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Abstract—Performance and time to market requirements cause
many real-time designers to consider components, off the shelf
(COTS) for real-time cyber-physical systems. Massive multi-core
embedded processors with network-on-chip (NoC) designs to
facilitate core-to-core communication are becoming common in
COTS. These architectures benefit real-time scheduling, but they
also pose predictability challenges. In this work, we develop
a framework for Fault Observant and Correcting Real-Time
Embedded design (Forte) that utilizes massive multi-core NoC
designs to reduce overhead by up to an order of magnitude
and to lower jitter in systems via utilizing message passing
instead of shared memory as the means for intra-processor
communication. Message passing, which is shown to improve
the overall scalability of the system, is utilized as the basis for
replication and task rejuvenation. This improves fault resilience
by orders of magnitude. To our knowledge, this work is the first
to systematically map real-time tasks ontomassive multi-core
processors with support for fault tolerance that considersNoC
effects on scalability on anreal hardware platform and not just
in simulation.

I. I NTRODUCTION

ASIC-based cyber-physical systems are costly to design in
terms of time and money. Multi-core COTS processors are
becoming increasingly used in the high-end handheld market
and are also seeing increased use in the lower-end embedded
control market. An example is the Freescale 8-core PowerPC
P4080 that is being marketed in the power utility domain for
control devices. In such processors, traditional softwaredesign
techniques coupled with increasingly smaller transistor sizes
can negatively affect the real-time predictability and thefault
reliability. Predictability challenges in multi-cores are due to
non-uniform memory latencies [1] as contention on buses and
mesh interconnects increases.

Another trend is an increase in transient faults due to
decreasing fabrication sizes. These faults surface as single
event upsets (SEU) that can render computation incorrect.
SEUs are faults that can modify logic or data in systems
leading to incorrect computational results or software system
corruption, which can result in temporary or even permanent
incorrect actuator outputs in control systems if not countered.
SEUs have three common causes: (1) Cosmic radiation, par-
ticularly during solar flares, (2) electric interference inharsh
industrial environments (including high temperatures, such as
in automotive control systems) and (3) ever smaller fabrication
sizes and threshold voltages leading to increased probabilities
of bit flips (for all) or cross-talk (for the latter) within CMOS
circuitry [2], [3].

For example, the automotive industry has used temperature-
hardened processors for control tasks around the engine block
while space missions use radiation-hardened processors to
avoid damage from solar radiation. An alternative approach
is taken by commercial aviation. The latest planes [4] (Air-
bus 380 and Boeing 787) deploy off-the-shelf off-the-shelve
embedded processors without hardware protection against soft
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errors, such as the PowerPC 750. Even though these planes are
specifically designed to fly over the North Pole where radiation
from space is more intense due to a thinner atmosphere,
processors deployed on these aircraft lack error detecting/-
correcting capabilities. Hence, system developers have been
asked to consider the effect of single-event upsets (SEUs),i.e.,
infrequent single bit-flips, in their software design. In practice,
future systems may have to sustain transient faults due to
any of the above causes. COTS architectures are not specif-
ically designed for real-time fault tolerance and contain few
hardware-based fault mitigating mechanisms, such as proces-
sor radiation hardening. Previously, researchers have designed
techniques to mitigate SEUs in software using task scheduling
[5], [6], [7]. This often leads to sophisticated scheduling
techniques utilizing alternate algorithms, re-execution, or repli-
cation. In contrast, we argue that massive multi-cores with
NoC interconnects greatly simplify scheduling and allow high
levels of replication.

In a system with replication of entire task sets under the
traditional shared-memory model, considerable strain is placed
on memory controllers due to compounded memory pressure
and coherence traffic resulting in contention. This contention
limits scalability and reduces predictability of advancedmulti-
core architectures. In spite of the potential drawbacks, multi-
core COTS processors remain quite attractive for real-time
systems. For example, ARM promotes “dark silicon” each
real-time task is mapped to a separate core as cores are plen-
tiful [8]. Scheduling then amounts to simple core activation
thereby eliminating context switching costs and preemption
delays. Such an abstraction also facilitates parallel, replicated
execution and voting in n-modular redundant environments to
increase reliability.

Contributions: This work introduces a Fault Observant
and Correcting Real-Time Embedded (Forte) design for large
multi-core architectures with NoC interconnects. The detailed
contributions of Forte are as follows: (1) Forte provides a
task abstraction framework that takes advantage ofmessage
passing capabilities implicit in NoC systems toeliminate
the use of shared memory. Forte thusincreases the overall
predictability of the system as contention on the memory
controllers is reduced. Furthermore, Forte improvesscala-
bility for contemporary mesh-based NoC architectures. (2)
Forte improves reliability by provisioning simultaneous task
models of varying complexity and measuring the strength
of association (coherency) tofacilitate voting in a modu-
lar redundancy scheme. (3) Forte further ensures sustained
reliability by enabling fine-grained task rejuvenation. This
includes the ability to replace faulted data models and to
refresh rejuvenated tasks to align redundant models. Such
rejuvenation is critical particularly for long-running or24/7
control systems. Experimental results of Forte with a cyber-
physical flight control software show improvements up to
an order of magnitude in overhead reduction over standard
shared memory implementations, reduced jitter and scalabil-



ity. Reliability is improved in line with results reported for
modular redundancy. Yet, Forte sustains these reliabilitylevels
through rejuvenation, which significantly increases reliability
as opposed to a scheme without rejuvenation, as shown in
experiments. Forte is a technique for improving the safety of
systems by providing software redundancy for detecting soft-
errors. Forte is limited in that it cannot protect from permanent
hardware faults or failures. Thus, hardware redundancy is still
a necessary addition to Forte for safety critical systems.

The remainder of this paper is structured as follows. Section
2 presents the design of our proposed framework. A case study
developing an unmanned air vehicle control system is detailed
in Sections 3 and 4. Section 5 provides the experimental
framework. Section 6 presents experimental results. Related
work is discussed in Section 7. The paper is summarized in
Section 8.

II. FORTE DESIGN

This section provides an overview of the Forte framework
to exploit massive multi-core processors to facilitate highly
redundant cyber-physical systems. Careful use of this tech-
nique can improve system integrity in the form of protection
from soft errors by providing a framework for running multiple
concurrent versions of a task, calledshadow tasks, and
verifying their output coherence. The framework assumes that
each task is permanently assigned to a unique set of cores and
that the number of tasks in the system is less than the number
of cores. The scheduling system is periodic with dynamic
priorities based on relative deadlines. (Notice that scheduling
amounts to activation/deactivation of tasks as only one task
may be assigned to a core in our abstraction. Hence, we honor
the periodicity of real-time tasks, yet scheduling becomes
trivial as preemption never needs to occur.) Figure 1 depicts
our model of a massive multi-core NoC processor. Our sample
processor model contains 64 processing elements connectedin
a mesh grid. Each processing element contains a switch so that
network communication and routing can be handled without
additional overhead to the processing pipeline. NoC processors
often support both static and dynamic message routing. Due
to this, our framework operates agnostic of the underlying
message passing API.

Fig. 1. Forte Task Layout Over Cores

Forte capitalizes on the additional processing elements
available in advanced COTS processors to run multiple simul-
taneous system models. These models can vary in feature set
and complexity, extending the model from the basic require-
ment, to a model with more precision/features to increase the

system efficiency. We use the standard notation ofφ, p, e, and
d to denote phase, period, execution time, and deadline of a
real-time task [9]. Using terminology from [10], we group the
functional models and order them via complexity ranging from
the most complex features to the ”simple” baseline model.
For example 1, consider two tasksc =< φc, pc, ec, dc >
and s =< φs, ps, es, ds >, where c and s perform the
same system function butc is a complex version ofs, the
baseline version. In Forte, we assert thatps = pc, since they
provide the same system function, thoughec may be larger
than es. We further assert thats and c generate output data
where a coherency range can be determined. For additional
redundancy, we consider two more tasks,cshadow andsshadow.
These tasks are added to the system as mirror images ofc and
s, operating on the same data to validate the correctness of
each model’s output data. To formalize the framework, we
extend the classic task model such that:

τ =< I, O, T, C, R > (1)
• I is the set of inputsi for the m shadow tasks inT ;
• O is the set of outputso of τ that must be validated

for coherence prior to allowing the output change on the
system to take effect;

• T is the sequence of shadow tasks< t1, t2, .... , tm >
where each elementti in T is ordered by a descending
complexity coefficientki such thatk1 ≥ k2 ≥ .. ≥ km;

• C is the set of coordinates< x1, y1 >, < x2, y2 > that
enable the system to boundτ to a specific core within
the architecture;

• R is the set of data within a task that must be transferred
to a rejuvenated task to ensure convergence. If natural
convergence is usedR = ∅.

The Forte framework characterizes each task within the
system with a set of inputs and outputs. Figure 2 depicts
a Forte task where the input phase splits the data so that
three redundant tasks off can operate on separate models
of the input data in parallel. We use the termf to describe
the defining function (job) of the real-time task. When a task
finishes execution it then sends the outputs to a coherence
check that determines the correct output for the system. These
sets allow tasks to execute independently or to be chained
together to facilitate data flow within the system. Figure 3
depicts how the various tasks communicate data without using
shared memory. The model forms an abstract chain: Once a
task generates output data, its output data becomes the input
data for a subsequent task. This model can be implemented
on NoC architectures through explicit message passing.
A. Shadow Tasks

Forte is designed to exploit the high-level of concurrency
that NoC architectures provide. Cyber-physical systems de-
ployed in harsh environments are subject toSingle Event
Upsets (SEUs). These are compelling reasons to utilize the
multi-core paradigm and generate several models of a single
task called shadow tasks, which improves the level of data
integrity of the system. In the previous example from this
section,c,cshadow,s, andsshadow are considered shadow tasks
of a single system level taskτ . In Forte, shadow tasks are
represented in a complexity ordered list. To state this more
formally, for each shadow taskti in T , there is a complexity
coefficientki, such that

< ti, ti+1, ..., tm > =⇒ ki ≥ ki+1 ≥ ... ≥ km (2)
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Fig. 3. Task Chaining

The complexity coefficientki is best generalized as a
scoring value generated by deriving less precise real-time
task models from the most sophisticated design. A degraded
complexity model for real-time systems was put forth in [10].
In this work, a complex and a simple feature set for a given
control task helped to increase the model safety. Deriving a
score forki considers effects of a reduction in features and
reductions in data precision or utilization for faster converging
algorithms with a larger tolerance rangeǫ.
B. Input

Real-time tasks have a variety of data models that can be
supported in the Forte framework. Referring back to Figure 1,
task 1 acquires input from sensors or other I/O devices that
are not part of the task set. Task 2 derives input from task
1 and task 6 operates independently or receives input from
a device that is pinned to the lower portion of the core
layout. Supporting an abstract input set allows the framework
to be flexibly used to deploy a variety of real-time tasks.
Forte considers multiple data streams separated by complexity,
shown in Figure 4. Streams enable shadow tasks of varied
complexity to ensure that data is not unnecessarily losing
precision by forcing a single stream of data.

In practice, input acquisition is a precondition for each task
in Forte. If the input is derived from a sensor or other external
hardware, it requires one of the shadow tasks to acquire the
data and then distribute the data over the message passing
network. If the input is derived from the output of another
task, each of the shadow tasks must receive their input from
a proceeding output of equivalent data complexity.
C. Output

Forte improves integrity by validating the coherency of each
shadow task’s data. A potential but undesirable result of this
coherency validation is that the designer may have to reorder
the code in control tasks to defer a decision until the shadow
task decisions can be verified. Coherence formulations are
determined by the system designer. Automatically identifying
how to determine these is algorithm specific.
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Fig. 4. Data Stream Abstraction
For a given task set, each shadow task operates on local

data sets. Upon completing the necessary computation, the
data is checked by the coherence-checking phase of the task.
This may be performed by every shadow task or in a subset
of them to reduce the data transfer cost. In the coherence
check in Figure 4, shadow taskst[1] and t[2] are of equal
complexity and the data must match exactly. The same holds
for t[3] and t[4]. When this verification is complete, a range
check is performed to validate that the data in the complex and
simple streams are within a preset range. Certain features of
the complex stream may not exist in a lower precision model.
This makes it important to maintain multiple checks for each
level of complexity. Successful coherency checks result inthe
mapping of output data to locations designated by complexity.
This allows subsequent tasks dependent on this output to be
mapped to the data of matching complexity. If the coherency
checks fail, the failing task can be isolated to remove any
impact it may have on the control system. If the failure is
within the highest complexity model, subsequent shadow tasks
that operate on that model can be canceled, allowing the
system to rely on the less complex data models. If it is a
lower complexity model that sustains the failure, data of the
higher complexity models can often be filtered to allow a
lower complexity model to continue operation. This output
data flow is shown in Figure 4. The result of the complex
data stream is filtered into the simple data stream in this case.
When using fine grained coherence checks in a n-modular
redundancy configuration rejuvenation can be used to repair
the faulting task.

The formalization of input/output sets also supports feed-
back control loops. Forte allows data within the output set to
be specified in the input set of subsequent tasks. This formal-
ization supports task chaining. Feedback loops are supported
as a chained loop of multiple tasks or the redirection of a
single task’s output back into its own input.
D. TDMA

Contention can hinder performance on message-passing
networks,e.g., when multiple fault models transmit their data
to coherence checks in the Forte system. Tasks could poten-
tially overwhelm routers or their buffers with adverse affects
on performance. Forte addresses this problem by arbitrating
the underlying NoC network through Time Division Multiple
Access (TDMA). TDMA makes Forte more predictable by
reducing contention on the message-passing network and fa-
cilitating the bounding of worst case behavior for all message-



passing phases. TDMA isolates core communication into
global window frames. Any particular core is only able to
transmit data during its predetermined frame. Using TDMA
across all cores effectively allocates all links within theNoC
to sender during their frame, guaranteeing that no two cores
contend for a link during any period.

E. Task Rejuvenation

Real-time control systems are developed to run for extended
periods of time, if not 24/7. They may thus be exposed
to multiple failure events over the course of their lifetime.
Single event upsets are handled through coherence voting and
elimination of the faulty data. A subsequent second or third
event upset to one of the remaining redundant tasks may
leave the system without decision capability as to which the
correct results is. The objective of rejuvenation is to correct
the faulting model to ensure that resilience of the model is
sustained. According to a study from the high performance
domain [11], as devices advance and die sizes decrease, the
projected failures per hour for a single node in an HPC system
is 4.1x10−7. Another study [12] from the satellite domain
using a hardened COTS multi-core device determines the
failure rate to be2.2x10−4 failures per hour. Both studies
indicate that the probability of multiple-event upsets in ashort
time period is low. But if the runtime of the system is long,
a second SEU is likely. This is the premise for rejuvenation
ideas.

Forte addresses this challenge by supporting fine-grained re-
juvenation as a part of the framework. Fine-grained coherence
checks allow failing tasks to be identified. In Forte, an SEU
is confined to a single task that is considered to have failed
since tasks are associated with disjoint cores and do not share
memory, i.e., only the failing task needs to be terminated.
Subsequently, one of the remaining correct tasks supplies its
output as input data to subsequent tasks of the terminated one
during its rejuvenation. This is implemented as follows. The
scheduler terminates the faulting task and creates a rejuvenated
version of the task on the same core starting with newly
initialized data values. The rejuvenated task is not caughtup in
its data output after such a restart and would fail the coherence
check as thresholds would be exceeded. The coherence check
is therefore temporarily relaxed to only validate the outputs of
the remaining tasks (ignoring the rejuvenated one).

Coherence validation via voting is deferred until the re-
juvenated task converges with the correct models in terms
of its output. Many control algorithms exploit convergence
algorithms in feedback loops to guarantee stability, i.e.,they
will naturally converge over a period of time if the output
is dependent on the input. In other cases, running state is
maintained between each job invocation of a task so that
models do not converge by itself. Here, the state of one
of the remaining (correct) tasks is utilized to allow the
rejuvenated task to catch up. Forte supports data refreshing
of rejuvenated tasks as follows. A correct task is designated
by the coherence module to refresh a rejuvenated task with
local memory values specified during system design. These
memory regions are transferred to the rejuvenated task in
between job invocations to assure consistency. Data refresh
is a requirement for non-converging algorithms. But it can
(and often should) also be utilized to more quickly catch
up with the correct tasks for converging algorithms. This

reduces the vulnerability window to receive another SEU while
operating under degraded redundancy (e.g., dual redundancy)
during rejuvenation. After data refreshing (or convergence
without refresh), the coherence validation can reactivatevoting
again upon reception of outputs from the reborn task within
thresholds.

III. UAV A PPLICATION

The next two sections describe our experimental imple-
mentation of the Forte design using a cyber-physical control
system. This section describes the control system and its tasks.
The next section describes the changes necessary to move
the control system into the Forte framework. To evaluate
the design, we selected Paparazzi [13], a traditional shared
memory real-time control system. Paparazzi is an unmanned
air vehicle (UAV) control software. We ported it using the
Forte design framework and evaluated it on a hardware NoC
architecture. Our port of the Paparazzi control system is
based on a java implementation [14] that we rewrote in C++.
Paparazzi is structured as two separate sets of real-time tasks
that enable a switch between manual control of the aircraft
and autopilot mode. These modes are detailed as Fly-By-Wire
(FBW) and Autopilot (AP). The basic structure of Paparazzi
allows only the FBW mode to control the servos. However,
when there is no pulse position modulation (PPM) control, the
autopilot mode sets the actuation by controlling the valuesthat
the FBW mode uses to control the servos. This relationship is
detailed in Figure 5.
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Fig. 5. Paparazzi Design

A. Paparazzi Autopilot-Base Design
The basic design of the shared memory version of Paparazzi

uses several shared objects accessed various tasks to calculate
vectors to control the UAV. This information consists of a nav-
igator, estimator, and a flight plan. The following paragraphs
will briefly cover each task and how it operates on these shared
data structures in order to illustrate later how to redesignfor
a message-passing framework. The basic task layout for the
auto pilot module with task dependencies and data flow are
shown in Figure 6.Navigation Task: The navigation task
is responsible for taking information from the GPS device,
determining the current location of the UAV and then storing
the values into the estimator data structure for later tasksthat
cannot read the GPS data. It then compares this information
against the flight plan and determines target metrics for the
UAV to meet the flight plan.Altitude Control Task: The
altitude control task is responsible for determining the control
values to reach/maintain the desired UAV altitude. It first
ensures that the system mode is set to allow autopilot control.
It then obtains data from the estimator’s z coordinates and
determines the error from the desired altitude. It then usesthis
error factor to determine any corrections and commits them to
one of the shared memory objects.Climb Control Task: The
climb control task is responsible for determining the system’s
output in terms of thrust and pitch in order to maintain the
necessary altitude. It takes as input the altitude determined in



the altitude control task and the z directional speed vector
determined in the navigation task. It uses these inputs to
calculate the necessary pitch and thrust to control the altitude
of the UAV’s vertical changes.Stabilization Control Task:
The stabilization control task uses data from the infrared (IR)
device, the climb control task, and the navigation task. This
task is responsible for determining the roll and any changesto
the pitch. The stabilization control task in this implementation
is also responsible for transferring the data to the FBW task
that updates the actuation on the servos. The data sent is
the pitch, roll, throttle, and gain to control the servos.Radio
Control Task: This task takes the last radio control command
from the FBW module and stores the data in the autopilot in
case it needs to take over control.
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Fig. 6. Auto Pilot Task and Data Flow

B. Fly-By-Wire Base Design
The Fly-By-Wire (FBW) task set is used to control the

servos and to take control from the ground control unit,
the latter of which is not exercised in this implementation.
The task layout of the FBW module is shown in Figure 7.
Pulse Position Modulation (PPM): The PPM task receives
the radio commands from the PPM device and uses them to
control the servos of the UAV if the autopilot mode is not
enabled.Transfer to Autopilot: This task takes the message
retrieved from the PPM device and transfers it over the systems
designated bus to the Radio Control Task.Check Fail Safe
Mode: This task controls whether the auto pilot or the PPM
device is controlling the UAV. It validates several device-based
metrics to determine if the device is still receiving signals from
the PPM device or if a fail-safe mode has been activated.
Check Auto Pilot: This task controls the servos based on
data received from the AP. The task receives data from the
stabilization control task over the systems specified bus and
then transfers these control values to the servos for actuation.
Flight Model and Simulated Devices:In order to function
appropriately Paparazzi requires a GPS device, IR device,
and a functional flight model. The Flight model specifies
flight dynamics based on the rudimentary version found in
the Paparazzi open source code. The GPS device infers several
metrics based on its current position, its last position andthe
change in time. The IR simulates a dual axis differential IR
device, that uses IR temperature readings between space and
the earth to stabilize the roll and pitch of the aircraft. The
output data from the IR device is critical in the stabilization
task.

IV. FORTE IMPLEMENTATION

The Forte implementation follows the design in respecting
the relation between input and output tasks, supporting the
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Fig. 7. Fly-By-Wire Task and Data Flow
fault model of n-modular redundancy with coherence checks
on outputs and optional task rejuvenation.
A. Input and Output Tasks

Implementing Paparazzi using the Forte design required
analyzing the shared memory accesses that occurred within
the task set and expressing them as data-flow relationships
between tasks. The original implementation of Paparazzi uses
logical objects to store data in containers. This eased pro-
gramming requirements in that it made the data logically
organized. However, it also made all data in these objects
globally accessible. While this is suitable for single-core
implementations, using shared data in multi-core scenarios
adds overhead. We remedied this by transforming data flow
relationships to remove shared object containers altogether.
They were replaced by data designated in two ways.

First, we utilize local data when data is only operated on
within a task. The majority of data in our implementation
could be categorized as local data. This contains all temporary
variables and most of the state variables that update the
primary flight metrics during operation.

Second, we utilize remote data. This data is stored locally
but the actual data values originated else-where and are
communicated between cores via sends and receives. Remote
data values are written to local memory of the task before the
task is released. In Figure 6, the dotted lines represent theflow
of remote data in the auto pilot module.

We then converted each task into Forte tasks. Each Forte
task consists of an input phase, a computation phase, and
an output phase. The input phase of each task is generic.
The task simply receives data and stores it in local memory
for subsequent execution. Task computation differs from the
shared memory version only in that instead of operating on
global containers all data is local to the tasks core. The output
phase sends any data to subsequent tasks according to the data
flow specifications.
B. Scheduler

In the introduction of this paper, we made the claim that
massive multi-core architectures could ease the problem of
task scheduling. Trends in the market indicate that in the
near future architectures with tens if not hundreds of cores
will be arriving. In the past, processing resources were in
heavy contention and sophisticated scheduling techniqueswere
needed to arbitrate access to limited resources. The term lim-
ited can no longer be used to describe processing resources for
massive multi-core architectures. For the Forte implementation
of Paparazzi, the scheduler is a simple periodic scheduler.
The scheduler statically deploys each task to its own core
where it remains stationary. Taking advantage of the massive
multi-core architecture, no tasks shared a core. Scheduling thus
reduces to core activation/deactivation to release or terminate
a task. Each task is then set to sleep until it receives a



NoC-based message from the scheduler core waking it up to
perform its task. The impact of the sleep state is significant
in terms of power consumption. As the number of cores
on these architectures scales up, that ability to power them
simultaneously will become a serious challenge. In order to
limit the scope of the power consumption of such chips,
many chip designers are implementing low power sleep modes
with instant-on functionality. Other research has contributed
gating on routers/switches during periods when they are not
used [15]. This has shown to reduce power consumption
for these processors. Such sleep states, optionally combined
with gating, enables software to constantly turn off and on
the resources needed while conserving power. A possible
expansion to this work would be the exploration of distributed
operating system (OS) functionality for such processors. One
limitation in our current experiments is that we do not explore
OS feature duplication. However, we feel these problems could
be remedied as some architectures already support individual
OS images per core. This added redundancy could be used
to protect systems from SEUs affecting OS faults, which is
beyond the scope of this work.
C. Fault Models

To simplify our experimental implementation, we integrated
an n-modular redundancy configuration using the Forte model
instead of a Simplex implementation. In our evaluation, we
use a triple modular redundancy. This shows the flexibility
of the architecture in that can use Forte’s design for three
completely simultaneous instances of Paparazzi. This enables
coherence checks to identify the faulty model in times of
failure so that voting can occur to determine which model
controls the simulated servos.
D. Coherence Checks

We designed several coherence checks to enable robust
fault checking for our Paparazzi implementation. Since our
fault model in Forte was designed with redundancy tasks, our
coherence checks simply verify data consistency. Each coher-
ence check is designed as a sporadic task that immediately
follows the execution of a system task in the Paparazzi suite
using precedence constraints. Each coherence task is assigned
to a specific system core. When the coherence task receives
data from the first model, it sets a timeout in order to not
wait indefinitely for the remaining models to transmit their
data. When all of the models have transmitted the data, the
coherence check validates the data. When there is a validation
error, the coherence check uses a2/3 majority. It determines
the failing model and notifies the voting routines to prevent
the faulting model from controlling the system servos. When
a timeout occurs coherence is checked between the models
that did submit data, any models that did not submit data are
considered to have failed.

E. Rejuvenation
Rejuvenation is implemented in Forte in two ways. The

feedback control algorithms support natural convergence and,
as such, just require a restart mechanism and a warm up phase
to re-enable coherence validation. Paparazzi utilizes such nat-
ural convergence, i.e., our implementation exploits this restart
capability. In addition, rejuvenation with refreshed datawas
realized as an optional extension. This allow us to compare
the time (overhead) for convergence with and without refresh.

To facilitate rejuvenation under data refresh, the coherence
module uses the message passing network to indicate the
source data refresh, i.e., one of the remaining correct tasks
(cores). Refresh data is transmitted during the next idle phase
to ensure non-interference with real-time deadlines of the
correct tasks. The refresh data is also received during the idle
phase of the restarted task as redundant tasks are harmonic
(not only in period but also in idle phase). Received data
subsequently refreshes uninitialized state in tasks, either to
ensure that outputs are within coherence thresholds or, as in
the Paparazzi example, to speed up convergence among the
redundant tasks.

Forte rejuvenation has an impact on WCET bounding that
is important to the real-time aspects of CPS systems. In
defining rejuvenation, we impart two different techniques for
data correction that vary with regard to how rapidly data can
be corrected. The first technique is natural convergence. It
requires a task refresh that is handled by re-instantiatingthe
task. This will impact performance because re-initialization of
tasks leads to a task warm-up phase. This effect will not lead
to an increase in WCET bounds of the task itself since a cold
start has to be considered for the initial startup in the bounds.
Additional conditionals must be used during the coherence
measurement tasks to temporarily ignore data from the faulted
task. This only adds the overhead of a single conditional check
to the WCET bound for the coherence task since less work (no
coherence check) is performed if results match. The second
model, a data-driven approach, is impacted by the same startup
costs that affects natural convergence and adds the nominal
cost of sending duplicate data from a healthy data model
to a restarted data model. This additional data doubles the
information transfer from a source and must be considered in
bounding WCET.

F. TDMA
For the implementation of TDMA in Forte, we assume a

target multicore architecture with a NoC interconnect, such
as the Tilera Tilepro 64. We assume a globally accessible
and synchronized cycle count register on each processor. We
thus are able to implement self-reference based TDMA frame
checking within the message passing logic of Forte. We leave
the task of frame scheduling to the application designer.
However, as the amount of cores continue to increase in NoC
architectures, it may be important to consider partitionedor
phase-based TDMA. This could reduce WCET bounds due to
a decrease in total frames. In implementing our experiments
with Forte, there were clear and non-intersecting task group
phases in the Paparazzi that allowed us to eliminate unused
frames during each phase to improve performance and de-
crease bounds. For the purpose of Forte, we only implemented
TDMA for access to the explicit message passing networks.
Memory accesses issued during the execution of a Forte task
were not subject to TDMA.

V. EXPERIMENTAL FRAMEWORK

Our experiments were conducted on a Tilera TilePro64
development board. This platform features a 64 tile (core) chip
multiprocessor (CMP) suitable for the embedded space with
lower power requirements [16]. The Tilera platform has been
selected for satellite deployment. Tilera processors support
both message-passing and coherent shared memory models,
and the choice is up to the user. Tiles are connected by



multiple meshed NoCs that support memory, user, I/O, and
coherence traffic on separate interconnects. Each tile processor
is equipped with level 1 caches and split TLB making each
core a fully independent processor. Our experiments were
conducted on a Tilera Tilepro 64. Each core contains a 16KB
L1 instruction cache, an 8KB L1 data cache, and an 64 KB L2
unified cache. For evaluating our framework, we implemented
the PapaBench real-time task set from the Paparazzi UAV
cyber-physical system. Two implementations were created for
evaluating not only the framework’s fault resilience but to
also compare computational jitter in systems relying on shared
memory vs. message-passing. The shared memory task sets
follow the proposed model in the paper (but with input and
output phases integrated with computation phases of tasks).
Due to the integrated nature of memory accesses into the
processor pipeline, we did not employ any TDM techniques
in the shared memory portions of the experiments. Figure 8
depicts the system layout of the control tasks identified by their
abbreviated name combined with their execution identifier
e.g., CC2 is Climb Control Task 2 (see Section III for task
identifiers). The figure illustrates the linear task layout across
the tiles. This layout is agnostic to the execution models
(shared memory vs. message-passing). All experiments using
more than two tasks arbitrate access to the NoC using TDMA
as described in previous sections. This reduces the impact of
NoC effects on the system.
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Fig. 8. Paparazzi Task Layout

We conducted experiments with both the message-passing
and shared-memory approaches using triple concurrent redun-
dancy to evaluate the effectiveness of the Forte framework.
We employed targeted fault injection in each of the models
by generating data errors to evaluate the effectiveness of the
coherency checks. Currently, Forte is unable to handle OS-
based faults or hardware faults. For the former, we argued
previously that OS duplication is a feature already supported
by these architectures but not explored in the course of this
work. For the latter, we maintain that any software-based
redundancy would be useless without employing redundant
hardware as a primary fail-safe technique. As such, this work
is not a replacement for hardware redundancy but rather com-
plements it to increase resilience to faults. We injected faults
into both code segments and actively used data segments.
Faults were dynamically inserted into the code and configured
to be trigger randomly during the execution of the control
system through the flight path. To model full redundancy, we
duplicated the simulated UAV hardware so that each model
operated on unique device inputs.

VI. EXPERIMENTAL RESULTS

Table I depicts the number of injected faults that are de-
tectable (resulting in output faults) and the number of actually
recognized faults. The results indicate that all detectable faults
were recognized and subsequently averted using voting in
the coherence checks. We implemented a single coherence
check to validate system data prior to servo actuation. The
coherence check assessed the output data that was passed over
the peripheral bus to the servo controller. We only included
outcomes from SEUs that created an actual effect on the
output state of the running systems. Faults were categorized as
follows: (1) Downstream data errors: prior to servo actuation,
outputs of the models were compared for consistency. By
using three duplicated models, the faulting model is defeated
(voted out). (2) Read-only (RO) memory upsets caused one
of the models to fault. When this occurred, one model failed
the coherence check through a timeout mechanism set by the
coherence check’s data deadline.

SEU Type Detectable SEU Count Recognized
Heap Flip 15 15
Device Failure 3 3
Stack Flip 10 10
Read Only Flip 4 4

TABLE I
FAULT INJECTIONEVALUATION

The next experiment exemplifies one of the major benefits
of the message passing design over shared memory. Figure 9
depicts the computational cost (in cycles) for accesses to data
subject to coherency checks for both models. These results
measure the coherence within the climb control model that
maintains computational control over five of the system control
variables. This coherency check validates the consistencyof
the three simultaneous climb control data sets. As Figure 9
indicates, shared memory results in an order of magnitude
performance penalty compared to message-passing. The over-
head of the latter is due to maintaining coherency for remote
writes for the validation checks. The message-passing model
eliminates the need for coherence and reduces conflicts on
the interconnects resulting in more predictable and lower
execution time.

Fig. 9. Overhead of Coherence: Shared Memory vs. Message Passing

Figure 10 depicts the overheads for computing integer data
in the climb control task. These results show stable timingsfor
task computation with message passing, much in contrast to
shared memory. We evaluated integer computations because of
a lack of hardware floating point units (FPU) on the Tilepro64.
This data demonstrates how easily contention on the NoC
results in jitter. In this result, three simultaneous models are
executing while the previous results utilized only one active
tile during the actual check. Note that when multiple tiles



Fig. 10. Climb Control Task Jitter: Shared Memory vs. Message Passing
are active simultaneous jitter is easily introduced into shared
memory accesses. In contrast, TDMA arbitrates NoC access
for messages.

SEU Scheme Time To Repair Mean Time to Failure
No Rejuvenation ∞ 157 Days
Natural Convergence 8 (2s) 2.27x108 Days
Data Driven 1 (250ms) 2.05x109 Days

TABLE II
REJUVENATION: T IME TO FULL RESTART

We implemented a naturally converging model and a data
refresh model to assess the benefits of rejuvenation when
SEUs affect task data. To compare the models, it is necessary
to measure the time from failure until triple redundancy is
restored, i.e., voting within the system can restart. TableII
depicts this as the time to repair for each scheme. These
results do not take into account hardware failures or SEUs
affecting the OS. Instead, these results only consider software
task sets. Column two indicates that natural convergence
took eight job cycles (periods) before voting could restart
while rejuvenation with data refresh was able to accurately
measure coherence one job (period) after the original failure.
Column three assesses the mean time to failure (MTTF) for
each scheme. Without rejuvenation, the model to derive data
for the second row follows the standard MTTF calculation
MTTFTMR = 5/(6λ). The model with repair via rejuve-
nation used to derive results for the third and fourth rows
is based on a modified Markov formulation that calculates
MTTF as MTTFTMR−Repair = 5/(6λ) + µ/(6λ2) [17]. µ
is the maximum number of repairs that can be performed
within an hour. We evaluated our model based on an SEU
rate of λ = 2.2083x10−4 derived from a radiation-hardened
Tilera processor for these results [12]. This provides a worst-
caseλ as the processor is hardened and the error rates are
evaluated in space makingλ higher than values derived for
single-node failures for terrestrial applications, e.g.,λ values
reported for HPC environments. As can be seen from the
results, rejuvenation increases reliable operation by sixto
seven orders of magnitude.

The experiments thus far assess the cost of communication
in a cyber-physical system that only exercises some aspectsof
Forte’s design. To evaluate the limits of Forte, we implemented
a micro-benchmark that transfers a 0.5KB payload of data
between a pair of processors and then proceeded to increase
the number of transferring pairs. The benchmark utilizes both
shared memory and message passing to evaluate the cost of
data transfers. Hashing is a technique where memory addresses
are uniformly distributed across the L3 cache by the hardware.
Notice that this is a virtual L3 cache implemented through
a hypervisor by distributing memory references over the L2

caches of all cores. The distribution uses a home-based pro-
tocol where the hash of a shared memory address redirects a
look-up to a home core over a specific coherence interconnect
on the NoC. Hashing can thus increase the performance of
shared memory by reducing the average distance to cached
data and by increasing cache capacity of L3 to the aggregate of
all L2 caches. This effect is demonstrated in Figure 11. Hashed
shared memory outperforms the non-hashed counterpart on
average. However, even with a significant reduction in the
cost of shared memory accesses, message passing outperforms
shared memory in both configurations. Furthermore, we cap-
ture the best-case and worst-case transfer latencies illustrated
by the top/bottom of the error bars in Figure 11. The results
show a significant disparity that becomes apparent in both of
the shared memory experiments as the number of transferring
processors are scaled up. With an increasing processors count,
the worst and average case transfers rise significantly due
to NoC and cache contention. Under message passing, in
contrast, virtually no changes in the best, worse, and average
cases are experienced.
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Fig. 11. Transfer Overhead: Shared Memory vs. Message Passing

Next, we evaluated the scalability of the Forte design.
We ran a single Paparazzi model of the full system in this
experiment. The number of replicas of the altitude control
task was scaled up gradually from 10 over 20 to 30 redundant
instances. All replicas were executed in parallel on separate
cores. This raised the overall utilization to 45 cores for the
Paparazzi task set including the scheduler and coherence
check. Figure 12 depicts the cost of data transfer/computation
(in cycles) over multiple benchmark run for 10, 20 and 30
replica. A relatively inconsistent access cost is incurredwith
30 replica cores for shared memory. Interestingly, a consistent
additional overhead of approximately 50 cycles is observed
for shared memory using 20 and 30 replica cores relative to
just 10 cores, which can be accounted to scalability limits of
the coherence protocol due to contention on the coherence
interconnect. In contrast, additional replicas have virtually
no measurable effect on the overheads for message passing
(without L3/hashing) as TDMA arbitrates NoC access when
messages are transferred. The occasional spikes in these results
are caused by the virtualization layer in our experimental
platform, which periodically activates a required monitoring
daemon resulting in system noise. Such daemons would need
to be eliminated or modeled as a separate task to meet real-
time requirements.



Overall, the results indicate superior performance, increased
predictability and reduced jitter of pure message passing
(without any background coherence protocol) in this massive
multi-core platform with a mesh-based NoC. Performance and
predictability benefits of message passing over shared memory
improve as the number of utilized cores increases,i.e, message
passing scales in contrast to shared memory programming.
The cause of these benefits lie in the potential of one-sided
communication and TDMA arbitration of message passing
in a push-based (explicit) access model. These advantages
cannot be matched shared memory protocols with its pull-
based (implicit) on-demand access requests and its required
hand-shake semantics of the coherence protocol.

Fig. 12. Scaling Contention: Shared Memory vs. Message Passing

VII. R ELATED WORK

Our study appears to be the first one combining areal im-
plementation on amassive multicore with 64 cores with real-
time constraints and fault tolerance. Prior work was strictly
simulation based, let it be for studying topologies forsimulated
shared memory architectures [1], [18] or fault tolerance with
hardware support in a simulated NoC environment [19]. One
notable exception is the Multikernel (aka. Barrelfish) system
that indicated that message passing can be superior to shared
memory in an SMPs system using Hypertransport [20]. In
contrast, our work is not on SMPs and focuses on much
larger core counts that introduce scalability problems dueto
NoC resource contention on a single processor die. Another
exception is Tilera’s iMesh paper [18], which investigates
higher-level software overheads of the iLib abstraction for
buffered channel and high-level dynamic messaging vs. row
channels. Our work provides more insight on jitter and clarifies
the overhead of shared memory accesses vs. the benefits of
a much lower level messaging layer, which exposes the true
overheads at the lowest software layers.

There is significant related work in the area of fault
tolerance. Past approaches utilize scheduling, replication, or
radiation hardening to achieve fault tolerance. Scheduling tech-
niques, such as in [5], [6], [7], often introduce sophisticated
scheduling policies to track faults. In particular, [5] introduces
a last chance scheduling technique with the notion of task
alternates to correct data in times of faults. A complicated
scheduling algorithm then delays the execution of these al-
ternates until the last possible moment to provide a fault
tolerant schedule. We use advanced multi-core architectures to
remove the need for such sophisticated scheduling by enabling
the software to run alternates simultaneously at virtuallyno
additional resource cost.

There exists a significant amount of work on detection of

and protection against transient faults. Hardware can protect
and even correct transient faults at the cost of redundant
circuits [21], [22], [23], [24] Software approaches can also
protect/correct these faults,e.g., by instruction duplication or
algorithmic design [25], [26], [27], [28], [29] Recent work
focuses on a hybrid solution of both hardware and software
support to counter transient faults [30], [31], [32]. Such hybrid
solutions aim at a reduced cost of protection,i.e., cost in terms
of extra die size, performance penalty and increased code
size. Hybrid approaches have been proposed for selectively
protecting hardware regions, for control-flow checking andfor
reduced instruction and data duplication in software [30].Data
representations, however, have been widely ignored. Radiation
hardening is another common technique in fault protection
for real-time systems [33], [34] with overheads in costs and
speed. In contrast to our work, these solutions either promote
hardware approaches or do not consider massive multi-cores
(or even real-time systems).

Modular redundancy is a replication technique[35]. This
work provides an easy to implement and validate approach to
ensuring fault tolerance. The technique has been used widely
in research. [19] describes a heterogeneous NoC architecture
to implement triple modular redundancy. This work focuses
on a specialized architecture that supports multiple levels of
hardware integrated fault detection. This work uses TDMA
on a NoC to interconnect the various IP elements in the
architecture. Our work also utilizes a replicated task map-
ping but differs in that it is a pure software approach that
enables comparisons of varying task complexity models with
COTS applicability. More significantly, their study is based
on hardware simulation, ours is an actual implementation on
a hardware platform. Theirs covers a small number of cores,
ours is for massive multicores with high core count, which
creates novel challenges for harnessing NoC contention.

Rejuvenation [36], [37] is a technique originally introduced
as a software restart technique to protect long-running soft-
ware. Rejuvenation is often associated with rebooting. A major
hurdle in software rejuvenation is data loss due to the rejuvena-
tion. Forte uses software rejuvenation to maintain reliability in
the control system. Data loss is circumvented through selective
rejuvenation and data refreshing from validated data models.

VIII. C ONCLUSION

We have presented the design of Forte, a framework that
utilizes massive multi-core NoC architectures in order to create
a reduced jitter and fault tolerant cyber-physical environment.
The primary tenets of this approach encompassed systematic
restructuring of traditional real-time tasks to eliminatethe use
of shared memory by instead relying on message passing to
move data between tasks. By reducing contention on memory
controllers, it becomes more feasible to scale up the number
of cores while sustaining performance and predictability.This
enables support for fault tolerance through replicated real-
time tasks combined with consistency verification and task
rejuvenation using modular redundancy. Our results feature
experiments with triple modular on-chip redundancy for a
UAV control system and illustrate capabilities of Forte to
detect errors and correct tainted results due to data errors, such
as SEUs. We also show that by putting greater emphasis on
message passing and eliminating shared memory accesses, we
are able to increase predictability and decrease overheadsby



up to an order of magnitude. System reliability can be further
increased by six to seven orders of magnitude when triple
modular redundancy is combined with naturally converging
and refresh-assisted rejuvenation, respectively.
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