
SparkScore: Leveraging Apache Spark for
Distributed Genomic Inference

Amir Bahmani∗ Alexander B. Sibley† Mahmoud Parsian‡ Kouros Owzar§ Frank Mueller¶
∗¶Department of Computer Science, North Carolina State University, Raleigh, NC
†§Duke Cancer Institute, Duke University School of Medicine, Durham, NC

‡ Illumina, Santa Clara, CA
∗abahman@ncsu.edu †alexander.sibley@duke.edu ‡mparsian@illumina.com §kouros.owzar@duke.edu ¶mueller@ncsu.edu

Abstract—The method of the efficient score statistic is
used extensively to conduct inference for high throughput
genomic data due to its computational efficiency and ability
to accommodate simple and complex phenotypes. Inference
based on these statistics can readily incorporate a priori
knowledge from a vast collection of bioinformatics databases
to further refine the analyses. The sampling distribution of
the efficient score statistic is typically approximated using
asymptotics. As this may be inappropriate in the context of
small study size, or uncommon or rare variants, resampling
methods are often used to approximate the exact sampling
distribution. We propose SparkScore, a set of distributed
computational algorithms implemented in Apache Spark, to
leverage the embarrassingly parallel nature of genomic resam-
pling inference on the basis of the efficient score statistics.
We illustrate the application of this computational approach
for the analysis of data from genome-wide analysis studies
(GWAS). This computational approach also harnesses the
fault-tolerant features of Spark and can be readily extended to
analysis of DNA and RNA sequencing data, including expres-
sion quantitative trait loci (eQTL) and phenotype association
studies.

I. INTRODUCTION

The advent of high-throughput technologies for DNA
genotyping and sequencing has greatly accelerated the
pace for medical discovery while posing new statistical
and computational challenges [8], [23], [29]. Genomic as-
sociation studies based on SNPs generally fall into two
categories. The first is based on studying the effect of single
variants with respect to a phenotype. These are referred
to as variant-by-variant analyses. Taking a broader view,
what may be of interest is to study the joint relationship
between a set of SNPs and a phenotype. The set could
be the SNPs within a biological pathway or located within
a gene. These are referred to as SNP-set analyses. The
latter require the calculation of the millions of variant level
statistics, essentially the conduct of a variant-by-variant
analysis, which are in turn aggregated within each set.

The method of the efficient score statistic [32], given
its high computational efficiency and stability, and ability to
incorporate complex phenotypes, serves as the backbone
for a wide variety of inferential methods for analysis of
genomic data (e.g., [45] [34] [25] [13] [21] [17] [30] [44] [36]
[9]). These methods have been used for genomic discovery
in a spectrum of diseases, identifying: de novo mutations

associated with risk of neurodevelopmental and neuropsy-
chiatric disorders [14]; variants associated with body mass
index (BMI) in African American participants of the Women’s
Healh Initiative [10]; genes associated with risk of non-
small cell lung cancer (NSCLC) [39]; common variants
associated with chemotherapy induced neuropathy in breast
cancer patients [3]; common variants associated with overall
survival in pancreatic cancer patients [12]. Unlike the Wald
and likelihood ratio tests [7], the efficient score statistic does
not require numerical optimization of the primary model
parameters. The method also enables the incorporation of
baseline covariates into the analysis.

In order to conduct the inference, one must estimate the
sampling distribution of the statistics. One approach is to use
asymptotics, or large sample theory. That is, to consider the
limit, as the sample size of the study approaches infinity, of
the sampling distribution under certain assumptions. These
assumptions, often called regularity conditions, are often
not realized. For example, it can be shown that the type
I error rate can be severely inflated for SNPs that have a
low mutation rate [26]. Furthermore, for some studies the
sample size may not be large enough to warrant the use of
large sample methods in the first place.

Resampling methods [40] provide an alternative ap-
proach for genomic inference. They generally impose fewer
assumptions than their asymptotic counterparts, at the cost
of greatly increasing the computational burden of the analy-
sis. While asymptotic approaches require that the statistics
are calculated only once per analysis, resampling based
approached require that this multitude of statistics is calcu-
lated repeatedly. As both the marginal score statistics and
the resampling replications are calculated independently,
both procedures are embarrassingly parallel, offering the
potential for massive reductions in computation time.

To address the resulting computational challenge for re-
sampling based inference, what is needed is a scalable and
distributed computing approach. We stipulate that a cloud
computing platform is suitable as it allows researchers to
conduct data analyses at moderate costs, participating in the
absence of access to a large computer infrastructure [16],
[35], [37]. The pay-as-you-go model of cloud computing,
which removes the maintenance effort required for a high
performance computing (HPC) facility while simultaneously
offering elastic scalability, makes it well suited for genomic



analysis.

Apache Spark is a new computing framework that can
outperform Hadoop significantly in iterative machine learning
jobs if data fits into memory across a large number of
compute nodes. Beyond in-memory computing, Spark has
been used to interactively query a 39 GB dataset with sub-
second response time [43].

Spark introduces an abstraction called resilient dis-
tributed datasets (RDDs). RDDs constitute a read-only col-
lection of objects partitioned across a set of machines that
can be rebuilt if a partition is lost. Spark also provides a
caching mechanism, where users can explicitly cache an
RDD in memory across machines and reuse it in multiple
map-reduce-like parallel operations.

This work gives an overview of the statistical methodol-
ogy needed for the aggregation of SNP-level associations
into feature-level statistics, as well as the computational
algorithms used to implement them in Apache Spark. We
illustrate the application of this computational approach for
the analysis of data from genome-wide analysis studies
(GWAS). Experiments conducted with Amazon’s Elastic
MapReduce (EMR) on synthetic data sets demonstrate
the efficiency and scalability of SparkScore, including high-
volume resampling of very large data sets.

In the following, we use the terms “resampling” (repeated
calculation within a sample space in statistics) and “iteration”
(repeated calculation in computer science) interchangeably.

II. METHOD

Statistical Model

A SNP is typically represented as a pair, (chr,pos),
according to its position, pos, on a chromosome, chr, with
respect to a reference genome. Without loss of generality,
we index the sequenced or genotyped SNPs using the
integers 1, . . . , J . Let Gij denote the genotype for patient
i at locus j, and Yi be a random variable that quantifies
or qualifies the phenotype, or outcome of interest, for that
patient, e.g., survival time, extent of disease, or a biomarker
level. We denote the marginal null hypothesis for locus j,
that the SNP j and the phenotype of interest are indepen-
dent (not associated) as H0j : Y ⊥ Gj . We propose to
test this hypothesis using the method of efficient score. Let
Uj =

∑n
i=1 Uij be the corresponding marginal score, where

Uij is the contribution of patient i to the score for locus j.
If the score statistic is large in magnitude, we take this as
statistical evidence for association between the SNP and the
outcome.

The score statistics for individual SNPs can be combined
to test for associations between the phenotype genes. A
gene can be represented as a triplet, (chr, start, end), where
start and end are the start and end positions of the gene
on chromosome chr with respect to the reference genome.
Without loss of generality, we index the genes with the
integers 1, . . . ,K. Then let IJ = {I1, . . . , IK} be a partition
of the SNPs 1, . . . , J . In other words, each Ik is a non-empty
subset of {1, . . . , J}, which we will refer to as a SNP-set,
containing all SNPs j whose positions lie within gene k. The
corresponding null hypothesis for SNP-set k is denoted by

Hk = ∩j∈IkHj . Rejecting this hypothesis would indicate that
there is statistical evidence that at least one variant within
the set is associated with the phenotype.

The SNP-set statistics are composed from the marginal
score statistics of the member SNPs. One method of
combining the marginal scores is the Sequence Kernel
Association Test (SKAT) [42]. The SKAT statistic for SNP-set
k is given by

Sk =
∑
j∈Ik

ω2
jW

2
j =

∑
j∈Ik

ω2
j

{ n∑
i=1

Uij

}2

,

where ωj is the weight for SNP j. For example, SNPs could
be weighted by the quality of the genotyping results, their
relative allelic frequency, or by the probability that a mutation
at that locus is detrimental. For a review of methods for SNP-
set testing, see [28], [4], or [18].

In order to gauge if the resulting statistics provide suf-
ficient evidence to reject any of the K null hypotheses,
we must estimate the sampling distribution of the K SKAT
statistics from the data. To this end, we will consider two
resampling based approaches. A permutation replicate for
the marginal statistic Uj is obtained randomly by shuffling
the phenotype pairs {(Y1,∆1), . . . , (Yn,∆n)} among the
patients, and then updating the Uij terms as Ũij . The terms
(Ũ1, . . . , Ũm) ultimately yield resampling replicates of the
SKAT statistics S̃1 . . . , S̃K .

An alternative method to permutation resampling is the
Monte Carlo-based method proposed by Lin [20]. Here
replicates are obtained by first simulating a random sample
Z1, . . . , Zn from a standard normal distribution, and then
updating the Uij terms according to Ũij = ZiUij . The
advantages of this method, compared to permutation re-
sampling, are that it is computationally more efficient, since
it reuses the original Uij , and that it allows for incorporation
of baseline covariates in the analysis.

In either case, the S̃k from such replicates are then used
as an empirical estimate of the distribution of the observed
SKAT statistic Sk. The smaller the proportion of resampling
statistics found to be greater than the observed statistic,
the stronger the evidence of an association between the
SNP-set and the phenotype. This proportion forms the p-
value for the SKAT statistic, and the precision of the p-
value is therefore directly tied to the number of resamplings
performed.

Let us consider these issues within the context of a
specific example that forms the basis for our experiments.
Suppose that the phenotype of interest is time to death
following start of a treatment regimen in a clinical trial. For
each patient, periodic follow-up reports, providing updated
health information, are received. At the time of data analysis,
the actual time of death is only observed for those patients
for whom a report of death has already been received. For
the remaining patients, what is observed is not time of death
but rather the length of time between the start of therapy and
the last follow-up report. This is typically called the follow-up
time. For the purpose of the analysis, the times of death for
these patients are effectively censored at their respective
last follow-up dates. The corresponding phenotype can be



presented as the pair (Yi,∆i), where Yi is the observed time
and ∆i ∈ {0, 1} is the event indicator. For a dead patient,
Yi denotes time of death and ∆i is set to 1, while for a
censored patient Yi denotes the last follow-up time and ∆i

is set to 0.

The Cox score statistic [6] is a commonly used for infer-
ence in this setting. This statistic, under the null hypothesis
Hj , is given as

Uij = ∆i(Gij − aij/bi),

where ai =
∑n

l=1 1(Yl ≥ Yi)Glj , and bi =
∑n

l=1 1(Yl ≥
Yi). Here, 1(x) is the indicator function. These Uij are then
aggregated into Uj , and the Uj , for each j ∈ Ik, are further
combined to form the SKAT statistics for each gene k. Note
that bi is invariant with respect to the SNP, as it is not indexed
by j, and only needs to be calculated once per analysis.

To illustrate the computational advantage of the score
test compared to the Wald and likelihood ratio tests, note
that the latter would require solving the equation

Uj(βj) =
n∑

i=1

∆i

{
Gij −

∑n
l=1 1(Yl ≥ Yi)Glj exp(βjGlj)∑n

l=1 1(Yl ≥ Yi) exp(βjGlj)

}
= 0,

for βj . Given that there is no closed-form solution for this
equation, numerical methods for optimization or root-finding
will have to be employed. It should be noted that this
optimization must be executed for every SNP in the analysis.
Computational complexity aside, the use of the Walk or
likelihood ratio tests, would also require that convergence of
each optimization is monitored, and that corrective actions
are taken in case of failure of convergence.

Computational Model

In this section, we outline the computational approach,
including the algorithms for Monte Carlo and permutation
resampling. As mentioned in the introduction, Apache Spark
not only provides scalability and fault tolerance of map-
reduce, but it also provides multiple useful operations, such
as cache, join, etc.

Figure 1 shows a simple illustration of the SparkScore
framework. We tested SparkScore on YARN (Yet Another
Resource Negotiator) and Spark clusters. Because we only
tested SparkScore on a Hadoop Distributed File System
(HDFS), we only depict HDFS in Figure 1, even though
SparkScore, like any other Spark-based application, could
run on other non-HDFS Data Management Services (e.g.,
Ceph).

Spark algorithms for calculating Cox scores and resam-
pling statistics are shown in Algorithms 1, 2 and 3. For both
the Monte Carlo and permutation methods, we first calculate
the observed scores, S0

k . Algorithm 2, after calculating S0
k ,

calls Algorithm 1’s steps 7 to 12 for each iteration. Therefore,
Algorithm 2 is the iterative version of Algorithm 1. On the
other hand, in the Monte Carlo implementation, step 8 of
Algorithm 1 is different. After calculating S0

k , the Monte Carlo
algorithm caches the U RDD and reuses it in the next
iterative steps. Apache Spark provides caching to explicitly
cache an RDD in memory across machines and reuse it in
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Figure 1: SparkScore Framework

multiple map-reduce-like parallel operations [43]. To assess
the impact of caching, we conducted multiple experiments
reported in Section V.

III. SYNTHETIC DATA SETS

The synthetic data sets are generated using the R [31]
statistical environment. Given that they are generated for
sole the purpose of assessing relative efficiencies of com-
putational approaches, rather than their statistical operating
characteristics, it is not necessary to fully account for the
biological and clinical characteristics present in real data.
For example, in reality, certain pairs of SNPs would be highly
correlated across patients, but here they are generated inde-
pendently. Also, in practice, patient survival and censoring
times are generated independently and then compared to
assure a fixed, known median survival time. Here, the event
indicator is applied arbitrarily.

The phenotype, survival time, for each patient is drawn
from an exponential distribution with parameter 1

12 , simulat-
ing a mean survival time of 12 months. The event/censoring
status for each patient is drawn from a Bernoulli distribution
with parameter 0.85, yielding an 85% event rate. For each
SNP j, the genotypes, Gij , for all patients are drawn
from a binomial distribution with parameter (2, ρj). Here,
ρj ∈ (0, 1) denotes the relative allelic frequency of the
polymorphism, and is varied across SNPs. Finally, the SNP-
sets are composed arbitrarily from all simulated SNPs by
sampling the size of each set from an exponential distribu-
tion with parameter m/K. Here, m is the total number of
SNPs being simulated and K is the desired number of SNP-
sets. The resulting values are rounded down to the nearest
integer, or up to 1 if they are between 0 and 1. To ensure
that the computation time attributed to the analysis of each
SNP is accounted for in our simulations, the SNP-set K is
augmented by the SNPs not picked by SNP-sets 1 throgh
K−1. As the number of SNPs included in the calculations is
a critical factor in the execution time, in practical applications,
any SNP not present in at least one SNP-set would be
excluded from the data.



Algorithm 1: Computing SKAT Statistic Sk

Input: Genotype Matrix, Pairs of Events and Survival
Times per Patient, SNP Weights, SNP-Sets

Output: HashMap<SNPSetk, Sk>
1 Read input files from HDFS;
2 RDDWeightsSNP

= Map (SNP Weight Text File)
emit (Key: SNP j , Value: Weight2SNPj

);
3 RDDGM = Map (Genotype Matrix Text File)

emit (Key: SNP j , Value: ((Patient1, Value1) ...
(Patientn, Valuen)));

4 UnionSetSNPSets =
K⋃

k=1

SNPSetk;

5 RDDFGM = Filter(RDDGM based on
UnionSetSNPSets);

6 Broadcast Pairs of <Event Indicator, Survival Time>
over all cluster nodes;

7 RDDU = Map(RDDGM ):
(I) For each Patient i:

Calculate U [SNP j ,Patient i];
(II) emit (Key: SNP j , Value: list<Patient i,
U [SNP j ,Patient i]>;

8 RDDInnerSigma = Map (RDDU ):

(I) Calculate U2
SNPj

= {
n∑

i=1

U(Patient i,SNP j) }2;

(II) emit (Key: SNP j , Value: U2
SNPj

);
9 RDDJoin = Join (RDDWeightsSNP

and
RDDInnerSigma):
emit (Key: SNP j , Value: < U2

SNPj
,Weight2SNPj

>);
10 RDDSNPscore = Map (RDDJoin):

emit (Key: SNP, Value: Weight2SNPj
× U2

SNPj
)

11 For all SNPSetk:

Calculate Sk = {
J∑

SNPj ∈ SNPSetk

SNP scorej
};

12 return Key: SNP-Set, Value: Score;

Algorithm 2: Permutation Method
Input: Genotype Matrix, Pairs of Events and Survival

Times per Patient, SNP Weights, SNP-Sets,
Number of Iterations (B)

Output: HashMap<SNPSetk, counterk>
1 HashMap<SNPSetk, S0

k> = Call Algorithm 1, and
calculate Observed Score (S0

k) ;
2 Generate B random shufflings of the pairs of <Event

Indicator, Survival Time>;
3 For b = 1 to B:

(I) Recalculate step 6 to 12 of Algorithm 1, iterating
over the shufflings of pairs of events and survival
times to get Sb

k;
(II) For all SNPSetk, if Sb

k >= S0
k then

increment counterk;

Algorithm 3: Monte Carlo Method
Input: Genotype Matrix, Pairs of Event and Survival

Time per Patient, SNP Weights, SNP-Sets,
Number of Iterations (B)

Output: HashMap<SNPSetk , counterk>
1 HashMap<SNPSetk, S0

k> = Call Algorithm 1, and
calculate Observed Score (S0

k);
2 Cache RDDU from Algorithm 1;
3 Generate B sets of n random samples from a

Normal(0, 1) distribution to serve as Monte Carlo
weights, MCWeightPatienti ;

4 For b = 1 to B:
(I) As a modification of Step 8 in Algorithm 1,
RDDInnerSigma = Map (RDDU ):

(a) Calculate
n∑

i=1

U(Patient i,SNP j)×MCWeightPatienti ;

(b) emit (Key:SNP j , Value: U2
SNPj

);
(II) Continue steps 9 to 12 of Algorithm 1;
(III) For all SNPSetk, if Sb

k >= S0
k then

increment counterk;

Again, while these synthetic data may not fully reflect
biological or clinical features of real data, the size and
format used in our simulations are representative of those
found in actual data, ensuring realistic and relevant algorithm
execution times.

IV. EXPERIMENTAL SETUP

We utilize Amazon’s EMR to conduct the experiments.
We create clusters of m3.2xlarge Amazon EC2 instances.
Table I provides information about m3.2xlarge. Apache
Spark with YARN is supported on Amazon EMR clusters.

Table I: m3.2xlarge - Amazon EC2 Instances

Processors vCPU Mem (GiB) Storage (GB)
Intel Xeon

E5-2670 v2
(Ivy Bridge) 8 30 2×80

To assess the scalability of the proposed Spark al-
gorithms, we conduct three types of experiments. In Ex-
periment A, we test the scalability and sensitivity of the
Monte Carlo method relative to the permutation method.
In Experiment B, we test the impact of software caching
provided by Apache Spark on the Monte Carlo method. And
in Experiment C, we prototype and evaluate selected auto-
tuning capabilities using SparkScore.

To asses runtime predictability and report the standard
deviation, selected configurations of Experiments A and B
are run five times each, and the results are summarized
in Tables III and V. However, due to funding limitations and
the significant runtimes required for the permutation method,
other experiment configurations are run only twice.

In the following Figures and Tables, the zero iteration
case represents the execution time of calculating S0

k using
Algorithm 1. The additional iterations, S1

k to SB
k represent

the statistical resamplings using Algorithm 2 or Algorithm 3.



Moreover, for the Monte Carlo method, software caching is
enabled, unless explicitly stated otherwise.

V. RESULTS AND ANALYSIS

A. Scalability and Sensitivity

Our first experiment focuses on the scalability of the
Monte Carlo method compared to the permutation method.
Input parameters of this experiment are shown in Table II.
Figure 2 depicts the performance of the two methods over
different numbers of iterations. The x- and y-axes denote
the number of iterations and execution time in seconds,
respectively. As we increase the number of iterations, we can
see that the Monte Carlo method significantly outperforms
the permutation method. For 16 iterations, the run-time
of Monte Carlo is an order of magnitude faster than that
of permutation. Also, the execution time of Monte Carlo
with 10,000 iterations is still less than permutation with
16 iterations. Table III summarizes the mean and standard
deviation of the runtimes for five executions of each method
for the specified numbers of iterations. Note that the stan-
dard deviations remain small relative to the execution times,
indicating high predictability of the runtimes.

Table II: Input Parameters for Experiment A

Patients SNPs SNP-Sets

Avg. # SNPs
per

SNP-Set Nodes
1000 100000 1000 100 6
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Figure 2: Scalability - Monte Carlo vs. Permutation
Resampling

Figure 3 depicts the sensitivity of the methods under
different numbers of SNPs and iterations. In this experiment,
the number of iterations × number of SNPs is constant.
Just as in the previous experiment, Monte Carlo outperforms
permutation in terms of performance. However, within each
method performance is quite similar for the three different
configurations, with each resulting in the same amount of
work.
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Figure 3: Sensitivity - Monte Carlo vs. Permutation
Resampling

B. Caching

To assess the impact of caching in our framework, we
test two sets of data simulation parameters. The number of
SNPs is 10K in the one simulation and 1M in another. Input
parameters are shown in Table IV. The results in Figures 4
and 5 indicate a significant impact of caching on Monte
Carlo. The x- and y-axes denote the number of iterations
and execution time in seconds, respectively. The y-axis is
logarithmic in scale for Figure 4. For a genotype matrix with
10K SNPs, the cached version of Monte Carlo for 10, 000
iterations is faster than for 200 iterations of the method
without caching (Figure 4). In Figure 5, for a genotype
matrix with 1M SNPs, the cached version of the Monte
Carlo for 1000 iterations is faster than 10 iterations for Monte
Carlo without caching. Table V summarizes the mean and
standard deviation of the runtimes for five executions of each
number of iterations, with and without caching.

Table IV: Input Parameters for Experiment B

Patients SNPs SNP-Sets

Avg. # SNPs
per

SNP-Set Nodes
1000 10K 1000 100 18
1000 1M 1000 1000 18

C. Auto-tuning

We investigate the benefit of performance optimization
using techniques of auto-tuning in two ways. In the first,
we consider strong scaling, where the number of tasks per
node is changed while the program input size is constant.
Input parameters are reported in Table VI and the results
are shown in Figure 6. We observe that by increasing the
amount of resources for the same workload, the execution
time is reduced significantly. The execution time of 18 nodes
for 20 iterations is two orders of magnitude smaller than that
for 6 nodes.

With Apache Spark running on a YARN cluster in EMR,
for the second investigation we consider three run-time flags
of Apache Spark: (1) the number of executors (containers),
(2) the amount of memory per executor, and (3) the number
of cores per executor. The input parameters are shown in



Table III: Average Runtimes and Standard Deviations for Experiment A

Iterations 0 2 4 8 16 100 1000 10000
Monte Carlo Avg. 509.4 532.2 532.4 516.4 542.8 590.4 1170.8 7036.6
Monte Carlo STDV 9.65 23.15 19.26 17.54 12.23 16.89 54.1 40.29
Permutation Avg. 509.4 1535.2 2594.4 4628.4 8818.6 N/A N/A N/A
Permutation STDV 9.65 74.77 48.64 132.67 344.61 N/A N/A N/A

Table V: Average Runtimes and Standard Deviation for Experiment B

Iterations 0 10 100 200 300 400 500 600 700 800 900 1000 10000
Caching Avg. 94 101 132 140.4 163.6 178.4 188.2 214.8 225.5 241.8 257.4 283 1928.6
Caching STDV 8.51 4.89 24.28 3.64 9.09 7.53 6.76 12.29 7.25 7.66 10.21 13.58 138.35
NoCache Avg. 94 641.4 5418 10709 N/A N/A N/A N/A N/A N/A N/A N/A N/A
NoCache STDV 8.51 34.88 78.19 62.14 N/A N/A N/A N/A N/A N/A N/A N/A N/A
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Figure 4: Monte Carlo w/ and w/o Caching - 10K SNPs
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Figure 5: Monte Carlo w/ and w/o Caching - 1M SNPs

Table VI: Input Parameters of the Strong Scaling
Investigation

Patients SNPs SNP-Sets

Avg. # SNPs
per

SNP-Set Nodes
1000 1M 1000 1000 6
1000 1M 1000 1000 12
1000 1M 1000 1000 18

0

5000

10000

15000

20000

25000

30000

0 10 20

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c)

Number of Iterations

18 m3.2xlarge

12 m3.2xlarge

6 m3.2xlarge

Figure 6: Strong Scaling - 1M SNPs
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Figure 7: Apache Spark Run-time Properties on YARN
Cluster - 1M SNPs



Tables VII and VIII. Figure 7 shows that the performance dif-
ference for different numbers of containers using a constant
number of cluster nodes is almost negligible.

Table VII: Input Parameters of SparkScore - Auto-Tuning
Investigation

Patients SNPs SNP-Sets

Avg. # SNPs
per

SNP-Set Nodes
1000 1M 1000 1000 36

Table VIII: Input Parameters of the Apache Spark Run-time
Properties on YARN Cluster - Auto-Tuning Investigation

Containers
Amount of Memory
per Container (GiB)

Cores
per Container

42 10 6
84 10 3
126 8 2

VI. RELATED WORK

BlueSNP [11] is an R extension package for conducting
GWAS on Hadoop clusters. A scalable implementation of
SNP-Pair testing for genetic association is reported in [15].
There they design a parallel implementation of statistical
correlations between particular loci in the genome of an
individual plant and the expressed characteristics of that
individual. The work is implemented in MPI and OpenMP.
A hybrid map-reduce and MPI library is proposed [38]. This
approach aims to find a middle ground between a deep re-
design and an existing sequential algorithm with MPI calls.
They mention that the price for this flexibility is a lack of fault
tolerance due to the underlying MPI execution model.

Hadoop and Spark have been extensively used for DNA
and protein sequence alignment and mapping [24] [33] [27].
SparkSeq [41] performs in-memory computations on the
Cloud via Apache Spark. It covers operations on Binary
Alignment/Map (BAM) and Sequence Alignment/Map (SAM)
files [19], and it supports filtering of reads summarizing
genomic features and basic statistical analyses operations.
AzureBlast [22] is a parallel BLAST (Basic Local Alignment
Search Tool [2]) engine on the Windows Azure cloud plat-
form. BLAST searches a database of subject sequences
and discovers all the local similarities between the query
sequence and subject sequences. In AzureBlast, the input
sequences are divided into multiple partitions and distributed
among worker instances. After workers have processed
all data partitions, the results are merged together. The
scalability potential of the the Burrow-Wheeler Aligner DNA
mapping algorithm [5] is analysed in [1]. The paper com-
pares the performance of three implementations: native
cluster-based, Hadoop, and Spark versions.

VII. CONCLUSION AND FUTURE WORK

This work describes SparkScore, a set of distributed
computational algorithms, implemented in Apache Spark,
that leverage the embarrassingly parallel nature of asymp-
totic and resampling inference on the basis of efficient
score statistics in the context of genomic inference. We

evaluated the scalability of SparkScore under different sets
of experiments on the AWS cloud. Experiments showed that
Apache Spark features such as caching could significantly
reduce the execution time. We plan to further investigate
Apache Spark parameter options for SparkScore for the
purpose of tuning.
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