform than in latter iterations. If we included
additional robustness only on the first invocation of the inner
solver, we can mitigate the one edge-case where we see high
variability in time to solution. We leave this to future work.

2) Filtering values is cheap and effective: In all experi-
ments, we find that exploiting the bound on the upper Hessen-
berg entries is beneficial, and, in doing so, we typically observe
one additional outer iteration as the penalty should a single
SDC event occur. We believe that this research approach will
yield additional invariants that are cheap to evaluate, and that
by combining light-weight mechanisms we drastically reduce
the damage that SDC can introduce.

VIII. CONCLUSIONS

In summary, we developed a cheap fault detector for the
computational intensive orthogonalization stage of GMRES.
We then present the FT-GMRES algorithm, and discuss ro-
bustness improvements in the local least squares solve. We
then explained how are detector and robustness modifications
can be used to limit the amount of error that the inner solve
may return.

We presented results from two experiments on common
classes of matrices that illustrate that our filtering technique is
beneficial, and identified the early stages of the first inner solve
as being the most vulnerable. Furthermore, we observe that the
inner/outer iteration scheme based on FGMRES is extremely
robust to single events of SDC in the orthogonalization phase.
We find that this nested approach, even when not coupled
with invariant checks can cope with even large perturbations
introduced by SDC.
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