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Abstract—Emerging accelerating architectures, such as
GPUs, have proved successful in providing significant perfor-
mance gains to various application domains. However, their
viability to operate on general streaming data is still ambigu-
ous. In this paper, we propose GStream, a general-purpose,
scalable data streaming framework on GPUs. The contributions
of GStream are as follows: (1) We provide powerful, yet
concise language abstractions suitable to describe conventional
algorithms as streaming problems. (2) We project these abstrac-
tions onto GPUs to fully exploit their inherent massive data-
parallelism. (3) We demonstrate the viability of streamingon
accelerators. Experiments show that the proposed framework
provides flexibility, programmability and performance gains
for various benchmarks from a collection of domains, including
but not limited to data streaming, data parallel problems and
numerical codes.

I. I NTRODUCTION

Stream processing has established itself as an important
application area that is driving the consumer side of comput-
ing today. While traditionally used in video encoding/decod-
ing scenarios, other application areas, such as data analysis
and computationally intensive tasks are also discovering
the benefits of the streaming paradigm. High computational
demands by streaming have been met by general-purpose
architectures via multicores. But with no end in sight
for these inflating demands, conventional architectures are
struggling to keep up. We already see significant increases
in power and resource management costs particularly for
homogeneous general-purpose multicores. Heterogeneous
architectures with accelerators, such as GPUs, offer a viable
alternative to meet the demand in computing as they deliver
not only higher cost and power efficiency but also higher
performance and scalability.

These performance potentials of GPUs originate from
architectural design and programming strategies in favor
of massive data parallelism. Today’s latest generation of
GPUs features hundreds of stream processing units capable
of supporting much more data parallelism than a CPU does.
The NVIDIA GPU programming model CUDA encourages
users to create light-weight software threads at the scale of
tens of thousands, which is orders of magnitude larger than
the maximal hardware concurrency inside the GPU. This
over-subscription of software threads relative to the hardware
parallelism allows latency hiding mechanisms to be realized
that mitigate the effects of the memory wall [1].
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Existing streaming models, such as Lucid [2], LUSTRE
[3] and SIGNAL [4] (see [5] for a survey), strive to provide
a comprehensive streaming abstraction on one end of the
spectrum. They are designed to be architecture-independent
and focus on generality. This comes at a price as efficient
execution under different computing platforms becomes an
afterthought. On the other end, various compiler techniques
and runtime systems were developed to map streaming
abstractions to specific hardware,e.g., StreamIt [6], Brook
[7], Cg [8] and Auto-pipe [9].

In this work, we consider a language extension and run-
time system approach to map streaming abstractions to GPU
clusters. Efficient utilization of resources in a GPU cluster
is an essential prerequisite for its adoption in streaming
domain, especially for large scale, data-intense applications.
However, programming the state-of-the-art GPUs is not as
flexible as programming CPU clusters. More specifically, we
experience two challenges to achieve both programmability
and performance:

(1) Deep (multi-level) memory hierarchies in a typical
loosely-coupled GPU cluster connected via network inter-
face pose a challenge. It takes multiple hops to transfer data
in one GPU to another: first between the GPU device and
host memory, then over distributed memory spaces onto a
different node. The obligation to manage memory and data
transfers exerts a burden to programmers, especially in a
system where data flows are complicated. Recent work to
mitigate this problem ([10], [11]) still falls short as it exposes
programmers to the underlying communication topology.

(2) Performance objectives between GPU parallelization
and stream specifications tend to conflict with one another.
On one hand, the GPU architecture is optimized for through-
put making it applicable for latency-tolerant applications.
On the other hand, many stream systems consider response
time as the key performance metric. A delicate trade-off
is necessary to incorporate GPUs as accelerators for such
stream systems to meet requirements of these metrics.

Our GStream framework provides language and run-time
support as a first-order design objective to map streaming
abstractions onto GPU clusters. It addresses the aforemen-
tioned challenges in two complementary ways:

(1) GStream provides a unified memory transfer interface
in the context of streaming data flows. No matter where
source and destination of streaming data reside, the run-time
system automatically performs the necessary memory copies
or initiates message passing to guarantee data coherence.
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Figure 1. GStream Software Stack

As a result, users no longer need to write explicit MPI
messaging or CUDA memory copy directives. This feature
greatly reduces development time.

(2) GStream provides an elastic data API (stream
push/pop) to dynamically adapt the batch size for each GPU
kernel. This is based on the observation that many streaming
steps allow re-sizable input size. By applying this technique
at runtime we are able to handle streaming systems that
have dynamically fluctuating data-flow characteristics with-
out sacrificing response time requirements.

Our GStream framework can be easily integrated with
third-party CUDA libraries. This is motivated by the trend to
provide GPU kernels that can accelerate hot-spots even with
complex dependencies and synchronizations. Past GPUs
thrived on naive data parallelism without synchronization
between fine-grained data operations. Compilers can exploit
such embarrassingly parallel algorithms by detecting idem-
potent operations where output is a strict function of prior
input flow without referencing any immediately preced-
ing output. In modern GPUs, synchronization is natively
provided at a fine-grained level. Consequently, numerous
algorithms, including but not limit to linear algebra func-
tions [12], FFT [13] and physical dynamics [14], can be
significantly accelerated by CUDA abstractions and libraries.
Nonetheless, today’s most efficient CUDA implementations
are still hand-written codes. Being able to reuse these
capabilities is considered crucial both from the performance
and productivity points of view.

Overall, GStream is a general-purpose, scalable run-time
framework allowing application to be expressed as streaming
problems and executing them efficiently on GPUs. GStream
executes single program, multiple data (SPMD) codes on
a cluster of accelerated machines. Here, GStream pro-
vides transparent streaming data transmissions and automatic
memory synchronization while offering users full control to
utilize computational resources of both CPUs and GPUs.

An overview of the GStream software stack is shown
in Fig 1. GStream combines software abstractions with
concrete implementations targeted at different levels of
parallelism: CUDA and CUDA-derived libraries for data-
parallelism; POSIX thread abstraction for task parallelism
in shared-memory; and inter-processing communication li-

braries for data sharing across distributed-memory machines.
The later two components are completely concealed by
the GStream run-time system. They can be replaced by
any other libraries that provide similar functionality with-
out affecting the application code base. For instance, we
utilize the message-passing functionality of MPI for inter-
node communication. Similar implementations can be built
on top of other inter-node communication libraries (e.g.,
TCP sockets). GStream’s run-time system integrates library
components and completely hides the thread management
and data movement from the user.

The contributions of this paper are the following: (1) We
propose a novel streaming abstraction dedicated for GPU
clusters. (2) The streaming data-flow abstraction is made
extremely concise, intuitive and can be supported by exist-
ing language abstractions (instead of inventing yet another
language). It hides from user the complexity of memory
transfers between different address spaces. (3) The validity
of the abstraction reaches well beyond streaming illustrated
via sample implementations for various domains, including
data streaming, data parallel problems and numerical codes.

The rest of the paper is organized as follows. The system
model and design goals are stated in Section II. In Section
III, we describe the GStream API and its usage in detail. We
present our system design in Section IV, experimental results
in Section V, related work in Section VI and summarize the
work in Section VII.

II. D ESIGN GOALS AND SYSTEM MODEL

A. Design Goals

The focus of this work is to provide a general-purpose
streaming framework dedicated to GPU architectures. We
aim at satisfying several design goals:
(1) Scalability: The targeted platform is a cluster of machines
accelerated by GPUs. There is no restriction on the size of
the cluster.
(2) Transparency: Both the task scheduling and the
GPU/host memory management for streaming data should
be handled by the run-time system without any user inter-
vention.
(3) Extendability: The library should be made extendable to
meet customized needs while providing basic functionality.
(4) Programmability:The language syntax should be concise
and type checking should be done at the compiler time.
(5) Flexibility: The computation cores can be chosen to
freely execute on either CPU or GPU platforms. This allows
fast prototyping with full debugging support on CPUs first.
(6) Re-usability: The cost of developing high-performance
code on GPUs is higher than on general purpose micro-
processors. Being able to reuse existing libraries will be a
significant benefit.



B. System Model

Streaming systems are better understood when their inter-
nal data flow is characterized and analyzed. While efforts to
specifically target certain architectures have led to different
semantic abstractions of streaming, two fundamental com-
ponents are common to typical streaming systems: data pro-
cessing units and data links that connect them. In GStream,
we refer to these asfilters andchannels, respectively.

Filters consume zero, one or multiple streams of data
types and similarly produce any number of streams of
identical or dissimilar data types. Filters without input or
without output are referred assource filtersor sink filters,
respectively. In GStreams, source and sink filters are not
differentiated from any other filters.

Channels exist whenever there is a data flow between fil-
ters,e.g., one filter’s input stream originates from another fil-
ter’s output stream. From the filter’s point of view, channels
are effectively unbounded queues. Two types of channels
are differentiated in GStream: point-to-point (p2p) channels
and group channels. P2p channels are uni-directional and
used for ad-hoc data transmissions. Each p2p channel has
a predecessor filter and a successor filter. In contrast, group
channels have well-defined group behavior and are used for
inter-node data transmissions. GStream currently supports
broadcast, reduce and all-to-all group channels. Both group
and P2P of channels are strongly typed, connected to filters
via ports and are associated with unique port IDs on filters.
The operation of data on channels are realized via a simple
push/pop interface (see Section III-B).

With the definitions of filters and channels, we can
build customized streaming applications in a multi-node
environment. For example, we can construct a standard
pipelined system consisting of just P2P channels (Fig. 2(a)).
Furthermore, backward channels are supported to realize
feedback systems. Another dimension is given by arrays
of filters (Fig. 2(b)), where each array element resides on
a different node. The communication between filter arrays
can be facilitated by group channels but P2P channels are
supported as well.

The hybrid model of channels allows users to combine
flexibility with productivity. On one hand, the P2P channel
abstraction makes it possible to build any kind of stream
graph. On the other hand, group channels prevent the pro-
grammer from having to build well-defined and widely-used
communication patterns from scratch, which is a tedious and
error-prone task.

III. GSTREAM OVERVIEW

GStream is a C++ template library for data parallel, data
streaming applications based on the streaming abstraction
described in the previous section. Using C++ has two major
advantages: (a) It seamlessly integrates with existing frame-
works including CUDA and MPI; (b) The template meta-
programming feature in C++ provides an ideal technique to

Figure 2. System Model

make the library reusable and expandable. In the following,
we will (1) present the key characteristics of filters and
channels in GStream; (2) show the principle GStream API
and (3) illustrate the steps to write a program (as streaming
specifications) in GStream.

A. GStream Abstraction and Convention

GStream makes several assumptions to abstract a stream-
ing system. The basic computation unit is a filter. Filters
can run independently from each other once their input
data is available on an input channel. The main body of
a filter is generalized into a three-step pattern (see Fig.
3). The start() and finish() functions are executed once at

void Filter::run(){
start();
while (!isDone())

kernel();
finish();

}

Figure 3. Filter Specification Pattern

the beginning and the end of the filter life cycle. They are
used to execute chores such as parameter initialization and
internal resource allocation/deallocation. They can alsobe
used to allocate/deallocate scratch space, which is encap-
sulated in the filter itself. The central activity of a filter
body is the kernel() function. Inside the kernel() function, a
filter typically executes as follows: It waits for tuples from
input ports, processes data and generates output tuples to
output ports. A sequence of these steps is called a batch
process. Batches continue to execute until input data is
exhausted (or run forever if inputs are infinite streams). One
of the differences between GStream and other streaming
abstractions, such as StreamIt [15], is how the parallelism
is defined as filters. In StreamIt, the user needs to define
the behavior of a filter on the most fine-grained unit. In
contrast, thefilter parallelism in GStream is defined as a
range of tuples a filter can process in one batch. This design
caters to dynamic scenarios where the batch size can change
at run-time. Such variance is controlled by the user through
two APIs: getMinDegree(portId) and getMaxDegree(portId)
define the legal range of the number of input tuples per
port. The user is then required to provide a general routine



that can successfully handle input tuples in this range. On
the output side, the number of tuples to be generated is
determined by the size of the input tuples a filter receives
in a batch. Making fine-grained filter behavior transparent
and flexible through massive parallelism is precisely what
distinguishes GStream from other streaming abstractions.

P2P channels and group channels are exposed to the user
at different levels. P2P channels are explicitly constructed
by the pipe operator| of the filter class. Group channels do
not require any user intervention. They are associated with
predefined special filter arrays. Their construction is handled
internally and transparently by GStream. The advantages
of using the pipe operator to express P2P channels are its
conciseness and intuitive notation.

(1) f|g|h; // simple filter pipeline
(2) h|f; // extend (1) with feedback
(3) for (i=0;i<M;i++) a[i]|b[i];//filter array
(4) for (i=0;i<M;i+=2) {

a[i]|c[i/2];a[i+1]|c[i/2]; } // merge

In example (1), a pipeline of filters can be expressed
in just one line of code by interlacing filters and pipes.
Specification of a feedback path requires (2) just one extra
line of code. Arrays of filters (3) can also be linearly
combined or by flow splits or merges (4).

B. GStream APIs

The list of filters is maintained internally by the GStream
run-time. Different filters in GStream are defined via con-
crete classes derived from the same base class (see Fig.
5) with basically three predefined virtual functions: void
start(), finish() and kernel(). It is not necessary to override
the start() and finish() functions if their bodies are empty.
Similarly, getMinDegree(portId) and getMaxDegree(portId)
have default values (1 and 4096, respectively) that can be
overridden by the user to specify a different range.

Streaming data is owned and managed by channels
through a simple channel interface. We found that a simple
data push and pop API suffices to express data processing.
Pop extracts streaming data from input channels. Conversely,
push APIs injects data on output channels. To stream data
out of an input channel, pop() is first called to obtain the
buffer pointer. The call is blocked if the channel does not
contain the number of tuples in the range defined by the min-
Degree and maxDegree on this port (unless end-of-stream is
reached where the stream is flushed unconditionally). Upon
returning, the run-time system supplies the current maximal
number of tuples that satisfies the given range. As soon
as the user has consumed the input, popfinalize() can be
invoked to inform the runtime that the channel can safely
release the input. Similar two-phase operations apply to the
output channel. This two-phase API requires a strict pairing
of API calls by the user, which results in a number of
benefits:

• Unnecessary memory copy operations are avoided. For
instance, in the push API, reserve() is first called

to obtain the current memory pointer of a channel.
Once the data is ready, reservefinalize() is called to
signal the availability of the data. In contrast, if only
reservefinalized() were provided, the user would need
to allocate memory explicitly.

• The size of reserved/popped data during the first step
is not necessarily the same as the finalized size in
the second step (but always greater or equal). This
addresses the case when peek size differs from pop
size.

• Irregular data types or types with unknown prior size
(e.g., IP packets) can be handled by casting channel
types to unit type characters. When the actual tuple
size is unknown during the first step, the consumption
size can be adjusted in the second step.

(b) Tuples between min and max are popped

(a) Pop() is blocked due to lack of tuples 

Push APIs
Pop APIs

maxDegree
minDegree

Push APIs
Pop APIs

maxDegree
minDegree

Push APIs
Pop APIs
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(c) Maximal number of tuples are popped
Figure 4. Schematic of Elastic Pop APIs

An illustration of the elastic pop API is given in Fig. 4. For
each channel, the runtime system maintains a buffer viewed
as an unbounded queue of tuples. When the downstream
filter calls a pop() with an acceptable range, the runtime
system checks the availability of data on the channel. If the
number of tuples is less than the minimal range, the call is
blocked (case (a)). If the number is greater than or equal to
the minimal threshold, the call returns indicating the actual
number of elements (capped by the maximal threshold). The
system maintains the integrity of the popped data until the
pop finalize() is called. Only thereafter can the buffer be
reused by the channel to store new pushed data.

C. Case Study – A Finite Impulse Response (FIR) Filter

An example of a simple FIR filter expressed in GStream
is shown in Fig. 6. A FIR filter is a specific aggregate
filter with a sliding window of orderm (see Fig. 6(a)). We
create a pipeline of three filters: a random number generator,
the FIR filter and a print filter. In the main program (Fig.
6(b)), we demonstrate how the three filters are initialized
and added to the stream system (lines 3 to 11). The P2P
channel connection is expressed concisely as a single line
(line 14). Both the random number generator and print filters
are provided by the template library. The FIR filter definition
is shown in Fig. 6(c).



(a) Fir Filter and GStream Structure

1 int main()
2 {
3 StreamSystem ss;
4 RandFilter<float> rf;
5 FirFilter<float, 100> firf;
6 PrintFilter<float> pf;
7
8 /∗ add filters to system∗/
9 ss.addFilter(&rf);

10 ss.addFilter(&firf);
11 ss.addFilter(&pf);
12
13 /∗ construct p2p channels∗/
14 rf | firf | pf;
15
16 /∗ ready to run∗/
17 ss.run();
18 return 0;
19 }

(b) Main Program

1 template<typenameT, int m>

2 classFirFilter:public Filter<typelist1<T>, typelist1<T>>

3 {
4 public:
5 virtual void start(){
6 ... /∗ setup coefficient array k[m]∗/
7 }
8 virtual int getMinDegree(int) {
9 return m; // overwrite the default return value 1

10 }
11 virtual void kernel()
12 {
13 StreamChannelBuffer<T> input;
14 StreamChannelBuffer<T> output;
15 /∗ pop inputs of size from m to getMaxParallel(0)∗/
16 int batch = inputPort[0]→pop(&input, getMinDegree(0),

getMaxDegree(0));
17 if (batch !=−1){
18 /∗ reserve output buffer∗/
19 outputPort[0]→reserve(&output, batch− m + 1);
20 for (int i = 0; i != m; i++) {
21 ... /∗ the kernel calculation, omitted∗/
22 }
23 /∗ output data ready, finalize the reservation∗/
24 outputPort[0]→reservefinalize();
25 /∗ only pop (batch− m + 1) from the input port∗/
26 inputPort[0]→pop finalize(batch− m + 1);
27 } else{ // returning−1 indicates the end of stream
28 setDone();
29 } }
30 private:
31 T k[m];
32 };

(c) Fir Filter Class Definition
Figure 6. Fir Filter Example

StreamSystem API:
void addFilter(FilterBase *filter);
void run();
Major Filter Functions :
void kernel()∗;
void start()+; (empty by default)
void finish()+; (empty by default)
int getMinDegree(int portId)+; (return 1 by default)
int getMaxDegree(int portId)+; (return 4096 by default)
void assignToNode(int nodeId); /* formulti-node case */
void setToUseGpu(); /* set to use GPU or CPU */
∗: must override.+ has default behaviors
Channel Push API:
void reserve(StreamChannelBuffer &buffer, int size);
void reservefinalize(int size);
Channel Pop API:
int pop(StreamChannelBuffer &buffer, int min, int max);
void pop finalize(int size);
void waitForAny();

Figure 5. GStream API

Lines 5 to 7 override the start() function to set up
the coefficient array. Method getMinDegree() needs to be
overridden (lines 8 to 10) because it takes at leastm input
tuples to generate the first output tuple, wherem is the
degree of the FIR filter. Line 11 to 31 depict the execution of

the main body of the FIR kernel function. It keeps popping
data from its input port (lines 16 to 17). The returned size
(int batch in line 16) always falls in the provided range
of [getMinDegreel(0) ... getMaxDegree(0)]. The GStream
runtime system guarantees continuous storage for the data
in memory. Once the input size is known, we can use the
information to reserve a buffer on the output channel (line
19). After the computation (lines 20 to 22) is completed,
the output is pushed to the output port (line 26). To add
GPU support, all we need to do is to replace the CPU code
from lines 20 to 22 with a GPU kernel call. Any other code
sections remain unchanged.

IV. D ESIGN AND IMPLEMENTATION

We have implemented the GStream library using C++ pro-
gramming language features with extensive use of template-
based generic programming techniques [16]. GStream is
deployed on a cluster of nodes, each equipped with a GPU.

With a template tool for manipulating collections of types
(a typelist template of the Loki library [17]), we design the
filter class to realize the filter abstraction in GStream. The
base filter class (Filter<inputTypeList, outputTypeList>) is
an abstract template class. It contains two templates as the



filter’s input and output type lists. Filters are mapped to
different threads and executed independently of each other.

The template design ensures the objectives of high pro-
grammability and extendability (see Section II-A). It pro-
vides enough flexibility for users to customize a filter’s
behavior. The derived filter is required to define its own
kernel() function as a pure virtual function. The void start()
and finish() functions can be optionally overridden if in-
ternal state needs to be initialized or resources need to be
allocated/deallocated. The library currently contains several
pre-defined filters such as a random number generator, a
printing filter and a hash/map filter. Users may add new
filters by deriving new classes from the base filter class.

The design of a kernel() function gives the user wide
flexibility, but it usually adheres to the following pattern:

out_channel->pop();
in_channel->reserve();
kernel_calculation();
out_channel->pop_finalize();
in_channel->reserve_finalize();

The kernelcalculation() is the core computation that can
be implemented by mapping the kernel to either a GPU (via
CUDA) or a CPU. It can also be replaced by library calls,
including numerical GPU libraries such as CULA, which
meets the reusability objective of Section II-A.

Every port in a filter is associated with a data type, and the
data type needs to be incorporated in the filter class’ typelist
template. This ensures strong type-checking at compile time.
This limits filters in that they cannot have an arbitrarily large
number of fan-in/out ports. We address this problem by (a)
supporting (a) group channels (with only one port id, even
if there are multiple data links); (b) creating intermediate
filters in a tree structure; and (c) combining data types for
multiple ports into one complex data type.

To meet our objective of flexibility (see Section II-A), a
method setToUseGpu() in filter is provided to indicate that
the computation routine should be accelerated by a GPU.
By default, streaming data of such a filter resides within the
GPU address space. This call acts as a hint to GStream to
automatically perform necessary DMAs. Filters are assigned
to a particular node by calling the assignToNode() member
function. If two concatenated filters are assigned to different
nodes, a pair of asynchronous MPI send/recv calls are setup
to realize the channel pop/push interface. Each channel is
associated with a data type, which matches one of the
types in the filter class’ input/output typelist according to
the channel’s port id in the filter. Internally, a channel has
two buffers, one each for CPU and GPU. Depending on the
receiver’s filters property, the run-time system automatically
synchronizes the memory.

Fig 7 depicts the overall system design for a GPU cluster.
The resulting executable is an SPMD program. All filters
assigned locally are instantiated by a CPU thread on a node.
The GPU is time-shared among all filter threads: a global

command FIFO queue is maintained for the GPU. All GPU-
related operations issued by filters, including GPU memory
allocation, DMA memory copy and kernel executions, are
pushed to the queue. We thereby realize the transparency
objective (see Section II-A) as scheduling, memory man-
agement and memory movement are automated.

A dedicated GPU thread serves the FIFO queue when the
queue is non-empty. For nodes awaiting stream data from
a different node, an upstream thread is created to listen to
the network messages from other nodes. Once data is being
received, the thread will push the data to the corresponding
local filters. All MPI calls are asynchronous to avoid the
deadlocks (e.g., due to blocking MPI send/receive orderings
triggered by filter dependencies). GStream currently does
not manipulate the execution order of the GPU FIFO queue.
The mapping of filters to physical nodes is performed
manually by the user through the filter::assignToNode(int
nodeId) API. Since the underlying data transfer is made
completely transparent to the user, users can experiment with
different layouts via rapid prototyping to determine the best
configuration. One of our future work is to automate the
process by assigning nodes with high bandwidth streams to
the same node.

Figure 7. System Overview
V. EXPERIMENTAL RESULTS

We performed experiments on a cluster where we utilized
up to 32 nodes equipped with GPUs and connected by
QDR Infiniband (36 Gbps). Each node consists of two AMD
Opteron 6128 sockets (16 cores per node) and an NVIDIA
Tesla C2050 graphic card. GStream is compiled with the
CUDA 3.2 compiler combined with OpenMPI for MPI-style
communication method.

A. Streaming Micro Benchmarks

We have implemented several representative streaming
and non-streaming, iterative benchmarks using GStream,
namely FIR filter, matrix multiply (MM) and FFT. These
benchmarks require no more than a few filters, including
a pre-defined random floating-point generator filter and a
terminal output filter. For each benchmark, we provide four
implementations: (a) A native C/C++ program running on
CPUs without considering any streaming behavior (but still



uses third-party libraries); (b) a multi-threaded C/C++ pro-
gram using the GStream librarywithout GPU support; (c) a
native CUDA implementation without considering streaming
behavior and (d) GStreamwith GPU support.

The filter construction of the three benchmarks is shown
in Fig. 8(a)(b)(c). GStream makes it straightforward to run
filter arrays on multiple nodes to increase the throughput.
We were able to run 32 copies of the filters on 32 nodes.
The speedups of all implementations running on 32 nodes
are shown in Fig. 9, with implementation (a) chosen as the
baseline. The performance ratio of (b) over (a) indicates
the overhead of the GStream run-time system, which is
negligible as the ratios for all benchmarks are very close
to one. In the following, we discuss each micro-benchmark
in detail, including the detailed application parameters and
third-party libraries we have used.

FIR has been introduced as a code example previously. We
set the order of the FIR filter to 100, indicating an aggregate
filter with a sliding window of size 100. A hand-coded FIR
GPU kernel is developed in this benchmark. GStream using
a GPU achieves a speedup of about a factor of 6 over the
vanilla C version on a CPU.

For the matrix multiply (MM) benchmark, we measure the
time to calculate a sequence of multiplies on square matrices
of dimension 1024x1024. Both (c) and (d) integrates the
CUBLAS library [12], an efficient implementation of BLAS
for CUDA. To access the vanilla C version on a CPU, the
Template Numerical Toolkit (TNT) is used [18].

Similarly for FFT, both the original C program and the
CPU version of the GStream implementation use FFTW, a
widely used and highly efficient FFT library. CUFFT [13], a
FFT CUDA library shipped along with the CUDA SDK, is
used in GPU evaluations. In this test case, the performance
of a 2D (512x512) single-point complex FFT is compared.

Of these three benchmarks, the GPU version of GStream
offers 3 to 27 times speedup over the corresponding C
version. The CPU version of GStream outperforms the C
program for FIR and FFT in spite of the synchronization
overhead. This is because filters in GStream are executed
in multiple threads. The random number generator filters
in these two benchmarks execution is overlapped with FIR
filter. This parallelism can compensate for the overhead of
the library. The ratios of (b) over (a) and (d) over (c) show
that GStream imposes little overhead to the overall system.

B. Scientific Benchmarks

We rewrote the IS (integer sort) benchmark of the NAS
parallel benchmarks [19] and converted it into a filter-based
program. The filter structure is depicted in Fig. 8(d). Input
integer numbers are produced by the Random Number Gen-
erator. The Bucket Filter consumes these integers in large
batches and calculates the bucket statistics of each batch.
The Window Reduce Filter summarizes bucket information
over batches until all inputs are processed. The final bucket

statistics is fed to an Alltoallv Filter for post processing.
Both Bucket and Window Reduce Filters can be mapped
onto GPUs or CPUs. The GPU version is slightly faster
than the original benchmark (see Fig. 9 for class D on
M = 32 nodes). This is because IS is a communication-
bounded benchmark, which limits GPU benefits.

GStream can be integrated with legacy codes by expos-
ing APIs such as addFilter() and addChannel(). We have
integrated GStream into LAMMPS, a molecular dynam-
ics simulator distributed by Sandia National Laboratories
[20]. LAMMPS is designed as a computing platform for
simulating soft materials, solid-state materials and coarse-
grained or mesoscopic systems. The original code runs on
single processors or in parallel systems using MPI. More
recently, accelerators, such as GPUs, have been deployed
and are supported by LAMMPS as an effort to reduce the
total computation time [14]. The simulation in LAMMPS is
organized as a pipeline of computational steps making it a
perfect candidate to apply our GStream concept.

In this case study, we replaced the LJ (Lennard-Jones)
potential cutoff step with a customized filter in GStream
and added channel manipulations in the LAMMPS source
code to trigger its execution. The last set of bars in Fig.
9 shows the speedup of using the original GPU code and
the GStream implementation vs. the CPU implementation
on 32 nodes. Again, the overhead of adding the GStream
library is negligible. We have only converted one hot-spot
of the entire pipeline into GStream filters at this time.
Complete transformation of all pipeline steps to GStream
would result in a code base that is better organized and more
expandable. In general, the ease of integration within legacy
codes step-by-step for each kernel, such as demonstrated
with LAMMPS, provides a graceful transition that facilitates
the adoption of the GStream in other domains, such as
complicated numerical codes.

C. Linear Road Benchmark

A widely-used real-time streaming benchmark is the Lin-
ear Road Benchmark [21], originally proposed to provide a
scalable and fair benchmark for Stream Data Management
Systems (SDMS). It simulates a toll system of motor vehicle
expressways of a large metropolitan area. Expressways are
divided into one-mile-long segments. The system needs to
keep track of the number of vehicles, detect accidents in
each segment and determine toll charges for each vehicle.
In the meantime, queries such as vehicle balance, historical
charges and travel time estimation need to be answered. In
a three-hour simulation, the response time of each output
is measured with regard to the following timing constraint:
Outputs need to be produced within 30 seconds for travel
time estimation queries and within 5 seconds for all other
events, especially for toll notifications, which are on the
critical path of the system. The performance metric of an



Figure 8. Filter Structure for Benchmarks
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Figure 10. Linear Road Benchmark on 32 CPU/GPU Nodes
implementation is then given as the maximal number of
expressways,L, without violating the timing constraint.

We have implemented the toll query system using the
streaming abstraction of GStream, which allows us to focus
specifically on customized filter design in the system. The
filter graph per expressway is illustrated in Fig. 10(a). A
data filter feeds the input tuples according to timestamps to
mimic a real-world scenario. Inputs are filtered here to direct
streams to different filters. Position reports are transferred
to a segment history filter to generate segment statistics and
detect potential accidents. The same position reports are also
fed to a car history filter to determine if the car has entered a
new segment. A channel connects the segment history filter
with the car history filter. This channel is activated to transfer
segment statistics (number of vehicles in the last minutes,
accident flags) every minute to assist the car history filter
in determining toll charges. Vehicle accounts are kept in the
car history filter. Therefore, account queries pass throughthe
car history filter, too. Other queries (daily/travel queries) are
processed independently via a separate data flow.

Once the filters and their data dependencies are finalized,
we can freely experiment with different filter mappings
into our physical node space due to the transparency of

data transmission provided by the GStream run-time system.
The highest performance was obtained by assigning filters
belonging to one expressway to the same physical node.
“L-rating” defined as the maximal number of expressways
supported by a system meeting response time constraints
delimited by 5 seconds. The response time in one node at
different number of expressways is shown in Fig. 10(b).
In total, we get an L-rating of60 × 32 = 1920 on 32
GPUs. Compared to previous work, both Aurora [22] (2003)
and SPC [23] (2006) achieved L-ratings of 2.5 on a single
machine. The most recent implementation in SCSQ [24]
(2010) reported an L-rating of 64 on a dual quad-core.

D. 3D Stencil

GStream can improve the productivity to write programs
that are not considered as traditional streaming applications.
In this experiment, we implemented a 5-point 3D stencil
Jacobi iteration on 32 GPU nodes to demonstrate that our
scalability objective is being met (see Section II-A). Filters
divide the stencil space along the Z axis. In each iteration,a
filter needs to exchange its borders with two neighbor filters.
We set each filter’s stencil space to 512x512x512. Fig. 11
depicts that the wall-clock time remains constant under weak
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Figure 11. Weak Scaling in 3D Stencil on up to 32 GPUs

scaling (with proportional increase of both the number of
nodes and the problem size). As a result, the performance
normalized to a single GPU increases linearly. The reason
GStream experiences perfect weak scaling is due to the fact
that inter-node channels are implemented by asynchronous
MPI calls that can overlap with the internal computations.
Furthermore, programmers only need to focus on the devel-
opment of stencil kernels on GPUs since communication is
transparently handled by GStream.

VI. RELATED WORK

Stream processing has been studies for a number of
decades [5]. In the earlier years, the data flow semantic
models and languages to support them were the primary
focus. Several Data Stream Management Systems (DSMS),
such as TelegraphCQ[25], Aurora [22], Medusa [26] and
the STREAM project [27] [6], focused on continuous query
processing, which is only one example of GStream’s more
general applicability and expressiveness.

Our concept of filters is loosely inspired by StreamIt [15],
a platform-independent streaming language and compiler
environment. Our runtime-centric dataflow approach is more
general than their static analysis and transformation method-
ology. In fact, GStream could be used as part of the runtime
system to extend StreamIt to GPU clusters. We further em-
brace a coarser-grained data parallelism than StreamIt, which
results in performance beyond prior work [28]. A number of
other filter-based frameworks have been designed [29], [30],
[31], [32], [33]. Similarly, they encapsulate computations
into filters, a central concept to express algorithms. But their
designs are based on different objectives to fit a specific
domain that they target. They also tend to target shared
memory while we consider filters in a distributed memory
environment across compute nodes in a cluster.

Brook [7] is a streaming language dedicated to GPUs. It
does not support scheduling across kernels. It relies on a
sequential language to trigger a streaming process. Udupa
et al. [34] extended the ideas of StreamIt with a direct port

to a single-node GPU platform. Filters are mapped to a sub-
kernel level abstraction to realize transparent scheduling.
GStream takes streaming to another level by combined sup-
port for coarse-graineddata parallelism and filter arrays to
targetmultipleGPUs. CUDA supports simple stream objects
for command sequences that execute in order. While this
concept matches simplistic pipelined computations, it fails
to generalize to non-pipelined execution patterns and lacks
support for expressing more complicated data dependencies
that are widespread.

Recent years have witnessed many efforts to provide
unified programming models or language support for accel-
erators including GPUs. StarSs [35] takes a pragma-based
approach to express computational kernels astasks. StarPU
[36] usescodeletsas an abstraction of a task that can be
mapped to an accelerator. Both of them offer a certain degree
of scalability but they are strictly constrained to the shared-
memory paradigm. A new language called the X code is
proposed in [9]. It contains a set of automated tools (Auto-
Pipe) to aid in the design, evaluation and implementation of
applications that can be executed on acyclic computational
pipelines. It shares with GStream the philosophy that data
flow should be expressed at a higher level to remove user
interference. However, its scalability in larger clustershas
not been shown, to the best of our knowledge.

VII. C ONCLUSION

We have designed and implemented GStream, a general-
purpose, scalable data streaming framework designed for
clusters of GPUs. GStream is inspired by a lack of streaming
abstraction dedicated to massively parallel architectures and
their suitability to express data parallelism. We presented
a novel and concise, yet powerful streaming abstraction
amenable to GPUs. Communication patterns are expressed
as point-to-point channels or as group channels. This ab-
straction ensures flexibility in runtime adaptation and fosters
productivity during coding by letting programmers focus
on the description of data organization and operations
performed on the data without explicitly expressing task
parallelism constraints. Programmability is realized through
extensive use of template-based generic programming tech-
niques in C++, which fosters portability and integration with
an existing code base.

Overall, GStream’s strength is in its ease of use and
its applicability to a variety of domains not constrained
to traditional streaming problems, as demonstrated by our
experimental results. These aspects combined with efficient
exploitation of GPU resources have the potential for a
GStream-like paradigm to succeed.
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