
Evaluation of Memory Access Arbitration Algorithm on Tilera’s TILEPro64

platform
Mayank Shekhar

Southern Illinois Univ Carbondale

Carbondale, IL U.S.A

mayank@siu.edu

Harini Ramaprasad

Univ of North Carolina at Charlotte

Charlotte, NC USA

hramapra@uncc.edu

Frank Mueller

North Carolina State Univ

Raleigh, NC U.S.A

mueller@cs.ncsu.edu

Abstract—As real-time embedded systems demand more
and more computing power under reasonable energy budgets,
multi-core platforms are a viable option. However, deploy-
ing real-time applications on multi-core platforms introduce
several predictability challenges. One of these challenges is
bounding the latency of memory accesses issued by real-time
tasks. This challenge is exacerbated as the number of cores
and, hence, the degree of resource sharing increases.

Over the last several years, researchers have proposed
techniques to overcome this challenge. In prior work, we
proposed an arbitration policy for memory access requests over
a Network-on-Chip. In this paper, we implement and evaluate
variants of our arbitration policy on a real hardware platform,
namely Tilera’s TilePro64 platform.

I. INTRODUCTION

As demand for computation and concern for energy

efficiency increase, multi- and many-core platforms are

increasingly important even for real-time embedded systems.

One of the many challenges that multi-core platforms pose

to real-time operation is bounding predictability of memory

accesses. As the number of cores on a single chip increases,

contention for access to off-chip (main) memory increases.

According to a study [1], a task suffers 300% increase in

WCET with only 10% of its time spent on fetching memory

on an eight core system.

Researchers have proposed several approaches to solve

this problem. One option is to implement a memory arbitra-

tion scheme in software. Bellosa et al. [2] proposed a mem-

ory throttling scheme in the operating systems layer, for soft-

real-time systems. While such a software-based approach

has significant overhead that could reduce performance, it

has the advantage of allowing the use of Commercial Off the

Shelf (COTS) platforms. Yun et al. [3] propose a throttling

mechanism to isolate the cores executing critical tasks from

those running non-critical tasks. In this work, they assume

a cache miss takes a constant amount of time, which may

not be true in practice. Furthermore, the scalability of the

approach is a concern. As the number of cores increases,

the overhead would increase significantly.

Another option is to modify the hardware to allow ef-

ficient memory arbitration. This approach has the disad-

vantage that it requires specialized hardware. However, the

overhead incurred is significantly less compared to software-

based approaches. Akesson et al. [4] propose a predictable

DRAM controller that may be used to provide guaranteed

This work was supported in part by NSF grants CNS-0905212, CNS-
0720496 and CNS-0905181.

bounds on latency and bandwidth for off-chip memory

access. In this work, the authors employ a hybrid approach

between static and dynamic scheduling at the memory

controller, but the contention on chip can also make external

memory accesses unpredictable.

In recent work, we propose a dynamic off-chip memory

arbitration scheme, EDF-on-NoC, that schedules off-chip

memory accesses over a shared path on a Network-on-

Chip (NoC) using an Earliest Deadline First (EDF) policy

[5]. In that work, we conduct a simulation based study

to demonstrate the effectiveness of our algorithm for two

reasons. First, using a simulated environment allows us to

perform several sensitivity studies using synthetic or real

benchmarks. Second, although all the architectural features

that are assumed in this algorithm exist on real hardware

platforms, to the best of our knowledge, there is no single

platform that has all the features we assume.

In order to analyze the practical factors involved in

implementing an algorithm like the one proposed in our

prior work [5], in this paper, we implement and analyze

variants of the algorithm on Tilera’s TilePro64 platform [6].

TilePro64 is a homogeneous 64-core architecture with a

mesh-based Network-on-Chip (NoC) communication infras-

tructure. Each core has private (dedicated) L1 and L2 caches

and there are no shared caches on the platform. Although

TilePro64 does not have all the features that we assume, the

homogeneity of cores, the existence of only private caches

and the NoC topology fit our assumptions, thus motivating

our choice.
II. EDF-ON-NOC ALGORITHM

In prior work, we propose two memory access arbitration

schemes, namely Weighted TDMA [7] and EDF-on-NoC

[5], with the aim of improving predictability of off-chip

memory accesses. Simulation results show that EDF-on-NoC

outperforms WTDMA. In the current paper, we implement

variants of our EDF-on-NoC policy on the TilePro64 plat-

form.

The EDF-on-NoC policy assumes a homogeneous multi-

core architecture, where each core has private, set associa-

tive, lockable caches, and a two dimensional (2D) mesh-

based NoC interconnect with dedicated, bidirectional chan-

nels for cache-to-cache transfers between cores that do not

interfere with channels for regular main memory accesses.

The fundamental goals of EDF-on-NoC are 1) to control

the rates of memory requests issued by different cores



to different pre-calculated values; and 2) to schedule the

memory transfers over a predetermined set of NoC links

using a dynamic priority scheduling policy. In this policy,

memory requests from different cores experience different

access latencies, depending on the cores distance from the

memory controller.

Off-chip memory access requests from a core are mod-

elled as a real time task with a pre-defined period and worst-

case execution time (WCET). The period of a core refers to

the minimum time interval between two consecutive off-chip

memory access requests that the core is allowed to issue and

its WCET refers to the time required to complete a single

off-chip memory access, assuming no interference from any

other core. Since a core can issue off-chip memory requests

only at period intervals, the effective off-chip memory access

latency experienced by the core is equal to its period.

We illustrate the working of EDF-on-NoC using an ex-

ample. Figure 1 shows a group of four cores that share

a memory controller port. It is assumed that all memory

requests from cores in this group are directed in a straight

line along the group to the memory controller. So, off-chip

memory requests from core A go through cores B, C and D

to the memory controller. The WCET of a core is the sum

of the time taken for a memory request/response to travel

on-chip from/to the core and the time taken for a request

to be serviced after it reaches the memory controller. We

refer to the former as on-chip memory latency and the latter

as off-chip memory latency. The off-chip memory latency is

assumed to be the same for memory requests issued by any

core (an upper bound of 60 cylces in the case of TilePro64),

but the on-chip memory latency depends on the location

of the core on the chip. In our example, a memory read

Figure 1. Architectural Setup for Running Example

request from core A travels as a single packet, leading to an

on-chip latency of 4 cylces. A memory response, which is

of memory line or cache line size, consists of four packets

that travel in a pipelined fashion. This implies that the first

packet has an on-chip latency of four cycles to get to core A

and the rest of the packets reach in three successive cycles,

bringing the total on-chip latency for the memory line to

7 cycles. The case of memory writes is analogous. Hence,

the WCET for core A is calculated as 4 cycles + 60 cycles

(off-chip latency) + 7 cycles = 71 cycles. Similarly, we can

calculate the WCETs of cores B, C and D to be 69, 67 and

65, respectively. The period of a core is calculated based on

the utilization and schedulability on the core. So, it depends

on the scheduling policy used on the core.

III. TILERA’S TILEPRO64 PLATFORM

TilePro64 implements a two-dimensional array of process-

ing elements or tiles. Each tile has a full featured processor

that can independently run an operating system such as

Linux, a dedicated cache engine and a switch engine. Tiles

are connected to each other and to the external memory and

I/O interfaces via multiple two-dimensional mesh networks.

The cache engine on each tile has a 16KB L1 instruction

cache, 8KB L1 data cache and 64KB unfied L2 (instruc-

tion and data) cache. The switch engine is responsible for

directing on-chip traffic using the NoC interconnect. There

are five types of dynamic networks on TilePro64 that are

used to dynamically route traffic on-chip. In this paper, we

only consider the ones that are involved in routing off-

chip memory traffic from and to the memory controller.

Specifically, we use the Memory Dynamic Network or MDN

that transfers packets from the queue of a tile to external

memory and the Transfer Dynamic Network or TDN that

transfers packets from external memory to a tile’s cache

memory.

The software stack running on TilePro64 consists of two

layers. The lower layer is the hypervisor, which is respon-

sible for the low-level hardware interface tasks and their

resource allocation. The upper layer contains the supervisor

instance(s). Although the platform allows different instances

of the supervisor on each tile, we use a single instance

of a VM-Linux supervisor to control multiple tiles in our

current work. While TilePro64 supports most of the features

required by the EDF-on-NoC policy, there are two important

aspects that it does not support, thus preventing a direct

implementation of EDF-on-NoC as proposed. Specifically,

it does not support cache locking and controlled external

memory access.

Cache locking is a technique that may be used to improve

the timing predictability of real-time tasks. The idea is that

a task may explicitly load and lock pre-determined content

into the cache. For the duration that the content is locked,

cache behavior becomes completely predictable. TilePro64

does not support cache locking.

The EDF-on-NoC algorithm assumes that a line of cores

access a common memory controller port, as shown in

Figure 1, and that we have control over the actual issue

of memory requests. On the TilePro64 platform (shown in

Figure 2), although we can limit access of a line of cores to

a given memory controller port, we do not have control over

the MDN or TDN that are responsible for carrying off-chip

memory traffic. Instead, in case of a cache miss, hardware

directly triggers an off-chip memory request.

IV. METHODOLOGY

In the previous section, we described the architectural

limitations of TilePro64 that prevent a direct implementation

of the EDF-on-NoC [5] algorithm on it. In this section, we

describe a work-around that may be used to demonstrate the

effect of our algorithm on such a system.

Since we do not have control over the MDN and TDN

networks that handle off-chip memory requests, we need to

control the issue of requests from the core itself. In order



Figure 2. Tilera Layout

to achieve this, we need to have a-priori knowledge of

what memory access requests will result in a cache miss

and, hence, an off-chip access. Furthermore, since EDF-on-

NoC arbitrates NoC usage among cores that share a single

memory controller port, a single instance of an operating

system must be deployed to control all cores sharing a single

memory controller port.

On a system with lockable caches, it is straightforward to

know which accesses will result in cache misses and which

ones will not. However, since TilePro64 does not support

cache locking, we resort to a slightly different approach.

We disable caching for those memory regions that are not

chosen to be locked in the cache so that all accesses to

those regions are guaranteed to result in an off-chip memory

access. This suffices for now since our primary focus is to

demonstrate the shared NoC arbitration policy.

Our basic method for arbitrating off-chip memory access

requests over the NoC consists of the following steps.

• Before issuing a memory access request for data that

is known not to be in cache (i.e., one that will result in

an off-chip memory access) a task sends a request to a

central scheduler.

• After sending a request to the central scheduler, the

task busy-waits until its off-chip memory access request

is scheduled. This prevents multiple off-chip memory

requests from one core in the central scheduler.

• The central scheduler schedules off-chip memory ac-

cess requests according to whatever policy we choose

to implement within it.

The above method can only control the release of an off-

chip memory request from a core, but once it has been

issued, cannot preempt a request at any point on the path to

off-chip memory. However, EDF-on-NoC [5] was proposed

as a preemptive scheduling policy over the shared NoC. Off-

chip memory access requests were modelled as real-time

tasks and these (virtual) real-time tasks were scheduled using

EDF on the shared path to the memory controller. In order to

implement EDF-on-NoC on TilePro64, we need to modify

the algorithm to use non-premptive EDF 1.

There are two possible ways of implementing the central

off-chip memory access request scheduler, namely in kernel

space and in user space. We have implemented both on

TilePro64.

A. Kernel-space implementation

The scheduler is implemented as a kernel module on the

system. It executes in an infinite loop and maintains a queue

of off-chip memory requests from the sharing cores. The

scheduler can be started and stopped using system call.

Submission of a request for off-chip memory access to the

scheduler is done via a system call that queues up the request

in a common ready queue. The signalling mechanism in

VM-Linux is used for the kernel to notify the corresponding

user-space thread when it may issue its request.

1) Pros and cons: The advantage of using a kernel-

space scheduler is that it provides a generic platform for

the execution of all user-space threads. It is independent of

the program executing in user space. The disadvantage of

using a kernel-space scheduler is that there is an additional

overhead of system calls added to the execution time of

user-space threads. This additional overhead is so large

that it overshadows any benefits of the implemented NoC

arbitration algorithm.

B. User-space implementation

In the user space, the scheduler is implemented as a

thread. A core is dedicated to this thread so that it does not

interfere with the execution of tasks executing as user-space

threads on other cores. The scheduler executes in an infinite

loop. It is started by the main() function before task threads

are spawned. It is also aborted by the main() function once

all task threads finish their execution. A task thread places an

off-chip memory access request in a common queue. Since

this queue is shared, a mutex variable is used to protect it.

The scheduler communicates with the scheduled task thread

using a shared variable, also protected via a mutex variable.

1) Pros and cons: As explained before, an off-chip

memory scheduler in user-space is implemented as a thread

dedicated to a core. Since function calls rather than system

calls are used to interact with the scheduler, the overhead

of a user-space scheduler is significantly less than that

of a kernel-space scheduler. The disadvantage of using

such a scheduler is that we need to integrate it with the

multi-threaded task at the user level. In other words, the

main function that spawns other tasks as threads is also

responsible for spawning the scheduler thread.

1The purpose of the current paper is to practically demonstrate and
evaluate a dynamic-priority policy for off-chip memory access arbitration.
A discussion on the schedulability analysis for a non-preemptive version
of EDF is out of the scope of this paper



C. Practical implementation issues for user-space scheduler
In this paper, we present the results for the user-space

scheduler implementation, but not the kernel-space one

because of the prohibitive overhead of the system calls

incurred by the latter implementation. Although the user-

space implementation of the scheduler incurs much less

overhead, there are some practical factors that undermine

its performance, as discussed next.

For the TilePro64 platform, the maximum of the minimum

relative deadline for off-chip memory access from a core is

equal to 71 processor cycles (7+4 on-chip and 60 off-chip

latency). This calculation is similar to the WCET calculation

discussed earlier and is explained in more detail in our prior

work [5]. We use get cpu cycles() in order to get the current

processor cycle of the system. Unfortunately, the overhead

of this function call is approximately 200 cycles. So, our

scheduler can not operate at the granularity ideally required.

So, in order to be able to implement non-preemptive EDF-

on-NoC scheduling, we increase the deadlines of the off-

chip memory accesses by 200. This results in a decrease in

utilization of the shared path to the off-chip memory and

hence deteriorates the performance of the policy.

In order to demonstrate the effect that non-preemptive

EDF-on-NoC should ideally have if the scheduler could

operate at the desired granularity, we implement a Round

Robin policy in the scheduler. The Round Robin policy is

implemented using mutex variables. Requests for off-chip

memory access from different cores are placed in a FIFO

queue and arbitrated by the scheduler in a non-preemptive

Round Robin fashion. Each task signals the completion of its

off-chip memory access request by setting a mutex variable.

Since there is no concept of deadline for off-chip memory

access requests here, we do not use get cpu cycles() for

deadline comparison. Hence, this implementation does not

suffer from the granularity limitation. In our experimental

setup, we use tasks with identical charecteristics, namely

deadline, WCET, period and initial phase. In this case, non-

preemptive EDF would also schedule tasks one by one in a

queue, thus making it the same as a round robin policy.

V. EXPERIMENTAL SETUP

We implement our algorithm on a set of four cores (e.g.,

cores A,B,C and D In Figure 1), all of them lined up to

be on a common path to the memory controller. In order to

achieve this on Tilepro64, we use a hypervisor configuration

file where we power on the four cores shown in Figure 1.

We also use a non-striped external memory structure. A non-

striped memory structure implies that we can access any

part of the external memory through any of the memory

controllers. We then disable all memory controllers except

the one that is shared by the four cores of interest. As

mentioned before, VM-Linux is used as an operating system

on the given set of cores.

Tasks are implemented as multiple threads of a program.

Each thread is bound to a single core and only one thread

resides on each core. All threads are identical in functionality

and data sizes. This is done so that we can analyze and

compare the execution times of each task allocated to a

different core. In each thread, we first allocate an integer

array of a given size. Next, we have two loops. In the first

loop, we write random numbers into each element of the

array. In the second loop, we read each element of array.

We disable caching of the allocated integer array. Thus,

every access to the integer array would lead to an off-chip

memory access request. The execution time of a thread in

our experiments is defined as the time taken by the two loops

in each thread to finish execution. We use a built-in function

called get cpu cycles() in the VM-Linux to calculate the

time interval between the start and end of a loop.

VI. EXPERIMENTAL RESULTS

We conducted experiments with the tasks described in

the previous section with varying data set sizes. We used an

integer array size of 5000, 10000 and 15000 elements. For

every data set size, we conducted 100 experiments. In each

experiment, we measure the execution time of all threads

that are allocated to separate cores.

In the experiments, we compare the execution times of the

tasks when we do not use any specific bus arbitration policy

with those when we use (non-preemptive) EDF-on-NoC and

Round Robin as the underlying policy. Since the purpose of

any bus arbitration policy is to make the execution times

predictable, i.e., decrease the variation in execution times,

we first compare the standard deviation of execution times

in all the three cases.

A. Comparing Execution Times: Standard Deviation
Figure 3 depicts the result of the comparison of the

standard deviation of execution times calculated in all the

three cases (no policy, EDF-on-NoC and Round Robin). The

X-axis represents the number of elements used in the integer

array of the experiments and Y-axis represents the standard

deviation of execution times.

Figure 3. Comparing Standard Deviation of Execution Time

We observe that, EDF-on-NoC demonstrates the maxi-

mum standard deviation of execution time although it has

been theoretically proved to be a better bus arbitration

scheme (as shown in [5]). This is because we are not able to

get the granularity of measuring processor cycles as required

by EDF-on-NoC as explained in Section IV-C. In contrast,

we observe that Round Robin, which theoretically exhibits



a similar behaviour to EDF-on-NoC, has minimum standard

deviation in execution times and hence makes execution time

more predictable.

Since we implement our arbitration policies (EDF-on-

NoC and Round Robin) in software, they impose additional

overhead on the execution times of the tasks. So, comparing

the standard deviation of execution times of the tasks in

all the three cases does not reflect a fair comparison of

the performance of the policies themselves. In order to

fairly compare the variation in execution times, we define a

parameter called Variation Ratio.

The Variation Ratio in execution times for a given exper-

iment is defined as the ratio of the difference between the

maximum and minimum execution times to the minimum

execution time for that experiment. This is mathematically

represented by Equation 1.

Execution V ariation =
Executionmax − Executionmin

Executionmin
(1)

In Equation 1, Executionmax and Executionmin repre-

sents the execution times of the tasks excluding the imple-

mentation overhead in each case.

In order to estimate this overhead, let us denote the

shortest execution time of the tasks when we do not use

any policy as execbase and the shortest execution time of

the tasks when we use a given policy (EDF-on-NoC or

Round Robin) as execpolicy . Total overhead is the difference

between execpolicy and execbase. Overhead per data element

can then be expressed mathematically by Equation 2.

Overheadper element =
execpolicy − execbase

Data Size
(2)

B. Comparing Variation Ratio of Execution Time
In all the graphs shown below, the X-axis represents the

experiments and the Y-axis represents the execution times

of the tasks allocated to different cores for each experiment.

In each experiment we show the execution of tasks without

any off-chip memory access policy, with EDF-on-NoC and

with Round Robin as the underlying off-chip memory access

policy with varying size of the integer array.

1) Experiment 1 — 5000 integers: Figure 4 shows the

result for an integer array of 5000 elements and we observe

that execbase is approximately equal to 800000, execedf noc

is approximately equal to 2900000 and execround robin is

3600000. The additional overhead for 5000 data elements

is equal to the difference of execpolicy and execbase. From

Equation 2, the overhead incurred per element, represented

as Overheadper element, for implementing EDF-on-NoC is

400 and that for Round Robin is 560. 2

Next, we calculate and compare the variation ratio in

execution time of tasks in all the cases. From Figure 4, we

get the variation ratio in execution time for the experiment

2In further experiments, we demonstrate that this overhead is consistent
for different data sizes.

with no policy as 1400000−800000

800000
, which is equal to 0.75,

for EDF-on-NoC as 1500000−1000000

1000000
which is equal to

approximately 0.5 and for Round Robin as 1070000−850000

850000
,

which is equal to 0.25. Thus we see that by using EDF-

on-NoC on TilePro64, the variation ratio in execution time

reduces from 0.75 to 0.5, which further reduces to 0.25 by

using Round Robin.

2) Experiment 2 — 10000 integers: Figure 4 shows

the result for an integer array of 10000 elements. In this

experiment, the Overheadper element for EDF-on-NoC is

calculated as 430 and that of Round Robin is 550. Next

we calculate the variation ratio in execution time of the

tasks using Equation 1. The variation ratio in execution

time for the experiment using no policy for the off-chip

memory access is calculated as 0.5 and that using EDF-

on-NoC policy is calculated as approximately 0.375. The

variation ratio further decreases to 0.235 in case of Round

Robin. Thus in this experiment, we again observe a decrease

in the variation ratio of execution times when we use EDF-

on-NoC and Round Robin.

3) Experiment 3 — 15000 integers: Figure 4 shows

the result for an integer array of 15000 elements. The

Overheadper element is calculated as 370 for EDF-on-NoC

and 553 for Round Robin from Figure 6. Thus, we observe

in all the experiments that the overhead of implementation

of both the policies remain very similar.

Next, we calculate the variation ratio in execution times

for the three cases shown in Figure 6. Using Equation 1, we

get the variation ratio in execution times as 0.54, when we

do not use any underlying off-chip memory access policy

which decreases to 0.44, when we use EDF-on-NoC as the

off-chip memory access policy and further decreases to 0.20

when we use Round Robin for the same.

Thus, we observe that in all the experiments, we achieve a

decrease in variation ratio in execution times by implement-

ing a NoC arbitration scheme on TilePro64. We also estab-

lished that there is a consistent overhead of implementing

both EDF-on-NoC and Round Robin schemes in software.

VII. CONCLUSION

In this work, we implement variants of the EDF-on-NoC

memory request arbitration scheme proposed in prior work

on Tilera’s TilePro64 platform. Specifically, we implement

a non-preemptive version of EDF-on-NoC and a Round

Robin arbitration policy that is configured to be theoretically

equivalent to the non-preemptive EDF-on-NoC policy.

We then conduct a comparative evaluation of the perfor-

mance for a user-space implementation of the variants. We

compare the execution time variation of tasks on various

cores. We observe that the variation ratio of execution time

decreases with the use of non-preemptive EDF-on-NoC and

Round Robin as memory access arbitration policies. Further-

more, we observe a consistent implementation overhead in

all experiments.



(a) No policy (b) EDF-on-NoC policy (c) Round Robin policy

Figure 4. Experiment with 5000 data set size

(a) No policy (b) EDF-on-NoC policy (c) Round Robin policy

Figure 5. Experiment with 10000 data set size

(a) No policy (b) EDF-on-NoC policy (c) Round Robin policy

Figure 6. Experiment with 15000 data set size

Our results demonstrate that, if we had an architecture

like TileraPro64, but with a greater degree of control on the

MDN and TDN network channels so that we can implement

an off-chip memory access policy at a lower level, then task

execution times on such systems could be made predictable.

REFERENCES

[1] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and
L. Thiele, “Worst case delay analysis for memory interference
in multicore systems,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2010, March 2010, pp. 741–
746.

[2] F. Bellosa, “Process cruise control: Throttling memory access
in a soft real-time environment,” Jul. 1997. [Online]. Available:
http://i30www.ira.uka.de/

[3] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Mem-
ory access control in multiprocessor for real-time systems with
mixed criticality,” in Real-Time Systems (ECRTS), 2012 24th
Euromicro Conference on, July 2012, pp. 299–308.

[4] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: A
predictable sdram memory controller,” in Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2007 5th
IEEE/ACM/IFIP International Conference on, Sept 2007, pp.
251–256.

[5] M. Shekhar, H. Ramaprasad, and F. Mueller, “Network-on-chip
aware scheduling of hard-real-time tasks,” in IEEE Interna-
tional Symposium on Industrial Embedded Systems, 2014, pp.
141–150.

[6] “Tilera processor family,” http://www.tilera.com/.

[7] M. Shekhar, A. Sarkar, H. Ramaprasad, and F. Mueller, “Semi-
partitioned hard-real-time scheduling under locked cache mi-
gration in multicore systems,” in Euromicro Conference on
Real-Time Systems, Jul. 2012.


