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Abstract

With the supercomputing community headed toward the era of exascale
computing, power has become one of the foremost concern. Today’s fastest
supercomputer, Tianhe-2, already consumes 17.8MW to achieves a peak
performance of 33.86PFlops [1]. At least an order of magnitude improvement
in performance while maintaining the power envelope is required for exascale.
Yet, manufacturing variations are increasingly creating a heterogeneous com-
puting environment, even when identical processing components are deployed,
particularly when operating under controlled power ceiling.

This work contributes a procurement model to aid in the design of a
capability system that achieves maximum performance while considering
manufacturing variations. It appropriately partitions a single, compound
system budget into the CAPEX (infrastructure cost) and the OPEX (operating
power cost). Early results indicate that aggressive infrastructure procurement
disregarding such operational needs can lead to severe performance degrada-
tion, or significant hidden operating cost will be incurred after procurement.

1. Introduction

As we approach exascale, a supercomputer is expected to
cost about $200 million and use only 20 megawatts of power
in achieving an exaflop [4]. Considering the least expensive
power in the U.S. (≈ 5 cents/kWh) [17], the cost of operating
this machine is $8.76 million per year. Considering a lifetime
of five years, its operating cost is about $45 million or nearly
25% of the total cost of ownership (TCO).

The status quo of supercomputing procurements is that
the power is provisioned for the worst case (WCP). After
the initial burn-in phase, which often entailed a Linpack run
among other application acceptance tests, the power utilization
of the machine drops to 61% of the procured power [13]. This
implies that the infrastructure put in place for peak power is
no longer fully utilizing this power. Such overprovisioning can
be considered a bad investment of budget during steady state
operation.

Our prior work on power-efficient computing under manu-
facturing variations shows that processors are not most power
efficient at WCP [8]. Hence, a system with WCP procure-
ment is not power efficient. Processors achieve peak power
efficiency at disparate power bounds due to manufacturing
variability [14]. Efficient processors achieve peak power effi-
ciency at lower power bounds than the inefficient processors.
Increasing the operating power of the processors beyond these
bounds leads to diminishing returns in terms of performance.
Instead, some power of these processors can be redirected
to additional processors to get better performance. Given a
hard power constraint, we proposed PTune, a power tuner

that exploits this concept to maximize the performance of the
system while staying within the power budget.

In this work, we propose a procurement strategy to design
a machine that achieves maximum performance per dollar
by determining the optimal partitioning of the total budget
into capital expenditure (CAPEX) and operating expenditure
(OPEX). For the scope of this paper, we limit the OPEX to
the cost of power procured for the lifetime of the machine.

Previous research [9], [19], [20], [10] has developed cost
models for predicting the total cost of ownership (TCO) for
cloud computing centers and datacenters. These models do
not share our objective of maximizing performance under a
fixed system (dollar) budget. In recent work [11], Patki has
studied the effect of adding more infrastructure to the system
under a fixed power budget. System-wide solutions for power
constraint systems have been proposed that aim at increasing
the throughput of systems and the runtime of the jobs under a
fixed power budget [7], [12], [15], [16], [6], [13], [5]. Unlike
all of this work, we consider the system’s power budget as a
variable expenditure that we balance against the infrastructure
cost to determine the break down of the system’s total budget
that leads to maximum performance. Furthermore, our model
takes the effects of manufacturing variation on the processor’s
performance into account.

The paper is organized as follows. Section 2 states the
problem statement. Section 3 gives an overview of the cost
model. Sections 4 describes our procurement strategy. Sec-
tion 5 presents the modeling results. Section 7 summarizes
the contributions.

2. Problem Statement

Given a budget, Sys Budget, for a system acquisition,
design a machine for optimal performance under the assigned
budget. The total budget can be divided into two main vari-
able budgets: (1) CAPEX or the cost of the infrastructure
(Sys Infrastructure Cost); and (2) OPEX or the cost of
power (Sys Power Cost) .

We propose a procurement strategy of building a system
that achieves maximum performance under the total budget by
appropriately partitioning the budget into capital expenditure
and operating expenditure. To model the system, we quantify
performance in terms of instructions retired per second (IPS).
System’s performance is represented by SysIPS. Our objec-



tive is to
Maximize(SysIPS) (1)

subject to Sys Budget ≥ Sys Power Cost +
Sys Infrastructure Cost.

3. Cost Model

To demonstrate the model, let us consider a system of Intel
Ivy Bridge (12 core Xeon E5-2697 v2 2.7GHz) processors.
We make a number of assumptions about the system costs to
simplify the problem.

Capital Expenditure (CAPEX):. CAPEX is the cost of
the physical assets (Sys Infrastructure Cost). We limit
CAPEX to the cost of purchasing racks. The cost of a rack
(Rack Infrastructure Cost) is assumed to be $366K. This
number is derived from the data for Jaguar [2], [3]. A rack
can host a maximum of 100 server nodes, where each node
has two processor sockets. In this paper, we assume all racks
are identical, i.e., all the racks have the same set of processors
and, hence, the same processor characteristics. We assume a
variation of 30% in performance across the processors of a
rack due to manufacturing variability [8].

Operational Expenditure (OPEX):. OPEX mainly con-
sists of the fraction of the budget spent on power
(Sys Power Cost) required to run the system for a pre-
determined fixed duration. For simplicity, we limit ourselves
to the power associated with computing; networking and I/O
is subject to future work, and so are secondary operational
costs, such as maintenance and support, including staff (typi-
cally subject to a separate budget). We assume the minimum
power required by the nodes (Pnode,min) is 110W while the
maximum power (Pnode,max) corresponding to the Thermal
Design Power (TDP) of the processors is 260W. We assume a
flat power power of 5 cents per kWh [17]. Finally, we assume
the system’s lifetime of 5 years (T = 5 × 365 × 24 hours).
This implies that the total cost of acquiring and operating the
machine for at least 5 years should not exceed the total budget.

3.0.1. Workload:. A supercomputing workload consists of
multiple and often coupled parallel scientific simulations that
execute on several processors simultaneously. In the interest of
simplicity, we assume that the system runs a single application
over the duration of its lifetime. To assess the differences
between codes, we study the effect of CAPEX and OPEX on
performance for 4 different codes, viz., EP, SP, BT from the
NAS parallel benchmark suite and CoMD from the Mantevo
suite, in the modeling results.

4. Procurement Strategy

We propose a procurement strategy that builds a system with
maximum performance under an assigned total budget. We
assume that a rack is always filled to capacity with compute
nodes, i.e., it hosts 200 processors. It can be powered at:

• Maximum Power: A rack is supplied with worst case
power (WCP) to be able to run the processors at their
Thermal Design Power (TDP).

• Minimum Power: A rack is supplied with minimum
power required by the computation capability to be
functional.

• Medium Power: A rack is supplied with less than required
maximum power but greater than the bare minimum
power required by the computation capability it hosts.

The performance (and cost) of a rack is
maximal under maximum power configuration. The
maximum power that can be provisioned to a rack
(Rack max power) is 100 × P(node,max). Its power cost is
100×P(node,max)×$0.05perkWh×T = $56, 940. Therefore,
Rack TotalCost(max) = $56, 940 + $366, 197 = $423, 137.
Rack TotalCost(min) represents the minimum budget re-

quired to add a rack to the system. The infrastructure cost
is the same as that of a packed rack. Its power cost is
100×P(node,min)×$0.05perkWh×T = $21, 900. Therefore,
Rack TotalCost(min) = $22, 338 + $366, 197 = $388, 535.

Given a fixed Sys Budget, the number of racks in the
system (num rack) that can be procured ranges between
num rack⊥ and num rack>.

The lower bound on num rack (num rack⊥) is
num rack⊥ = Sys Budget

Rack TotalCost(max)
.

The upper bound on num rack (num rack>) is
num rack> = Sys Budget

Rack TotalCost(min)
.

For num rack racks, the Sys Infrastructure Cost is
num racks×Rack Infrastructure Cost.
The Sys Power Cost is calculated as
Sys Power Cost = Sys Budget

− Sys Infrastructure Cost.
The Sys Power is calculated as
Sys Power = min( Sys Power Cost

$0.05 per kWh×T ,
num rack ×

Rack max power).
The Rack Power is calculated as
Rack Power = Sys Power

num rack .
At rack-level, for an assigned power budget of

Rack Power, PTune[8], our variation-aware power tuner,
determines the power distribution across the processors that
achieves maximum performance within this rack.

Rack Performance = PTune(Rack Power)
As all racks are considered to be identical (statistically,

given their large processor count), the system’s performance
can be calculated as

SysIPS = num rack ×Rack Performance.
Given a Rack Power budget, PTune[8] distributes the

budget across the processors of the rack systematically in
a variation-aware, i.e., processor-sensitive, manner to max-
imize the performance of this rack. A system configura-
tion can be represented as a tuple over (1) the number of
racks in the system, (2) power allocated to a rack, and
(3) the resulting performance of a system, denoted as (<
num racks,Rack power,SysIPS >). The winning design
is the one that achieves the objective of Eq.1.



5. Experimental Setup

Characterization experiments were conducted on the Cat-
alyst cluster, a 324-node Ivy Bridge cluster at Lawrence
Livermore National Laboratory (LLNL). We used the perfor-
mance and power data from this entire cluster to represent
one rack in the machine that we designed in the previous
section. Each node has two 12-core Intel(R) Xeon(R) CPU E5-
2695 v2 @ 2.40GHz processors and 128 GB of memory. We
used MVAPICH2 version 1.7. The codes were compiled with
the Intel compiler version 12.1. The msr-safe kernel module
provides direct access to Intel RAPL registers via libmsr [18].
We used the package (PKG) domain of RAPL that provided
us the capability of capping power for each of the processors
in an experiment. The environment was simulated in R. We
used EP, BT, and SP from the NPB suite and CoMD from the
Mantevo suite in their pure MPI versions.
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Fig. 1: PTune: Power Tuning Results for a rack at several rack
power budgets.

6. Results

We observe the impact of different breakdowns of the
system’s budget (into CAPEX and OPEX) on the performance
of the system. At the rack-level, we use PTune [8] to get
the maximum performance under the rack’s power budget.
Fig. 1 depicts the performance of a rack at several power
budgets. The x-axis represents the rack’s power budget in watt
and the y-axis represents the rack performance normalized
to the maximum performance across applications. We show
results for EP, SP, BT, and Comd. Data points correspond-
ing to 26kW represent the performance at maximum power
(Rack max power). Every data point represents the perfor-
mance corresponding to variation-aware power tuning of the
rack power across processors. We observe that the performance
increases non-linearly with rack power.

Fig. 2 shows the performance of a system under a fixed
budget of $102 million. The x-axis represents the number
of racks and the y-axis represents the system performance
normalized to the optimal performance. The optimal design
at 252 racks achieves 5% better performance compared to the
WCP. Purchasing more racks beyond this point (and effectively
procuring less power) leads to suboptimal capability. However,
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Fig. 2: Effect of budget partitioning on the overall system
performance

increasing the number of racks up to 255 gives at least as much
performance as the WCP design but addition capacity.

Purchasing more than 255 racks degrades the capability of
the machine by up to 29% compared to the optimal design.
No more racks can be added beyond this point as the system
budget will not suffice to provision the bare minimum power
required to power the system. It is important to note that rack
(n+1) is procured at the expense of the power stolen from the
prior n racks. Since the racks are always fully packed, their
CAPEX is fixed. Hence, the only way to accommodate an
addition rack is to reduce the OPEX of the prior n racks. From
this, we conclude that aggressively purchasing infrastructure
under a fixed system budget by disregarding the diminishing
budget for power does not lead to the best capability system
design. A balance needs to be stricken between the CAPEX
and the OPEX for an optimal system design.

Figures 3, 4, and 5, compare the results for 3 different codes
under several system budgets. (Results for SP are similar to EP
and are omitted due to space). The x-axis represents number of
racks and the y-axis represents system performance. The figure
shows 7 system budgets that correspond to the cost of 40, 80,
120, 160, 200, 240, 280, and 320 racks at maximum power.
The first data point in each system budget curve represents the
performance at WCP.

Overall, we make the following observations for these
figures:

• Power-aware procurement can improve performance by
up to 4%, 6%, 7%, and 4% for EP, SP, BT, and Comd,
respectively, compared to worst-case power provisioning.

• Without power-aware procurement, performance can de-
grade up to 25%, 28%, 41%, and 38% for EP, SP, BT, and
Comd, respectively, compared to worst-case power provision-
ing.

• Performance increases linearly with the system budget.
• Performance linearly increases with the number of racks

before it reaches the peak, after which there is a steep perfor-
mance degradation. Peak performance is achieved relatively
early in case of BT (Fig. 4) compared to EP and CoMD
(Figures 3 and 5). BT has a longer tail that follows the
peak, representing the feasible system designs that lead to
degraded system performance due to aggressive infrastructure
procurement.

• The absolute performance achieved by the system depends
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Fig. 4: BT
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Fig. 5: Comd
upon the application, i.e., the optimal system design also
depends on the application. The assumption that our system
executes a single application during the course of its lifetime
does not hold in reality. Hence, it is necessary to compromise
on middle ground with a design that, on average, fits the needs
of the applications when run in capability mode.

7. Summary

This work analyzed the effect of manufacturing variations
on procurement and operations. It showed that when partition-
ing the system’s budget into infrastructure cost and power cost,
a balance needs to be stricken between the two to achieve an
optimal ratio of performance per cost (dollar). More infras-
tructure does not necessarily mean more performance under a
fixed total budget. Model-based analysis provides the means
to optimize power-aware procurement/operation for a set of
application codes. Such strategies may need to be adopted in
the future to best utilize a compound budget for systems and
operations. Failure to plan ahead may either result in a nominal
loss in performance compared to such a balanced system, or
a significant additional cost will be incurred in operating cost
to efficiently utilize an overprovisioned hardware installation.
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