
Large-Scale Multi-Dimensional Document
Clustering on GPU Clusters

Yongpeng Zhang, Frank Mueller
Dept. of Computer Science

North Carolina State University
Raleigh, NC 27695-7534

Email:mueller@cs.ncsu.edu

Xiaohui Cui, Thomas Potok
Oak Ridge National Laboratory

Computational Sciences and Engineering Division
Oak Ridge, TN 37831
Email:cuix@ornl.gov

Abstract

Document clustering plays an important role in data mining systems.
Recently, a flocking-based document clustering algorithm has been proposed
to solve the problem through simulation resembling the flocking behavior
of birds in nature. This method is superior to other clustering algorithms,
including k-means, in the sense that the outcome is not sensitive to the initial
state. One limitation of this approach is that the algorithmic complexity is
inherently quadratic in the number of documents. As a result, execution time
becomes a bottleneck with large number of documents.

In this paper, we assess the benefits of exploiting the computational power
of Beowulf-like clusters equipped with contemporary Graphics Processing
Units (GPUs) as a means to significantly reduce the runtime of flocking-based
document clustering. Our framework scales up to over one million documents
processed simultaneously in a sixteen-node moderate GPU cluster. Results
are also compared to a four-node cluster with higher-end GPUs. On these
clusters, we observe 30X-50X speedups, which demonstrate the potential of
GPU clusters to efficiently solve massive data mining problems. Such speedups
combined with the scalability potential and accelerator-based parallelization
are unique in the domain of document-based data mining, to the best of our
knowledge.

1. Introduction

Document clustering, or text clustering, is a sub-field of data
clustering where a collection of documents are categorized
into different subsets with respect to document similarity.
Such clustering occurs without supervised information, i.e.,
no prior knowledge of the number of resulting subsets or the
size of each subset is required. Clustering analysis in general
is motivated by the explosion of information accumulated
in today’s Internet, i.e., accurate and efficient analysis of
millions of documents is required within a reasonable amount
of time. A recent flocking-based algorithm [4] implements
the clustering process through the simulation of mixed-species
birds in nature. In this algorithm, each document is represented
as a point in a two-dimensional Cartesian space. Initially set
at a random coordinate, one point interacts with its neighbors
according to a clustering criterion, i.e., typically the similarity
metric between documents. This algorithm is particularly
suitable for dynamical streaming data and is able to achieve
global optima, much in contrast to our algorithmic solutions
[16].

The inherently quadratic computational complexity in the
number of documents and the large memory footprints, how-
ever, make efficient implementation of flocking for document

clustering a challenging task. Yet, the parallel nature of such
a model bears the promise to exploit advances in data-parallel
accelerators for distributed simulation of flocking. Previous
research has demonstrated more than five times speedups using
a single GPU card over a single-node desktop for several
thousands documents [1]. This testifies to the benefits of
GPU architectures for highly parallel, distributed simulation of
individual behavioral models. Nonetheless, such accelerator-
based parallelization is constrained by the size of the physical
memory of the accelerating hardware platform, e.g., the GPU
card.

In this research, our goal is to process at least one mil-
lion documents at a time. This unprecedented scale imposes
significant memory consumption that far exceeds the memory
capacity of a single GPU. We investigate the potential to purse
our goal on a cluster of computers equipped with NVIDIA
CUDA-enabled GPUs. We are able to cluster one million
documents over sixteen NVIDIA GeForce GTX 280 cards
with 1GB on-board memory each. Our implementation demon-
strates its capability for weak scaling, i.e., execution time
remains constant as the amount of documents is increased at
the same rate as GPUs are added to the processing cluster. We
have also developed a functionally equivalent multi-threaded
MPI application in C++ for performance comparison. The
GPU cluster implementation shows dramatic speedups over
the C++ implementation, ranging from 30X to more than 50X
speedups.

Related research to our work can be divided into two
categories: (1) fast simulation of group behavior and (2) GPU-
accelerated implementations of document clustering. (1) The
first basic flocking model was devised by Reynolds [13].
Here, each individual is referred as a “boid”. Three rules
are quantified to aid the simulation of flocks: separation,
alignment and cohesion. Since document clustering groups
documents in different subsets, a multiple-species flocking
(MSF) model is developed by Cui et al. [4]. This model adds
a similarity check to apply only the separation rule to non-
similar boids. A similar algorithm is found by Momen et al.
[8] with many parameter tuning options. Computation time
becomes a concern as the need to simulate large numbers
of individuals prevails. Zhou et al. [19] describe a way to
parallelize the simulation of group behavior. The simulation



space is dynamically partitioned into P divisions, where P
is the number of available computing nodes. A mapping of
the flocking behavioral model onto streaming-based GPUs is
presented by Erra et al. [5] with the objective of obstacle
avoidance. This study predates the most recent language/run-
time support for general-purpose GPU programming, such as
CUDA, which allows simulations at much larger scale.

(2) Recently, data-parallel co-processors have been utilized
to accelerate many computing problems, including some in the
domain of massive data clustering. One successful acceleration
platform is that of Graphic Processing Units (GPUs). Parallel
data mining on a GPU was assessed early on by Che et al.
[2], Fang et al. [7] and Wu et al. [17]. These approaches
rely on k-means to cluster a large space of data points. Since
the size of a single point is small (e.g., a constant-sized
vector of floating point numbers to represent criteria such
as similarity in our case), memory requirements are linear to
the size of individuals (data points), which is constrained by
the local memory of a single GPU in practice. In document
clustering, the size of each document varies and can reach up
to several kilo-bytes. Therefore, document clustering imposes
an even higher pressure on memory usage. Unfortunately,
many accelerators, including GPUs, do not share memory
with their host systems, nor do they provide virtual memory
addressing. Hence, there is no means to automatically transfer
data between GPU memory and host main memory. Instead,
such memory transfers have to be invoked explicitly. The
overhead of these memory transfers, even when supported by
DMA, can nullify the performance benefits of execution on
accelerators. Hence, a thorough design to assure well-balanced
computation on accelerators and communication / memory
transfer to and from the host computer is required, i.e., overlap
of data movement and computation is imperative for effective
accelerator utilization.

The contributions of this work are three-fold:

• We apply multiple-species flocking (MSF) simulation in
the context of large-scale document clustering on GPU
clusters. We show that the high I/O and computational
throughput in such a cluster meets the demanding com-
putational and I/O requirements.

• In contrast to previous work that targeted GPU clusters
[6], [3], our work is one of the first to utilize GPU clusters
to accelerate massive data mining applications, to the best
of our knowledge.

• The solid speedups observed in our experiments are
reported over the entire application (and not just by
comparing kernels without considering data transfer over-
head to/from accelerator). They clearly demonstrate the
potential for this application domain to benefit from
acceleration by GPU clusters.

The rest of the paper is organized as follows. We begin with
the background description in Section 2. The programming
model design and the detailed implementation are presented
in Section 3. In Section 5, we show various speedups of GPU
clusters against CPU clusters in different configurations. The

work is summarized in Section 6.

2. Background Description

In this section, we describe the algorithmic steps of docu-
ment clustering, namely similarity preprocessing and cluster
detection, and discuss details of the target programming envi-
ronments.

2.1. Similarity Preprocessing

The first step in document clustering, similarity preprocess-
ing, is based on data obtained from a large corpus of text
articles. The MSF model relies on a global similarity metric
between any pair of documents. This involves the following
preprocessing steps:

• Document tokenization: This step consists of stripping out
unused tags, stop words, numbers and punctuations. The
purpose of this step is to remove noise in the similarity
calculation.

• Word stemming: We apply Porter’s algorithm [10], which
is the de factor standard for stemming. This is part
of a term normalization process for English-language
documents that removes common morphological and
inflectional endings from words. It also increases the
accuracy of the final result.

• TF-ICF (term frequency, inverse corpus frequency) calcu-
lation: In contrast to the standard TF-IDF [15] calculation
used in assessing document similarity, TF-ICF does not
require term frequency information from other documents
within the processed document collections. Instead, it
pre-builds the ICF table by sampling a large amount of
existing literature off-line. Selection of corpus documents
for this training set is critical as similarities between
documents of a later test set are only reliable if both
training and test sets share a common base dictionary
of terms (words) with a similar frequency distribution of
terms over documents. Once the ICF table is constructed,
ICF values can be looked up very efficiently for each
term in documents while TF-IDF would require dynamic
calculation of these values. The TF-ICF approach enables
us thus to generate document vectors in linear time [11].

Having converted each document into a document vector
that holds the values of each unique term’s normalized TF-
ICF value, we apply the cosine similarity metric to calculate
the similarity between any pair of documents i and j:

Simi,j =
∑

k

|TFICFk,i − TFICFk,j |2 (1)

for k over all terms of both document i and j.
Though the above preprocessing steps are integral parts of

the flocking-based document clustering algorithm, their exe-
cution time is negligible compared to the flocking simulation
step. Thus, for the rest of the paper, we will focus on the
design and analysis of flocking simulation only.



2.2. Flocking-based document clustering

The second step in document clustering is to form groups
of individuals that share certain criteria. In flocking-based
clustering, the behavior of a boid (individual) is based only
on its neighbor flock mates within a certain range. Reynolds
[12] describes this behavior in a set of three rules. Let !pj and
!vj be the position and velocity of boid j. Given a boid noted
as x, suppose we have determined N of its neighbors within
radius r. The description and calculation of the force by each
rule is summarized as follows:

• Separation: steer to avoid crowding local flock mates

!fsep = −
N∑

i

!px − !pi

r2
i,x

(2)

where ri,x is the distance between two boids i and x.
• Alignment: steer towards the average heading of local

flock mates
!fali =

∑N
i !vi

N
− !vx (3)

• Cohesion: steer to move toward the average position of
local flock mates

!fcoh =
∑N

i !pi

N
− !px (4)

The three forces are combined to change the current velocity
of the boid. In case of document clustering, we map each
document as a boid that participates in flocking formation. For
similar neighbor documents, all three forces are combined. For
non-similar neighbor documents, only the separation force is
applied.

2.3. GPU and CUDA

In our study, the target computing environment for flocking-
based simulation is a cluster of accelerators, or more specifi-
cally GPUs in a cluster. Historically, GPU development has
mainly been driven by increasing demands for faster and
more realistic graphics effects. Since graphics is a niche,
albeit a very influential one, that drives the progress in
GPU architectures, much attention has been paid to fast and
independent vertex rendering. The computational rendering
engines of GPUs can generally be utilized for other problem
domains as well, but their effectiveness depends much on the
suitability of numerical algorithms within the target domain
for GPUs.

In recent years, GPUs have attracted more and more de-
velopers who strive to combine high performance, lower cost
and reduced power consumption as an inexpensive means for
solving complex problems. This trend is expedited by the
emergence of increasingly user-friendly programming models,
such as NVIDIA’s CUDA, AMD’s Stream SDK and OpenCL.
Our focus lies on the former of these models.

CUDA is a C-like language that allows programmer to exe-
cute programs on NVIDIA GPUs by utilizing their streaming

processors. The core difference between CUDA programming
and general-purpose programming is the capability and neces-
sity to spawn massive number of threads. Threads are grouped
into warps as basic thread scheduling units [9]. The same
code is executed by threads in the same warp on a given
streaming processor. As these GPUs do not provide caches,
memory latencies are hidden through several techniques: (a)
Each streaming processor contains a small but fast on-chip
shared memory that is exposed to programmers. (b) Large
register files enable instant hardware context switch between
warps. This facilitates the overlapping of data manipulation
and memory access. (c) Off-chip global memory accesses
issued simultaneously by multi-threads can be accelerated
by coalesced memory access, which requires aligned access
pattern for consecutive threads in warps.

In this work, we describe the design and evaluation of
flocking-based clustering for CUDA-programmed GPU de-
vices distributed over a cluster of host compute nodes. Our
approach exploits the massive throughput offered by GPUs
as the major source of speedup over clusters of conventional
desktops.

2.4. MPI

The document flocking algorithm is not an embarrassingly
parallel algorithm as it requires exchange of data between
nodes. We utilize MPI as a means to exchange data between
nodes. MPI is the dominant programming model in the high-
performance computation domain. It provides message passing
utilities with a transparent interface to communicate between
distributed processes without considering the underlying net-
work configurations. It is also the de factor industrial standard
for message passing that offers maximal portability. In this
work, we incorporate MPI as the basic means to communicate
data between distributed computation nodes. We also combine
MPI communication with data transfers between host memory
and GPU memory to provide a unified distributed object
interface that will be discussed later.

3. Design and Implementation

3.1. Programming Model for Data-parallel Clusters

We have developed a programming model targeted at mes-
sage passing for CUDA-enabled nodes. The environment is
motivated by two problems that surface when explicitly pro-
gramming with MPI and CUDA abstraction in combination:

• Hierarchical memory allocation and management have to
be performed manually, which often burdens program-
mers.

• Sharing one GPU card among multiple CPU threads
can improve the GPU utilization rate. However, explicit
multi-threaded programming not only complicates the
code, but may also result in inflexible designs, increased
complexity and potentially more programming pitfalls in
terms of correctness and efficiency.



To address these problems, we have devised a programming
model that abstracts from CPU/GPU co-processing and miti-
gates the burden of the programmer to explicitly program data
movement across nodes, host memories and device memories.
We next provide a brief summary of the key contributions
of our programming model (see [18] for a more detailed
assessment):

• We have designed a distributed object interface to unify
CUDA memory management and explicit message pass-
ing routines. The interface enforces programmers to view
the application from a data-centric perspective instead
of a task-centric view. To fully exploit the performance
potential of GPUs, the underlying run-time system can
detect data sharing within the same GPU. Therefore, the
network pressure can be reduced.

• Our model provides the means to spawn a flexible number
of host threads for parallelization that may exceed the
number of GPUs in the system. Multiple host threads can
be automatically assigned to the same MPI process. They
subsequently share one GPU device, which may result in
higher utilization rate than single-threaded host control of
a GPU. In applications where CPUs and GPUs co-process
a task and a CPU cannot continuously feed enough work
to a GPU, this sharing mechanism utilizes GPU resources
more efficiently.

• An interface for advanced users to control thread schedul-
ing in clusters is provided. This interface is motivated by
the fact that the mapping of multiple threads to physical
nodes affects performance depending on the application’s
communication patterns. Predefined communication pat-
terns can simply be selected so that communication
endpoints are automatically generated. More complex
patterns can be supported through reusable plug-ins as
an extensible means for communication.

We designed and implemented the flocking-based document
clustering algorithm in GPU clusters based on this GPU
cluster programming model. In the following, we discuss
several application-specific issues that arise in our design and
implementation.

3.2. Flocking Space Partition

The core of the flocking simulation is the task of neighbor-
hood detection. A sequential implementation of the detection
algorithm has O(N2) complexity due to pair-wise checking of
N documents. This simplistic design can be improved through
space filtering, which prunes the search space for pairs of
points whose distances exceed a threshold.

One way to split the work into different computational
resource is to assign a fixed number of documents to each
available node. Suppose there are N documents and P nodes.
In every iteration of the neighborhood detection algorithm,
the positions of local documents are broadcast to all other
nodes. Such partitioning results in a lower communication
overhead proportional to the number of nodes, and the de-

tection complexity is reduced linearly by P per node for a
resulting overhead of O(N2/P ).

Instead of partitioning the documents in this manner, we
break the virtual simulation space into row-wise slices. Each
node handles just those documents located in the current slice.
Broadcast messages that are previously required are replaced
by point-to-point messages in this case. This partitioning is
illustrated in Figure 1. After document positions are updated
in each iteration, additional steps are performed to divide
all documents into three categories. Migrating documents are
those that have moved to a neighbor slice. Neighbor documents
are those that are on the margin of the current slice. In other
words, they are within the range of the radius r of neighbor
slices. All other are internal documents in the sense that they
do not have any effects on the documents in other nodes. Since
the velocity of documents is capped by a maximal value, it is
impossible for the migrating documents to cross an entire slice
in one timestep. Both the migrating documents and neighbor
documents are transferred to neighbor slices at the beginning
of the next iteration. Since the neighborhood radius r is much
smaller than the virtual space’s dimension, the number of
migrating documents and neighbor documents are expected
to be much smaller than that of the internal documents.

Sliced space partitioning not only splits the work nearly
evenly among computing nodes but also reduces the al-
gorithmic complexity in sequential programs. Neighborhood
checks across different nodes are only required for neighbor
documents within the boundaries, not for internal documents.
Therefore, on average, the detection complexity on each node
reduces to O(N2/P 2) for slides partitioning, which is superior
to traditional partitioning with O(N2/P ).

GPU0

GPU1

GPUn−1

r
r

r

r

r

r

...

Migrating Doc

Internal Doc

Neighbor Doc

Fig. 1. Simulation Space Partition

3.3. Document Vectors

An additional benefit of MSF simulation is the similar-
ity calculation between two neighbor documents. Similarities
could be pre-calculated between all pairs and stored in a
triangular matrix. However, this is infeasible for very large N
because of a space complexity of O(N2/2), which dauntingly



exceeds the address space of any node as N approaches a
million. Furthermore, devising an efficient partition scheme to
store the matrix among nodes is difficult due to the randomness
of similarity look-ups between any pair of nearby documents.
Therefore, we devote one kernel function to calculating sim-
ilarities in each iteration. This results in some duplicated
computations, but this method tends to minimize the memory
pressure per node.

The data required to calculate similarities is a document
vector consisting of an index of each unique word in the TF-
ICF table and its associated TF-ICF values. To compute the
similarity between two documents, as shown in Equation (1),
we need a fast method to determine if a document contains a
word given the word’s TF-ICF index. Moreover, the fact that
we need to move the document vector between neighbor nodes
also requires that the size of the vector should be kept small.

The approach we take is to store document vectors in an
array sorted by the index of each unique word in the TF-ICF
table. This data structure combines the minimal memory usage
with a fast parallel searching algorithm. Riech [14] describes
an efficient algorithm to calculate the cosine similarities be-
tween any two sorted arrays. But this algorithm is iterative in
nature and not suitable for parallel processing.

We develop an efficient CUDA kernel to calculate the
similarity of two documents given their sorted document
vectors as shown in Algorithm 1. The parallel granularity is
set so that each block takes one pair of documents. Document
vectors are split evenly by threads in the block. For each
assigned TF-ICF value, each thread determines if the other
document vector contains the entry with the same index. Since
the vectors are sorted, a binary search is conducted to lower
the algorithmic complexity logarithmic time. A reduction is
performed at the end to accumulate differences.

3.4. Message Data Structure

In sliced space partitioning, each slice is responsible to gen-
erate two sets of messages for the slices above and below. The
corresponding message data structures are illustrated in Figure
2. The document array contains a header that enumerates the
number of neighbors and migrating documents in the current
slice. Their global indexes, positions and velocities are stored
in the following array for neighborhood detection in a different
slice. Due to the various sizes of each document’s TF-ICF
vector and the necessity to minimize the message size, we
concatenate all vectors in a vector array without any padding.
The offset of each vector array is stored in a metadata offset
array for fast access. This design offers efficient parallel access
to each document’s information.

3.5. Optimizations

The algorithmic complexity of sliced partitioning decreases
quadratically with the number of partitions (see Section 3.2).
For a system with a fixed number of nodes, a reduction in
complexity could be achieved by exploiting multi-threading

Algo 1: Document Vector Similarity (CUDA Kernel)
// calculate the similarities between two DocVecs

device void docVecSimilarity(DocVec∗ lhs,
DocVec ∗rhs, float ∗output) {

float sim(0.0f);
float commonSim(0.0f);
for (int i = 0; i < lhs→NumEntries; i += blockIdx.x) {

float tficf = biSearch(entry, rhs→vectors);
sum += pow(entry→tficf − tficf, 2);
commonSim += pow(tficf, 2);

}
// ... reduce to threadIdx.x(0), store in sum

syncthreads();
if (threadIdx.x == 0) {

sum −= commonSim;
sum = sqrtf(sum);
// write to global memory
∗output = sum;

}
}

device float biSearch(VecEntry ∗entry,
DocVector ∗vector) {

int idx = entry→index;
int leftIndex = 0;
int rightIndex = vector→NumEntries;
int midIndex = vector→NumEntries/2;
while(true) {

int docIdx;
docIdx = vector→vectors[midIndex].index;
if (docIdx < idx)

leftIndex = midIndex + 1;
else if (docIdx > idx)

rightIndex = midIndex − 1;
else

break;

if (leftIndex > rightIndex)
return 0.0f;

midIndex = (leftIndex + rightIndex)/2;
}
return vector→vectors[midIndex].tficf;

}

within each node. However, in practice, overhead increases as
the number of partitions become larger. This is particularly this
case for communication overhead. As we will see in Section
5, the effectiveness of such performance improvements differs
from one system to another.

At the beginning of each iteration, each thread issues
two non-blocking messages to its neighbors to obtain the
neighboring and migrating documents’ statuses (positions)
and their vectors. This is followed by a neighbor detection
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Fig. 2. Message Data Structures

function that searches its neighbor documents within a certain
range for each internal document and migrated document. The
search space includes every internal, neighbor and migrating
document. We can split this function into three sub-functions:
(a) internal-to-internal document detection; (b) internal-to-
neighbor/migrating document detection and (c) migrating-to-
all document detection. Sub-function (a) does not require
information from other nodes. We can issue this kernel in
parallel with communication. Since the number of internal
documents is much larger than neighbor and migrated doc-
uments, we expect the execution time for sub-function (a) to
be much larger than that of (b) or (c). From the system’s
point of view, either the communication or neighbor detection
functions affects the overall performance.

One of the problems in simulating massive documents
via the flocking-based algorithm is that as the virtual space
size increases, the probability of flock formation diminishes
as similar groups are less likely to meet each. In nature-
inspired flocking, no explicit effort is made within simulations
to combine similar species into a unique group. However,
in document clustering, we need to make sure each cluster
has formed only one group in the virtual space in the end
without flock intersection. We found that an increase in the
number of iterations helps in achieving this objective. We also
dynamically reduce the size of the virtual space throughout the
simulation. This increases the likelihood of similar groups to
merge when they become neighbors.

3.6. Work Flow

The work flow for each space partition at an iteration is
shown in Figure 3. Each thread starts by issuing asynchronous
messages to fetch information from neighboring threads. Mes-
sages include data such as positions of the documents that have
migrated to the current thread and documents at the margin
of the neighbor slices. Those documents’ TF-ICF vectors

are encapsulated in the message for similarity calculation
purposes, as discussed later.

Internal-to-internal document detection can be performed
in parallel with message passing (see Section 3.5). The other
two detection routines, in contrast, are serialized with respect
to message exchanges. Once all neighborhoods are detected,
we calculate the similarities between the documents belonging
to the current thread and their detected neighbors. These
similarity metrics are utilized to update the document positions
in the next step where the flocking rules are applied.

Once the positions of all documents have been updated,
some documents may have moved out the boundary of the
current partition. These documents are removed from the
current document array and form the messages for neighboring
threads for the next iteration. Similarly, migrated documents
received through messages from neighbors are appended to
the current document array. This post-processing is performed
in the last three steps in Figure 3.

Async Fetch Msgs

Internal to Internal
Detection

Wait for Msgs

Internal to Neighbor
and Migrating Detection

Migrating to All
Detection

Update Document
Positions

Neighbor Similarities
Calculate 

Generate Msgs
For Neighbor Thread

Remove Migrating
Documents

Absorb Migrated 
Documents from Neighbor 

Threads

from Neighbor Threads

Fig. 3. Work Flow for a Thread in Each Iteration

4. Experimental Framework

To assess the effectiveness of our advanced document clus-
tering approach, we compare executions on a GPU-accelerated



(a) Initial State (b) At Iteration 50 (c) At Iteration 500

Fig. 4. Clustering 20K Documents in 4 GPUs

large GPU Clusters(NCSU) large CPU clusters(NCSU) small GPU clusters(ORNL) small CPU clusters(ORNL)
Nodes 16 16 4 4
CPU AMD Athlon Dual Core AMD Athlon Dual Core Intel Quad Q6700 Intel Quad Q6700

CPU Frequency 2.0 GHz 2.0 GHz 2.67 GHz 2.67 GHz
System Memory SDRAM 1 GB SDRAM 1 GB DDR2 SDRAM 4 GB DDR SDRAM 4 GB

GPU 16 GTX 280s Disabled 3 Tesla C1060 Disabled
GPU Memory 1 GB N/A 4 GB N/A

Network 1 Gbps 1 Gbps 1 Gbps 1 Gbps

TABLE 1. Experiment Platforms

cluster with those on a functionally equivalent CPU cluster.
Input documents originate from Internet news articles. The
average number of unique word in each article is about 400
words. In the CPU cluster version, internal document vectors
are stored in STL hash containers instead of sorted document
vectors, as in GPU cluster version. This combines benefits of
fast serial similarity checking with ease of programming. The
message structure is the same in both implementations. Hence,
functions are provided to convert STL hashes to vector arrays
and vice versa.

Both implementations incorporate the same MPI library
(MPICH 1.2.7p1 release) for message passing and the C++
boost library (1.38.0 release) for multi-threading in a single
MPI process. The GPU version uses the CUDA 2.1 release.

5. Experimental Results

5.1. Flocking Behavior Visualization

We have implemented support to visualize the flocking
behavior of our algorithm off-line once the positions of doc-
uments are saved after an iteration. The evolution of flocks
can be seen in the three snapshots of the virtual plane in
Figure 4, which shows a total of 20,000 documents clustered
on four GPUs. Initially, documents are assigned at random
coordinates in the virtual plane. After only 50 iterations, we
observe an initial aggregation tendency. We also observe that
the number of non-attached documents tends to decrease as the

number of iterations increases. In our experiments, we observe
that 500 iterations suffice to reach a stable state even for as
many as a million documents. Therefore, we use 500 iterations
throughout the rest of our experiments.

As Figure 4 shows, the final number of clusters in this
example is quite large. This is because our input documents
from the Internet cover widely divergent news topics. The
resulting number is also a factor of the similarity threshold
used throughout the simulation. The smaller the threshold is
/ the more strict the similarity check is, the more groups we
will be formed through flocking.

5.2. Performance

We first compare the performance of individual kernels on
an NVIDIA GTX 280 GPU hosted on a AMD Athlon 2 GHz
Dual Core PC. We focus on two of the most time-consuming
kernels: detecting neighbor documents (detection for short)
and neighbor document similarity calculation (similarity for
short). Only the GPU kernel is measured in this step. The
execution time is averaged over 10 independent runs. Each
run measures the first clustering step (first iteration in terms
of Figure 4) to determine the speedup over the CPU version
starting from the initial state. The speedup at different docu-
ment sizes is shown in Figure 5. We can see that the similarity
kernel on the GPU is about 45 times faster than on a CPU at
almost all document sizes. For the detection kernel, the GPU
is fully utilized once the document size exceeds 20,000, which



gives a raw speedup of over 300X.
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We next conducted experiments on two clusters located
at NCSU and ORNL. On both clusters, we conducted test
with and without GPUs enabled (see hardware configurations
in Table 1). The NCSU cluster consists of sixteen nodes
with CPUs and GPUs of lower RAM capacity for both CPU
and GPU, while the ORNL cluster consists of fewer nodes
with larger RAM capacity. As mentioned in Section 3.1,
our programming model supports a flexible number of CPU
threads that may exceed the number of GPUs on our platform.
Thus, multiple CPU threads may share one GPU. In our
experiments, we assessed the performance for both one and
two CPU threads per GPU. Figure 6 depicts the results for
wall-clock time on the NCSU cluster. The curve is averaged
over the execution for both one and two CPU threads per
GPU. The error bar shows the actual execution time: the
maximum/minimum represent one/two CPU threads per GPU,
respectively. With increasing of number of nodes, execution
time decreases and the maximal number of documents that
can be processed at a time increases. With 16 GTX 280s,
we are able to cluster one million documents within twelve
minutes. The relative speedup of the GPU cluster over the
CPU cluster ranges from 30X to 50X. As mentioned in Section
3.5, changing the number of threads sharing one GPU may
cause a number of conflicts in resource. The benefit of multi-
threading in this cluster is only moderate with only up to a
10% performance gain.

Though the ORNL cluster contains fewer nodes, its single-
GPU memory size is four times larger than that of the NCSU
GPUs. This enables us to cluster one million documents with
only three high-end GPUs. The execution time is shown in
Figure 7. The performance improvement resulting for two
CPU threads per GPU is more obvious in this case: at one
million documents, three nodes with two CPU threads per
GPU run 20% faster than the equivalent with just one CPU
thread per GPU. This follows the intuition that faster CPUs
can feed more work via DMA to GPUs.
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Fig. 7. Tesla C1060 GPUs

Speedups on the GPU cluster for different number of nodes
and documents are shown in the 3D surface graph Figure 8
for the NCSU cluster. At small document scale (up to 200k
documents), 4 GPUs achieve the best speedup (over 40X).
Due to the memory constraints in these GPUs, only 200k
documents can be clustered on 4 GPUs. Therefore, speedups
at 500k documents are not available for 4 GPUs. For 8 GPUs,
clustering with 500k documents shows an increased perfor-
mance. This surface graph illustrates the overall trends: For
fewer nodes (and GPUs), speedups increase rapidly over for
smaller number of documents. As the number of documents
increases, speedups are initially on a plane with a lower
gradient before increasing rapidly, e.g., between 200k and
500k documents for 16 nodes (GPUs).

We next study the effect of utilizing point-to-point messages
for our simulation algorithm. Because messages are exchanged
in parallel with the neighborhood detection kernel for internal
documents, the effect of communication is determined by
the ratio between message passing time and kernel execution



Docs(k) 5 10 20 50 100 200 500 800 1000
4 nodes 74%/9% 67%/8% 64%/5% 58%/3% 52%/1.5% 49%/0.9% NA NA NA
8 nodes 67%/12% 71%/11% 65%/8% 68%/6% 62%/3.5% 56%/2% 52%/1.2% NA NA
12 nodes 67%/17% 69%/12% 68%/10% 71%/8% 68%/6% 63%/3% 57%/1.4% 54%/1.2% NA
16 nodes 63%/18% 63%/13% 71%/12% 69%/9% 65%/7% 66%/4.2% 59%/1.9% 60%/1.5% 55%/1.1%

TABLE 2. Communication Percentages in GPU and CPU clusters (GPU/CPU)
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Fig. 8. Speedups on NCSU cluster
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time: If the former is less than the latter, then communication
is completely hidden (overlapped) by computation. In an
experiment, we set the number of documents to 200k and vary
the number of nodes from 4 to 16. We assess the execution
time per iteration by averaging the communication time and
kernel time among all nodes. The result is shown in Figure
9. For the GPU cluster, kernel execution time is always less
than the message passing time. For the CPU cluster, the
opposite is the case. Notice that the communication time for
the GPU cluster in this graph includes the DMA duration for
data transfers between GPU memory and host memory. The
DMA time is almost two orders of magnitude less than that of

message passing. Thus, the GPU communication/DMA curve
almost coincides with that of CPU cluster’s communication
time, even though the latter only covers pure network time
as no host/device DMA is required. This implies that internal
PCI-E memory bus is not a bottleneck for GPU clusters in
our experiments, which is important for performance tuning
efforts. The causes for this finding are: (a) Network bandwidth
is much lower than PCI-E memory bus bandwidth; and (b)
messages are exchanges at roughly the same time on every
node at each iteration, which may cause network congestion.

We further aggregate the time spent on message passing
and divide the overall sum by the total execution time to
yield the percentage of time spent on communication. For
CPUs, the communication time consists of only the message
passing time over the network. For GPUs, the communication
time also includes the time to DMA messages to/from GPU
global memory over the PCI-E memory bus. Table 2 shows the
results for both GPU and CPU clusters. Generally speaking,
in both cases, the ratio of communication to computation
decreases as the number of documents per thread increases.
The raw kernel speedup provided by GPU has dramatically
increased the communication percentage. This analysis, in-
dicating communication as a new key component for GPU
clusters while CPUs are dominated by computation, implies
disjoint optimization paths: faster network interconnects would
significantly benefit GPU clusters while optimizing kernels
even further would more significantly benefit CPU clusters.

6. Conclusion

In this paper, we present an implementation of a flocking-
based document clustering algorithm accelerated by GPU
clusters. Our experiments show that GPU clusters outperform
CPU clusters by a factor of 30X to 50X, reducing the execution
time of massive document clustering from half a day to around
ten minutes. Our results show that performance gains stem
from three factors: (1) acceleration through GPU calculations,
(2) parallelization over multiple nodes with GPUs in a cluster
and (3) a well thought-out data-centric design that promotes
data parallelism. Such speedups combined with the scalability
potential and accelerator-based parallelization are unique in
the domain of document-based data mining, to the best of our
knowledge.
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