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Abstract—Embedded systems, particularly real-time systems
with temporal constraints, are increasingly deployed in every
day life. Such systems that interact with the physical worldare
also referred to as cyber-physical systems (CPS). These systems
commonly find use in critical infrastructure from transport ation
to health care. While security in CPS-based real-time embedded
systems has been an afterthought, it is becoming a critical issue
as these systems are increasingly networked and inter-dependent.
The advancement in their functionality has resulted in more
conspicuous interfaces that may be exploited to attack them.

In this paper, we present three mechanisms for time-based
intrusion detection. More specifically, we detect the execution of
unauthorized instructions in real-time CPS environments.Such
intrusion detection utilizes information obtained by static timing
analysis. For real-time CPS systems, timing bounds on code
sections are readily available as they are already determined prior
to the schedulability analysis. We demonstrate how to provide
micro-timings for multiple granularity levels of applicat ion code.
Through bounds checking of these micro-timings, we develop
techniques to detect intrusions (1) in a self-checking manner by
the application and (2) through the operating system scheduler,
which are novel contributions to the real-time/embedded systems
domain to the best of our knowledge.

I. I NTRODUCTION

Embedded systems have permeated every aspect of day-
to-day life. Examples range from non-critical systems (tele-
visions, toasters), moderately critical systems (stop lights)
to highly critical ones (anti-lock brakes, hydro-electricdam
controls and flight control systems). The latter two categories
are examples of cyber-physical systems (CPS) where system
control affects human lives or interacts with the environment.
Most of these systems have real-time constraints, and ensuring
that such systems are secure from intrusion and tampering
is a design challenge of utmost importance. Securing CPSs
dramatically deviates from security in general-purpose com-
puting systems. In the latter, attacks may result in slower
response or no execution at all. Imminent system failures,
if detected, can be mitigated by rebooting or re-installation
with a temporary lapse of services to users. In safety critical
real-time systems, in contrast, slower response or failurecould
result in significant environmental damage or even in loss
of life, and system restarts often cannot be instant due to
unstable physical system state,e.g., during chemical and
thermo-dynamic reactions.

While the development of real-time software for CPSs is
stringent, vulnerabilities are exposed by libraries and specific
embedded domain device software that enables attackers to
execute arbitrary code. Such code injection attacks have been
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common for several years in the general-purpose domain. As
more embedded applications, particularly CPS applications,
utilize networks they become more susceptible to such attacks.

Fortunately, the design constraints of embedded real-time
systems lend themselves well to security methodologies other-
wise not applicable to general-purpose applications. The focus
of this work is in exploiting detailed timing bounds obtained
through static analysis of application code for security. Worst
case execution time (WCET) bounds lend themselves naturally
to security analysis. As WCET safely bounds the upper exe-
cution times for specific code sections, execution times above
these bounds provide indications of a system compromise.

Our technique is specifically designed for embedded real-
time systems where general-purpose domain protection may
prove ineffective: Randomization such as Address-space lay-
out randomization [21] and StackGuard [6], designed for 64-
bit space, can be defeated more easily in embedded 8/16/32-bit
processors with brute-force attacks. Instruction Set Random-
ization [8] and other hardware enhancements [22], [9] require
additional hardware (with limitations due to static buffer
constraints) or high-overhead binary rewriting whose costand
overhead are shunned in lower-end embedded systems.

Contributions: We develop three mechanisms that utilize
instrumentation and analysis from within real-time applica-
tions to detect the execution of unauthorized code and show
their effectiveness both under simulation and on a hardware
platform. Using timing metrics and comparing them with
worst-case bounds allows the detection of security breaches
due to intrusion within the system as well as situations where
an application is going to exceed its timing requirements
prior to an actual deadline miss. (1) T-Rex utilizes timing
bounds to detect intrusion at a fine-grained level through
instrumentation of return paths. Code injections resulting in
time dilations as small as 5-22 cycles, depending on system
parameters, are discovered. (2) T-ProT validates intra-task
checkpoints via synchronous scheduler invocations to uncover
coarser-grain injections between 9 and 5k cycles. (3) T-AxT
exploits asynchronous scheduler-triggered timing validations
of application code sections without requiring instrumentation.
These security checks can be strategically scheduled to utilize
otherwise idle time in the schedule. The granularity of the
schemes not only provides detection capabilities but also
sufficient time to transition to a fail-safe state.

II. ATTACK MODEL AND SCENARIO

Attacks on embedded systems with or without real-time
constraints can materialize in a variety of ways. In this section,
we discuss the attack and adversary models that are the



premise for our contributions. We then demonstrate a sample
attack under these constraints.

Past security work predominantly focused on wireless net-
works in the domain of embedded systems, such as [28].
Models range from passive packet sniffing to various active
attacks, such as network traffic disruption (e.g., jamming,
spoofing) and packet data tampering/rewriting. Our approach
complements network-centric protection with application-level
intrusion detection.

Our adversary model is one where one or more network
nodes have been compromised or an attacker has successfully
authenticated a node under their control to the local (wired,
wireless or ad-hoc) network. Such nodes can be embedded or
general-purpose systems, they may be mobile or stationary.
We assume that hardware parameters are not modified during
an attack,i.e., memory latencies and processor frequencies
are not modified by the initial attack code. In contrast to
network-level security, we take an application-centric approach
for protection. While past work has focused on the application-
layer network interface for providing protection [31], [32],
[30], we focus on application-intrinsic protection, whichdoes
not compete but rather complements the above schemes. This
is based on the premise that attacks originate from applications
before the operating system is compromised. Our work focuses
on early intrusion detection at the application level before other
system or hardware parameters can be manipulated,i.e., on
the detection of intrusion on uncompromised nodesvia code
injection. Data injection attacks are beyond the scope of this
work. We assume that the user data space is unsafe (partiallyor
fully compromised) at the time of detection but the operating
system space is still trusted as it has not been penetrated (yet).
Specifically, we seek to protect embedded control software
by enhancing it with sanity checks to uncover execution of
unauthorized code in addition to regular application code.

Consider the example in Figure 1 that obtains input data (via
fscanf) from an array of input sensors (e.g., temperatures) that
are aggregated and later analyzed to drive feedback-control of
an actuator valve. We have implemented an attack scenario on
a MIPS-ISA where a network packet supplies the sensor data
from a spoofed or compromised node. The initial input string
overruns the bound of the localcpy array to overwrite both
frame pointer and return address. When returning from the
function after the loop, control is subsequently transferred to
the first instruction in the Sum function (see Figure 2). Upon
second execution of Sum, a second input corrects both frame
pointer and return address to resume execution as normal.
Without ever causing a program fault, this attack results in
2 × MAXSIZE aggregations of legitimate sensor data within
thresholds, yet the result would be averaged incorrectly over
just MAXSIZE elements (code omitted).

General-purpose and network-level protection methods are
insufficient for such attacks in embedded systems for a number
of reasons. (1) While this attack exploited a common library
routine to trigger a buffer overflow, constraining analysisto
a subset of vulnerable routines is insufficient in embedded
systems where custom hardware devices expose non-standard

void Sum() {
char localcpy[MAXSIZE];
fscanf(input,"%s\n",&localcpy);
for (i = 0; i < MAXSIZE; i++) {

// Search for data, increment counter, ...
}
// Checkpoint 1 instr. in assembly

}
void read_data() {
input = fopen("SomeNetworkDevice","r+");
Sum();
// Checkpoint 2 instr. in assembly

}

Fig. 1. Sample Code Vulnerability
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Fig. 2. Diverted Control Flow

input routines beyond POSIX library routines that may have
exploits. (2) Statistical detection methods [11] can be defeated
in such a scenario by adaptively changing sensory input
over time, which requires multiple repetitions of attacks if
they can be detected at all. (3) Signature-based methods
can be defeated through spoofing as embedded systems have
limited computational capabilities that allow only symmetric
signatures/encryption to be employed. Stronger public/private
key pair signatures or encryption typically cannot be accom-
modated in given utilization bounds of lower-end embedded
real-time systems [24].

Our approach, detailed in Section IV, promotes a differ-
ent approach. Since our focus is on real-time systems with
statically analyzable timing bounds at multiple granularity
levels, we exploit time-bound checking as means to detect
intrusions. For the attack in Figure 1, the time from the initially
diverted return to the second return from Sum accounts for
14K additional cycles on the MIPS ISA. We have developed a
number of application-centric techniques that can detect timing
dilations as small as 5-22 cycles. The above intrusion was
instantly detected with only minimal runtime overhead in the
order of 1% of the application’s execution time.

This example illustrates just one possible code injection
attack that is detected by our approach. The approach is
orthogonal to methods that protect against other attacks, such
as data injection, timing, and denial of service attacks. Each of
these attacks may require separate approaches for prevention
or detection,i. e., it is not realistic to expect asinglemethod
to secure against all of types of adversary approaches. Overall,
time-based security cancomplementother security mecha-
nisms. While it does not categorically prevent all attacks,it
will raise the bar for code injection attacks.

III. T IMING ANALYSIS

Accurate knowledge of execution time is a strict require-
ment for hard real-time systems where a missed deadline



may render the entire application incorrect. Timing analysis
determines an application’s BCET and WCET bound that
allows verification if a task’s deadline can always be met.
Timing analysis can be performed via dynamic [3], [25],
static techniques [27], [15] or hybrids of them [2], [14], [26].
Dynamic timing analysis determines the effect of different
inputs on execution time to approximate the WCET,e.g., to
determine that an inversely sorted list maximizes bubblesort’s
computational complexity. Static analysis bounds aggregate
costs of instructions in blocks and then compounds the costs
of paths throughout the program taking architectural timing
effects into account to a safe WCET bound at compile time.
In contrast to the dynamic approach, static timing analysishas
been shown to providesafeWCET bounds [25].

We utilize WCET bounds obtained from static timing anal-
ysis in this work. While the objective of traditional timing
analysis is to determine WCET bounds along thelongest
execution path, our work capitalizes on the ability to exploit
timing results alongarbitrary paths. Our work relies on WCET
bounds for such paths but forsecurity reasons and not for
schedulability.

To conduct our study, we obtained a copy of an existing
tool chain [7], [18], [16] depicted in Figure 3 that enables
us to accurately gauge the WCET bounds of an application
(macro view) as well as small groups of instructions (micro
view). A compiler translates the application to annotated PISA
assembly. This intermediate code along with loop bounds
information is then fed into a control-flow analysis tool.
Subsequently, control-flow analysis and static cache analysis
are performed. The respective outputs are then consumed by
a timing analyzer that uses the annotated assembly and loop
bounds to derive a safe WCET bound.
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Fig. 3. Timing Analysis Tools

IV. D ESIGN

We have developed a methodology for verifying timing
bounds at checkpoints during application task execution. We
distinguish two checkpoint placement strategies, one that
instruments the application and one where the real-time
scheduler triggers checks called T-AxT. For application-side
checkpoints, we promote amacro and a micro check of
timing bounds. The former, T-ProT, competes with scheduler-
triggered T-AxT checking while the latter, T-Rex, comple-
ments the other two schemes. Checkpoints are realized as
synchronous system calls for application instrumentationor
reside in the scheduler at preemptions. It is necessary to
use system calls because user space provides insufficient data
protection. Thus, we are using the real-time operating system
as our trusted computing base. Critical security data, such
as timing bounds, reside in a different address space than
application code to decrease its vulnerability due to tampering.

A. T-Rex: Timed Return Execution

T-Rex employs application-level checkpoints to detect code
injections resulting in buffer overflow attacks. Typically, such
attacks overwrite the return address of a routine whose frames
are stored on the stack. Upon return from a function, control
is transferred to the location indicated by the overwritten
return address. Attackers often divert execution to hand-written
instructions intentionally placed in global/stack variables, or
they may spawn new programs. T-Rex detects the former while
T-AxT (see below) addresses the latter.

T-Rex uses a pair of checkpoints that compare WCET
timing bounds with actually elapsed wall-clock time along
a return (from subroutine) path (see Figure 4). The first
checkpoint sets a timer equal to the WCET, and the second
checkpoint cancels this timer. Failure to cancel this timer(due
to time overrun) would result in an interrupt indicating a
compromised system. T-Rex is equally applicable to arbitrary
control transfers, such as function pointers or large conditional
switch/case statements resulting in indirect jumps. If the
dynamically observed wall-clock delta between checkpoints
exceeds the WCET bound then excess instructions were exe-
cuted indicating a security breach. In contrast to coarser code
sections with conditional control flow, static timing analysis
on these straight-line execution regions yields tight WCET
bounds. Return-from-subroutine code comprises a series of
loads and stores to restore prior processor state and unwind
the stack.

When such a region exceeds the path-based WCET bound,
the overall program may not necessarily exceed its overall
WCET bound due to shorter paths taken during the remaining
of execution. This makes T-Rex well suited for detecting at-
tacks that could not easily be detected at task-level granularity
due to deadline misses. This is because violation of micro-path
WCET bounds is a necessary but not a sufficient condition for
violation of a task’s WCET bound or its deadline.

T-Rex is built into the operating system as a state machine.
It requires the use of two separate calls whose order is tracked.
In the motivating example, the attack would cause the timer
initiated at the first checkpoint to never be canceled as the sec-
ond checkpoint is skipped. Upon timeout, the corresponding
interrupt then indicates a potential system intrusion. A side
effect of the state machine is that the checkpoint addresses
are checked to insure that they fall within the address range
of instructions. Thus, any attack would have to return back
to the application code to shut off the timer using the second
checkpoint. For tight WCET bounds, even the simple code
from the attack to jump to the second checkpoint would be
detected. An attacker could potentially disrupt the control
flow of the application by jumping to a non-corresponding
second checkpoint if slack was available. However, using the
T-ProT technique described in the following section, such
illegal control flow transitions would be detected.

B. T-ProT: Timed Progress Tracking

T-ProT utilizes synchronous calls at security checkpoints
to the scheduler and validates WCET bounds of longer code
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sections than T-Rex (see Figure 5). The scheduler assumes the
job of checking these bounds against actual elapsed time to
provide separation between protected application and corre-
sponding timing data as the latter resides within the operating
system, i.e., at a higher privilege level and in an address
domain disjoint from the application’s domain. Hence, our
timed security does not rely on data / knowledge embedded
within an application, which can potentially be compromised.

T-ProT detects several intrusion scenarios that divert from
the expected control flow, such as large sections of application
code that are skipped or failure to return control to the base
application,e.g., by replacing the executable of a real-time task
(through “exec” system calls). Upon encountering a timing
checkpoint, instrumentation forces a synchronous scheduler
call. The scheduler subsequently checks timing bounds for
the code section between the previous and this checkpoint.
It then activates a timeout equal to the WCET distance until
the next checkpoint. If no checkpoint is encountered hit before
this timer elapses, an intrusion is flagged.

Placing checkpoints in control-flow blocks guaranteed to
be traversed during execution (e.g., using post-dominator in-
formation [1]), we ensure that these checkpoints are always
traversed when a job completes or its deadline expires —
assuming that the application was not aborted prematurely due
to an attack.

Determining the instrumentation points (checkpoints) con-
trols the sensitivity of protection. In some algorithms, the
best-case execution time may deviate significantly from the
worst-case execution time. For instance, insertion sort algo-
rithm has a best-/worst-case complexities of O(n) and O(n2),
respectively. The difference between these bounds provides a
substantial margin to orchestrate code injection. To overcome
this problem, checkpoints need to be inserted such that time
distribution is divided in a (uniform) manner to minimizes the
time between two consecutive checkpoints. An example of this
would be checkpoints within the loops of the insertion sort
that fire everyk iterations, where the choice ofk determines
the strength in protection while assuring sufficient slack in the
task schedule to accommodate the timing checks via scheduler
invocations.

This also meshes well with code obfuscation techniques
employing multi-version binaries where we can instrument at
disjoint points for otherwise functionally equivalent binaries
of the same application to increase the difficulty for attackers
to systematically defeat our timed security approach.

C. T-AxT: Timed Address Execution Tracking
T-Rex and T-ProT both require application instrumentation

for checkpoint placement. An attacker could exploit this fact
through application-specific checkpoint bypass techniques,

even though such bypasses are non-trivial to construct within
given timeout bounds. To overcome this weakness, we de-
signed T-AxT as an asynchronous checkpoint technique co-
existing with unmodified application code. T-AxT exclusively
utilizes the scheduler and timing bounds information provided
at system start to maintain timed security.

In T-AxT, the scheduler preempts the application upon time-
outs. It then probes the PC value of the preempted application
and compares execution progress to WCET bounds associated
with the code section between the previous and current PC
values of consecutive preemptions. As T-AxT operates without
synchronous calls, it presents an alternative to T-ProT.

With this technique, bounding the WCET of loops presents
a challenge. As PC values are agnostic towards the progress
of loops, the current iteration point within nests of loops
needs to be known. We probe actual values of induction
variables whose locations (registers/memory) are obtained via
static analysis (offline, prior to system start). The scheduler
dynamically evaluates polynomial functions parametrizedby
actual iteration points to determine if the WCET bound of
a code section has been exceeded. Such sections may span
multiple loop nests and iterations. Any loops lacking induction
variables are supplemented statically during code analysis with
an induction variable.

In our experiments, WCET comparison bounds are deter-
mined in either absolute or relative time. We utilize WCET
boundsrelative to task activation when multiple execution
paths exist. This allows us to eliminate path-aggregate over-
estimations of WCET bounds due to conservative static timing
analysis. In contrast, we utilize absolute WCET bounds for
sequential straight-line code for finer granularity of timings.
This duality is tailored to tighten WCET bounds checks in
loops since scheduler preemption tends to occur in hot code
regions,i.e., predominantly within loop execution.

In practice, we mostly rely on checks of WCET bounds
between two checkpoints at the highest nesting level. This
interaction is depicted in Figure 6. The first check in the
loop is calculated as an absolute checkpoint since no previous
checkpoints exist. The second checkpoint is measured as a
delta from the previous checkpoint, which tightens bounds and
strengthens timed security as a means of intrusion detection.

Two of the timed security techniques rely on application
instrumentation. After instrumentation, the overall real-time
task set has to be reanalyzed to obtain WCET bounds that
include the instrumentation code. Timing checks by the sched-
uler have to be accounted for as well before the real-time
schedulability is reassessed. To avoid that such overheads
becomes excessive, which might render task sets infeasiblein
terms of real-time scheduling, checkpoints are selected based



on profiled frequencies that are representative task executions
in our experiments.

Any detected timing bounds violation indicating intrusion
further needs to result in evasive actions, such as transitioning
to fail-safe states,e.g., through a mode change that replaces
all existing tasks with a new task set governing a shut-down
sequence and network isolation. The focus of this paper is on
time-based intrusion detection while such evasive actionsare
beyond the scope of this work.

V. I MPLEMENTATION & EXPERIMENTAL FRAMEWORK

The mechanisms discussed in Section IV were implemented
in two different experimental frameworks, one that combines
static timing analysis with architectural simulation and another
that combines dynamic timing analysis with an embedded
system hardware platform.

A. Simulation Framework
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Fig. 7. Framework

The overall experimental framework is depicted in Figure 7.
We enhanced a static analysis framework as discussed in Sec-
tion III to support check-pointing instructions. These check-
pointing instructions allow us to determine the worst case cycle
time at which a particular instruction finishes execution. This
information is essential to determining the WCETs between
two consecutive checkpoints under T-ProT.

We further utilize a custom SimpleScalar processor simula-
tor [4] enhanced to support multitasking and scheduler threads
/ tasks, which we exploited to implement earliest deadline first
(EDF) scheduling. The scheduler is customized to support
relative time for each thread aggregated during preemptions
and at security checks of a task to most accurately track
execution progress.

For T-Rex, SimpleScalar enhancements include two system
calls to query timing information (a) before a return from a
function / method, and (b) at the destinations of a function /
method return and compare the difference to static bounds. We
utilize a timer and also verify correct sequential orderingof
these calls. If call one was issued without the other, a control-
flow violation (intrusion) is detected, that would result from a
buffer overflow attack that returns control flow past the second
call. Call sites are identified by their call stack / PC and frame
pointer signature so that calls from injected attacker codeare
easily identified. We tested our implementation using a set of
C-Lab benchmarks [5].

B. Embedded Hardware Framework
Our second set of experiments was conducted by combining

dynamic timing analysis with implementations of T-Rex and

T-ProT on an actual embedded hardware platform, namely
the DSK6713 kit from Spectrum Digital. This board has a
Texas Instruments C6 (TMS320C6713) DSP chip running at
150MHz featuring a 32-bit processor with Very Long Instruc-
tion Word (VLIW) architecture, 2 levels of caching and up to
256KB of on-chip SRAM programmed under Code Composer
Studio v3.1. This board is also utilized in a CPS project
for controlling power devices (solid state transformers) in a
renewable energy project (solar and wind power generation
in microgrids). Software security is deemed critical in power
grids as malicious attacks could potentially damage equipment
upstream affecting entire suburbs.

In the experiments on the embedded platform, WCET
bounds are determined by dynamically timing execution paths
under worst-case scenarios while running the program on a
cycle-accurate simulator from Texas Instruments that simulates
the C6713 processor along with its on-chip peripherals. Ex-
ecuting the actual code segment repeatedly on this simulator
using worst-case inputs and hardware settings provides the
observed maximum number of CPU clock cycles for a given
code segment. We configured the platform for maximum
predictability: (1) Caches are disabled. (2) We utilize SRAM
instead of SDRAM to avoid spikes in memory access times
during SDRAM self refreshes that last for several microsec-
onds. Bounding refresh overhead is an orthogonal challenge.

Figure 8 depicts our layered system architecture used.
We ported a commonly used real-time operating system,
MicroC OS II [10], which supports fixed-priority preemptive
scheduling. We then implemented a scheduler based on rate-
monotonic analysis (RMA) [13] on top of MicroC OS II.
This scheduler supports threads of arbitrary periods imposing
strict execution time control. Failure to complete by a deadline
results in preemption and rescheduling during the next period.
We also provide synchronous application checkpoint calls for
implementing T-ProT and monitoring of aggregate execution
time per task since with a one microsecond precision.

VI. RESULTS

A. Common Attack Cycles

Timing values of actual attacks for embedded systems are
sparse in literature, at best. To determine typical costs, we
consider common shell codes used on Linux systems. Metas-
ploit, a repository for such attacks, contains approximately
35 different Linux/Unix shell code examples of the same
fundamental structure. A jump in the first line of the shell code
transfers to another location within the shell code. This aids
in determining the relative offset for addressing. An “exec”
system call then invokes a command of the attacker’s choice.
The most common examples found on Metasploit are useradd,
shell, and tcp open directives. Figure 9 provides measured
timing values for common portions of attack code. We measure
the average cost of execution from the hijacked return to the
first instruction in the shell code (“Start”) and the averagetime
of an execution system call (“Execpl”) with null arguments.
If actual values are passed, measurements are significantly
larger.E.g., passing “Chmod”, a common attack to modify file
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No Caches 4KB I-Cache
Program Function WCET Sensit. WCET Sensit.
SRT Initialize 39 5 21 13
SRT BubbleSort 39 5 30 13
LMS LMS 39 5 30 9
FFT FFT 39 5 25 8
ADPCM Encode 39 5 30 22
ADPCM Decode 39 5 30 22

Fig. 10. T-Rex WCET and Sensitivity cycles

permissions, dramatically increases the cycle overhead. These
are examples of common shell code attacks to indicate realistic
timings to consider the effectiveness of our methods.

B. Simulation Results
T-Rex utilizes anabsolute task timer to determine the

total time since the simulation start. T-ProT and T-AxT are
exercised in a modified preemptive real-time scheduler under
the SimpleScalar environment to keep anaggregatetimer for
each of the executing job. This aggregate timer is compared
against WCET bounds from static timing analysis. It is further
saved in the scheduler-maintained thread control block at
preemption and restored at reactivation. The value is resetat
thread / task completion to prepare for the execution of the
task’s next periodic job.

Timed Return Execution (T-Rex) Results:T-Rex success-
fully detected the buffer overflow attack depicted in Figure1 as
the injected code accounts for 14k cycles, which far exceedsits
detection granularity of 5-22 cycles. Under legitimate sensor
inputs, the sample program produces the correct output with
an additional 40 cycles relative to the application itself.

Figure 10 shows the sensitivity results of T-Rex for varying
benchmarks and their respective functions. In this experiment,
the attack code, after executing its injected code, returnsto the
exact spot in the code that the original return for a call would
have jumped to. The table then reports the WCET in cycles for
the return sequence as reported by timing analysis (WCET in
column 3) and the number of slack cycles that would remain
undetected (sensitivity in column 4), both without considering
caches, while the next two columns show the corresponding
results for a 4KB instruction cache. The slack amounts to
the difference between WCET and actual execution time, the
latter of which is observed from SimpleScalar simulation. The
WCET bound is extremely tight since T-Rex assesses time on
a straight-line path of the control flow. Hence, the window of
vulnerability is restricted to a sensitivity of 5 cycles without
and 8-22 with caches. This limits the amount of code that may
be injected without being detected.

These results provide a lower bound. The upper bound
for undetectable injections is given by the T-ProT or T-AxT
methods, which address larger injections and omission of code
sections in favor of injected code. However, disguising the
side effects of polluting stacks and registers is non-trivial.
Overall, the results in Figure 10 illustrate that the timing
bounds and subsequent security checks for straight-line code
are very precise, thus leaving little room for injected code.
Instruction cache effects loosen these bounds proportionally
to the cache miss penalty of 10 cycles (as seen for ADPCM).

Timed Progress Tracking (T-ProT) Results:Table 11 as-
sesses the effectiveness of T-ProT, which relies on synchronous
scheduler checkpoints to dynamically detect intrusions by
WCET bounds violations. The table reports checkpoints be-
tween adjacent instrumentation points in the control flow for
each application,e.g., checkpoint 0-1 denotes execution from
entry of main() to a later basic block in CNT, 2-3 and 3-4
denote loop entry and exit, respectively, while 3-2 denotes
a back-edge within the outer and inner loops, respectively
(see Figure 12). Corresponding WCET bounds (column 3) and
sensitivities (column 4) are reported in cycles for these code
sections. We instrumented several checkpoints in benchmarks
as illustrated for CNT in Figure 12:

1) immediately after the original variable declarations but
prior to the invocation of loop 1;

2) within the outer loop just prior to the inner loop invo-
cation;

3) in the inner loop with logic surrounding it to only
perform the check during half way through the total
iterations of the inner loop; and

4) in the final block of the application just prior to exiting.

The results of Table 11 indicate that T-ProT has a coarser
granularity in that the reported bounds on undetectable injec-
tions range up to nearly 5k cycles at the upper end. Hence,
scheduler callbacks result in less sensitivity than returnpath
instrumentation. This lower sensitivity is a result of more
complex control flow than just straight-line code as in T-Rex.
Checkpoints may cross loop levels and are scattered through-
out the application. This reduces the tightness of WCET
bounds. WCET bounds of a loop iteration are generally less
tight than straight-line code due to fluctuations in the number
of iterations or conditionals inside the loop body. To obtain
safe worst-case results, we have to conservatively calculate the
worst case scenario (upper bound on loop iterations, longer
path for conditional execution) in our static analysis. Utilizing
instruction caches as depicted in the second half of Table 11
has an impact on the overestimation. This is due to the fact
that relative checkpoints tend to not incur cache misses as
most cold misses occur prior to the first checkpoint hit.

Overall, security is elevated by these scheduler checks.
Moreover, T-ProT is quite versatile in that it may be used to
instrument code sections at arbitrary points in the application.
This makes T-ProT suitable to detect compromised subroutines
in a targeted manner. There are additional security benefitsto
using T-ProT. Timing bounds preemption requires a look-up of
the previous checkpoint and a comparison of the current timing
values with the corresponding WCET bounds. When factored



No Caches 4KB I-Cache
Program Checkpoint WCET Sensit. WCET Sensit.
LMS 0 - 1 1,500 44 844 173
LMS 1 - 2 5975 65 3279 774
LMS 2 - 2 17199 259 8699 2120
LMS 2 - 3 11330 210 5549 1430
FFT 0 - 1 1,600 195 846 228
FFT 1 - 2 950 54 697 220
FFT 2 - 2 19,283 2,787 13,955 5,334
FFT 2 - 3 12,709 1,997 9,451 3,831
FFT 3 - 3 5,084 460 3,150 659
FFT 3 - 4 208 48 120 49
CNT 0 - 1 1814 120 786 147
CNT 1 - 2 69 9 46 14
CNT 2 - 3 14083 283 4341 1493
CNT 3 - 2 13599 239 4199 1481
CNT 3 - 4 13726 266 2760 1534

Fig. 11. T-ProT WCET and Sensitivity cycles
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Fig. 12. CNT Control Flow

Program Period WCET Sensit.
CNT 20,000 21,225 1,225
CNT 20,000 28,200 8,200
CNT 20,000 27,750 7,750
CNT 20,000 27,225 7,225
CNT 20,000 26,775 6,775
LMS 20,000 30,991 10,991
LMS 20,000 28,434 8,434
LMS 20,000 33,473 13,473
LMS 20,000 28,918 8,918
LMS 20,000 32,597 12,597
SRT 20,000 23,400 3,400
SRT 20,000 24,128 4,128
SRT 20,000 22,701 2,701
SRT 20,000 22,372 2,372
SRT 20,000 22,701 2,701

Fig. 13. Timed Address Execution Tracking

into the application execution, this cost is hardly noticeable
and requires only insignificant additional slack in the real-
time schedule of the task set at the benefit ofmore secure
cyber-physical systems(see Section VIII).

Tab. I T-PROT CHECKPOINTHITS

Program Total Checkpoints Total Hits
LMS 3 203
FFT 4 114
CNT 4 132

Timed Address Execution Tracking (T-AxT) Results:T-AxT
has the coarsest granularity of our mechanisms. It is also the
most difficult to attack directly because it resides within the
kernel and is not triggered by checkpoints from tasks. The
periodic timer for these results was set at 20k cycles on a 100
MHz processor clock in simulation. This value was chosen to
balance overhead,e.g., SRT required 2051 checkpoints during
job execution (see Table 13). The coarser granularity of T-
AxT is due to aggregation of conservative bounds during static
timing analysis and approximate matching of PC values with
WCET bounds. WCET values were associated with the next-
smaller blocks of code relative to a PC value to conserve
storage overhead for WCET bounds. The LMS benchmark
generally retained the highest difference in cycle measure-
mentsvs. actual time. This is due to the complexity and size
of multiple inner loops within LMS. The overestimation of
WCET could be decreased using a finer granular configuration
but at a larger storage cost. The benefit of T-AxT is its ability
to bound the WCET of PC-constrained code sections within
or across loops and to verify that the job’s execution meets
these bounds. Bounds violations are a sufficient indicationof
intrusion for a given code section.
C. Measurements on an Embedded Hardware Platform

We also implemented T-Rex and T-ProT on the DSP hard-
ware platform discussed in the last section and conducted
multiple experiments. The first experiment features the bench-
mark ADPCM deployed as a single periodic task. The code of
this task is enhanced by T-Rex to provide timed security. The
single-task constraint allows us to control the experimentby
eliminating additional preemptions between first and second
calls that obtain clock values. We determined that the calls

themselves add only negligible overhead. We used “assert”
statements at checkpoints to check timing bounds. The tested
assertion here is given by the comparison of the actual time
elapsed since obtaining the first clock value and the expected
WCET bound. Figure 14(a) depicts the output of assertions
that were added for trace visualization purposes. The first word
in every output line indicates the ADPCM function instru-
mented, followed by the result of the assertion indicating if it
passed or failed. The number before ’>’ indicates the WCET
bound in microseconds for the corresponding function return
and the number after ’>’ indicates the actually measured
time for the same in microseconds. Assertions compare these
times with predetermined WCET bounds, which in this case is
determined to be about 3.1µsecs (rounded up conservatively
to 4) for all functions using the C6713 device cycle-accurate
simulator. The output shows that all timed return path values
are within a range of 1-2µsecs. Hence, all the assertions pass,
i.e., no timing violations (due to intrusion) were detected.

scalel: ASSERT PASSED 4 > 1

filtep: ASSERT PASSED 4 > 1

dh: ASSERT PASSED 4 > 2
uppol2: ASSERTPASSED 4 > 2
uppol1: ASSERT PASSED 4 > 2

filtez: ASSERT PASSED 4 > 2
encode: ASSERT PASSED 4 > 2

scalel: ASSERT PASSED 4 > 1
dh: ASSERT PASSED 4 > 1
uppol2: ASSERT PASSED 4 > 1
uppol1: ASSERTPASSED 4 > 2
encode: ASSERT FAILED 4 > 16
filtez: ASSERT PASSED 4 > 1
filtep: ASSERT PASSED 4 > 1

Fig. 14. (a) All Asserts Pass (b) Some Asserts Fail

The second experiment consists of calls to a dummy func-
tion after obtaining the first clock value but before a return
from a function, i.e., we created a code injection scenario.
This dummy function simply executes an empty loop (no-
op) for 100 iterations before returning to the caller. This
simulates code injection that returns to the original control
flow without harming stack values,i.e., the only noticeable
effect is time dilation. Results of this experiment are depicted
in Figure 14(b). As illustrated by the results, code injection
through the dummy function resulted in a large deviation in
elapsed time between obtaining clock values on the return
path. Notice that even ten iterations accounting for 1.4µsecs
would suffice for detection as2.0 + 1.4 > 3.1.

We next created a set of periodic tasks with mixed period-



icities (containing smaller and larger periods than ADPCM)to
co-exist with the ADPCM task. We further experimented with
explicit sleep statements prior to obtaining the first and second
clock values in order to force preemptions. As expected,
assertions indicated intrusions in all these cases. Since the
results resemble those reported in the previous figures, they
are omitted here.

We also implemented T-ProT on the embedded hardware
platform. As before, the WCET bounds between various
checkpoints are obtained as the maximum cycle count for
executing the program in a loop on the C6713 cycle-accurate
simulator under worst-case conditions and inputs plus com-
plete path coverage. This cycle bound is then converted into
executiontime by adjusting for the CPU clock speed before
comparing with measured time on the hardware at a check-
point. Our RMA scheduler provides a built-in mechanism to
remember the previous checkpoint and assert the validity of
the latest checkpoint. Table II shows the calculated WCET
bounds and observed runtimes for FFT on the embedded TI
DSP hardware platform. Without code injection (columns 2-
4), all checkpoints pass in this experiment, thus indicating a
safe execution.

Tab. II CHECKPOINTS OFT-PROT FOR FFT ON TI DSP

No Injection Code Injection
Chkpt. # WCET Actual Chkpt WCET Actual Chkpt
Chkpt 0 - 1 3 2 pass 3 2 pass
Chkpt 1 - 1 5 3 pass 5 3 pass
Chkpt 1 - 2 7 5 pass 7 5 pass
Chkpt 2 - 2 4 3 pass 4 3 pass
Chkpt 2 - 3 3 2 pass 3 16 fail

Columns 5-7 of Table II show results for experiments where
additional injected code executes between checkpoints 2 and
3. A small loop is introduced between these two checkpoints
to simulate code injection. Results of Table II indicate that
all tests between checkpoints 2 and 3 fail implying a detected
intrusion.

Overall, we have shown that our mechanisms facilitate intru-
sion detection in both preemptive and non-preemptive multi-
tasking real-time environments, which makes them universally
suitable to CPS applications.

VII. T RADE-OFF: SECURITY VS. TIMELINESS

The objective of providing security in systems in general
is to increase the level of protection against attacks at the
cost of executing additional routines that monitor and check
the system behavior. In cyber-physical systems with real-time
constraints these instrumentation and time validation checks
affect system utilization and thus real-time schedulability. Our
sample attack in Section II shows that embedded systems with
network connections, such as CPSs, are vulnerable to cyber
attacks. Reports in practice reinforce this fact. Most notably,
worms have entered monitoring equipment and disabled a
safety system at a nuclear power plant [12]. In another
incident, a virus reportedly spread past firewalls into the ac-
counting system of the main Australian power company, which
did not implement proper physical network separation between

accounting and power control subsystems [17]. Further dam-
age was only contained by reconfiguring servers between the
two subsystems to prevent the virus to spread uncontrolled into
the power control subsystem. As these are just two examples
illustrating the urgency of providing guards against cyber
attacks in the CPS realm. Our timed security is one such
technique readily deployable to complement existing intrusion
detection techniques. The rationale of such deployment is to
further strengthen security as a single protection mechanism
can often be defeated by itself, yet a set of mechanisms
is much harder to circumvent. Hence, the inherent cost of
security are well justified in practice.

Furthermore, many real-time systems provide sufficient
slack in a task schedule so that security mechanisms could be
accommodated under feasible schedulability. After all, real-
time systems only have to ensure timeliness in the sense that
deadlines are met. As long as deployed security methods, such
as timed security, impose overhead within deadline bounds,
correctness is guaranteed. Conversely, systems with tightslack
may limit the level of security that can be realized. Depending
on vulnerability and criticality assessment, such networked
systems may need to be redesigned for more powerful hard-
ware targets, or a paradigm is needed to provide the ability to
selectively augment code with security measures. Selectivity
amounts to a tradeoff between safety and vulnerability consid-
erations of code sections on one end and availability of slack
to meet deadlines on the other end.

More concretely, T-Rex increases the execution time of an
application due to its inherent instrumentation. Our results in
Section VIII assess this overhead. In many embedded applica-
tions, return-path instrumentation results in the invocation of
only few checking instances at execution time since the bulk
of the work is performed in loops whose bodies do not contain
function calls, thus resulting in negligible timing overhead. In
codes containing hot spots in tight inner loops with function
calls, in contrast, security checks impose a significant overhead
that may easily exceed the available slack. In such cases,
application code should be refactored based on transformation
techniques such as inlining, single caller function special-
ization, which avoids allocating a new stack frame in place
(commonly performed by the Intel compiler), or reduction of
function call frequencies through restructuring. The balance
between such transformations and security overhead of T-Rex
to target given slack margins is subject to future work.

T-ProT inflicts overhead through synchronous upcalls and
timeout preemptions that activate the scheduler to subse-
quently check if the application operates within expected
timing bounds, where the former overhead is more significant
than the latter as it is only triggered upon an intrusion. This
method should be used in conjunction with selective placement
of checkpoints using strategic and statistical means (e.g.,
random placement and random activation). Random activations
also strengthen security as attacks become more difficult.

T-AxT has easily controlled overhead since it is scheduler
activated. Should frequent checks be required, timer interrupts
would have to be triggered in shorter intervals adding to the



overhead of interrupt service routines. The overall objective
is to provide adequate coverage of checkpoints to maximize
overall security within the given timing constraints. While the
details of such placements and their trade-offs are beyond the
scope of this paper, all methods are designed to allow selective
instrumentation subject to future work.

Overall, our security-enhancing methods with their over-
heads have acceptable costs when properly tuned for providing
security without compromising timeliness. By adjusting the
frequency of dynamic checks, particularly for less critical
sections, one can trade off overheads for an increase in
vulnerability level. The trade-off between overhead and level
of security is common in general-purpose computing, yet
the implications on timeliness add another equation to this
trade-off. Our techniques target real-time CPS where system
criticality outweighs performance concerns making security a
mandate rather than an option.

VIII. I NSTRUMENTATION OVERHEAD

We assessed the overall benchmark overheads relative to the
performance costs of each of our methods. Table III depicts
these overheads in percent relative to the application’s base
execution time without the security methods. We distinguish
the “default overhead” corresponding to the experiments of
Section VI and “scaled overhead” with variations on the
frequency of intrusion checks.

For T-Rex, the default overheads range from 0.22% to
1.54% for three of the four benchmarks. Such overheads are
negligible assuming just minimal slack in a real-time task
schedule. The higher overhead of 18.71% for ADPCM is due
to its modular structure compared to other benchmarks. It
consists of several small functions that are called within aloop.
Thus, T-Rex checks are invoked more frequently at a deeper
nesting level than in other benchmarks. Code restructuring,
such as inlining, reduces this overhead to that of the other
benchmarks. For example, after inlining calls at the inner-
most loop levels for ADPCM, the T-Rex scaled overhead
was reduced to just 0.32%, as depicted in the last column
of table III. For the remaining benchmarks, default overheads
did not justify any inlining so no scaled overheads are reported
for T-Rex. The performance impact of T-Rex after occasional
code restructuring is low.

The overheads for T-ProT vary depending on the appli-
cations instrumentation frequency. The default overhead for
the experiments in Section VI ranges between about 7% and
16%. Such instrumentation with a high level of coverage
incurs a sizable performance penalty in performing finer grain
security checks. The scaled overheads in last column of
table III of about 3%-8% correspond to a reduction in the
number of instrumentation checkpoints by half relative to the
default method. This is accomplished by selective activation
of instrumentation checkpoints but could alternatively also be
realized by selective placement.

T-AxT also supports a tunable performance overhead de-
pending on the frequency of the periodic wake up that initiates
the intrusion check. We used a periodic wake up of 20,000
cycles, which provides a reasonably frequent security check

at a dynamic overhead comparable to that of T-ProT with a
constant default overhead of approximately 16% . The last
column of the table shows the scaled overhead of about 8%
for a 40,000 cycle instrumentation period.

These results show that overhead scales linearly with instru-
mentation frequency for all of our techniques. Such scalingis
easily controlled (a) for T-AxT through selection of periods,
(b) for T-ProT through rate control and (c) for T-Rex through
inlining, rate control or a combination of both.

Tab. III DYNAMIC PERFORMANCEOVERHEADS

Method # Benchmark Default Overheads Scaled Overheads
T-Rex SRT 0.22% N/A

LMS 1.54% N/A
ADPCM 18.71% 0.32%

FFT 0.021% N/A
T-ProT LMS 7.55% 3.68%

FFT 16.17% 7.92%
CNT 10.05% 4.92%

T-AxT LMS 15.89% 7.94%
SRT 15.89% 7.94%
CNT 15.89% 7.94%

IX. RELATED WORK

Much of past work has focused on the evaluation of generic
security features in the context of scheduling real-time appli-
cations. Often, certain out-of-the-box security mechanisms are
applied at the cost of ensuring timeliness while arguing that
security is improved [23], [29]. Past work on embedded sys-
tems security has focused on sensor networks including remote
memory verification, network-related anomaly detection atthe
packet or application level [20], [31], [32], [30], [28]. Timing
analysis is considered in literature as a means to reverse-
engineer encryption techniques [19] instead of utilizing it for
protection. The emphasis of this work is on utilizing timing
analysis bounds to detect code injection attacks.

The most closely related work uses a hardware/software
combination to detect attacks [22]. In a first technique, a
new stage is added to the processor pipeline to check on an
address before data is written to it. If the value is greater than
that of a special register delimiting vulnerable stack regions
then write is denied. In the second technique, a new “sjmp”
instruction XORs the write address with the value stored
in the special register to assess validity of the jump target.
Other approaches rely on hardware buffers to store return
addresses [9] when buffer space is available. These techniques
do provide security with negligible performance overhead but
at the cost of specialized modifications to hardware. Our work
does not require special hardware support.

Buffer overflow may be detected in general-purpose systems
by placing canaries adjacent to the return address on stack,
which may be overwritten in an attack [6]. If a tampered
canary is detected prior transferring control at a return, the
program aborts itself. Yet, even pseudo-randomized canaries
can be exploited in systematic repeated attacks.

Another protection mechanism employed in general-purpose
systems is to utilize address-space layout randomization
(ASLR) [21]. The stack is placed in a hard-to-guess location
in the memory. If an attacker attempts to jump to code



placed on the stack, it becomes difficult to infer absolute
stack addresses where attack code may have been injected.
This method is best suited for systems that employ 64-bit
addressing spaces,i.e., where ample room for stack placement
exists such that repeated brute-force attempts are statistically
ineffective. However, in a space-constrained embedded real-
time system with 8/16/32-bit address spaces, such techniques
may be circumvented by repeated attacks [21].

X. CONCLUSION

We developed three novel software methodologies that pro-
vide enhanced security in deeply embedded real-time systems.
We attain elevated security assurance through two levels of
instrumentation that enable us to detect anomalies, such as
timing dilations exceeding WCET bounds. (1) T-Rex: Tight
timing bounds of selected code sections are obtained during
static timing analysis at no extra cost during the required
schedulability analysis and are subsequently utilized to mon-
itor execution during run-time. Buffer overflow attacks are
detected due to exceeded WCET bounds upon return path in-
strumentation for code injections as small as 5-22 cycles. (2) T-
ProT: Application instrumentation issues synchronous sched-
uler calls to assess timing bounds validity for precisely delim-
ited sections of code. T-ProT by itself uncovers coarser-grain
injections between 9 and 5k cycles at controllable overhead
and complements T-Rex. (3) T-AxT: Asynchronous scheduler-
triggered validations of timing bounds are performed for
approximated sections of code, which, compared to T-ProT,
obviates application instrumentation, results in low overhead
and complements T-Rex. Attacks uncovered by T-AxT alone
are consequently the coarsest grained. These security checks
can be strategically scheduled to utilize otherwise idle time in
the schedule. Such detection of system compromises through
micro-timing information is a novel contribution to real-time
systems to the best of our knowledge.
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