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Abstract—Embedded control systems with hard real-time
constraints require that deadlines are met at all times or
the system may malfunction with potentially catastrophic
consequences. Schedulability theory can assure deadlines for
a given task set when periods and worst-case execution times
(WCETs) of tasks are known. While periods are generally
derived from the problem specification, a task’s code needs
to be statically analyzed to derive safe and tight bounds on
its WCET. Such static timing analysis abstracts from program
input and considers loop bounds and architectural features,
such as pipelining and caching. However, unpredictability due
to dynamic memory (DRAM) refresh cannot be accounted for
by such analysis, which limits its applicability to systems with
static memory (SRAM).

In this paper, we assess the impact of DRAM refresh on
task execution times and demonstrate how predictability is
adversely affected leading to unsafe hard real-time system
design. We subsequently contribute a novel and effective
approach to overcome this problem through software-initiated
DRAM refresh. We develop (1) a pure software and (2) a hybrid
hardware/software refresh scheme. Both schemes provide pre-
dictable timings and fully replace the classical hardware auto-
refresh. We discuss implementation details based on this design
for multiple concrete embedded platforms and experimentally
assess the benefits of different schemes on these platforms.
The resulting predictable execution behavior in the presence of
DRAM refresh combined with the additional benefit of reduced
access delays is unprecedented, to the best of our knowledge.

Keywords-Real-Time Systems, DRAM, Worst-Case Execu-
tion Time, Timing Analysis, DRAM Refresh, Timing Pre-
dictability

I. INTRODUCTION

Dynamic Random Access Memory (DRAM) has been the

memory of choice in most computer systems for many years

for commodity and embedded systems ranging from 8-32 bit

microprocessor platforms. DRAMs owe their success to their

low cost combined with large capacity, albeit at the expense

of volatility. There are many variants of DRAMs, such

as Asynchronous DRAM, Synchronous DRAM (SDRAM),

Double Data Rate (DDR) SDRAM etc. Each bit in a DRAM

is stored in just one capacitor within the silicon. Due to the

structural simplicity (one transistor and one capacitor per

bit) of DRAMs, they can reach very high density resulting

in large capacities. On the downside, just as commodity
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capacitors, these DRAM capacitors lose charge over a period

of time. Thus, the data stored in DRAM is gradually lost

unless the capacitors are recharged periodically. In contrast,

Static RAM (SRAM) is more complex (uses four transistors

and two load elements per data bit) and takes more space

but does not require periodic refresh to retain the data.

DRAMs are typically organized as a small set of banks

that maintain their states independently of each other. Each

bank consists of several rows and each row contains multiple

columns. Reading data from a given DRAM row requires

the old row to be first closed (precharge) at a cost of

Row Precharge (tRP) delay and the new row to be opened

(activate) at a cost of Row Access Strobe (tRAS) delay. Once

the given row is opened, any column within that row can

be accessed within a Column Access Strobe (tCAS) delay.

An auto-refresh operation of a given row involves closing

(precharge) the currently opened row (with a tRP latency)

and opening (activate) the row being refreshed (with a tRAS

latency). Thus, the total time taken by an auto-refresh is

tRAS+tRP.

In a typical DRAM, refresh operations are triggered by

an external control circuit that periodically sends refresh

commands to the DRAM over the command bus. This

method of refreshing DRAMs is called auto-refresh. If a

CPU or a peripheral tries to access the DRAM when an

internal refresh is in progress, such memory references will

stall until the refresh operation is complete. A typical DRAM

requires one refresh cycle every 15.6 µs [12]. During the

refresh operation, the last opened row is closed before the

refresh row is opened. The processor accesses the DRAM

memory for fetching data and instructions in the event of

a cache miss, but this fetch is stalled while DRAM auto-

refresh is in progress. Thus, the response time of a DRAM

access depends on the point of time memory is accessed by

the processor relative to a DRAM refresh.

In general-purpose computer systems, the delay due to

DRAM refresh has no impact on program correctness and

little impact on performance. Embedded control systems

deployed in safety-critical environments or process plants,

on the other hand, generally impose more stringent timing

predictability requirements that are prone to be violated

due to DRAM refresh delays. From avionics over industrial

(chemical or power) plants to automotive subsystems such



as ABS, system correctness extends from the traditional

input/output relationships to deadlines. In such systems,

a missed deadline may result in system malfunction with

potentially hazardous implications or even loss of life. Such

systems are typically referred to as hard real-time systems

as opposed to soft real-time systems where deadlines can

occasionally be missed. Deadlines together with release

times or task periods are then combined with an execution

budget to assess the schedulability, e.g., through utilization-

based tests under rate-monotonic (RM) or earliest-deadline-

first (EDF) scheduling [11].

Determining the execution budget by bounding the worst-

case execution time (WCET) of a task’s code is key to

assuring correctness under schedulability analysis, and only

static timing analysis methods can provide safe bounds on

the WCET (in the sense that no execution may exceed

the WCET bound) [23]. Various methods and tools for

static timing analysis have been developed for a variety of

embedded platforms ranging from 8-bit to 32-bit micropro-

cessors [24]. However, none of these techniques consider

the effect of DRAM refreshes on WCET bounds. Hence, a

statically derived WCET bound is only safe if augmented

pessimistically with the cost of refresh delays, which is

inherently difficult to calculate or even to tightly bound due

to the asynchronous nature of refreshes combined with task

preemption. In fact, unpredictability in execution times can

be observed in tasks of hard real-time systems with DRAM.

Atanassov and Puschner [2] discuss the impact of DRAM

refresh on the execution time of real-time tasks. For their

target configuration, they calculate the maximum possible

increase of execution time due to refreshes to be 2.13%.

Using their analytical method, we calculated the worst-case

execution time for the target configurations we are using in

our experiments to be about 2%. This method assumes that

in the worst case every DRAM refresh is overlapped with

a memory access. Hence, the refresh overhead is bounded

by the number of refresh intervals that can occur during a

job’s execution multiplied by the refresh cost. However, we

observe that this assumption is not valid in the presence

of hardware or software preemptions due to preemptive

scheduling. We show that in the presence of preemptions,

the number of refreshes encountered by a task increases

in direct proportion to the number of preemptions. The

objective of this work is to develop novel methods for

real-time system design that eliminate unpredictability due

to DRAM refreshes and to thereby eliminate the need to

consider DRAM refreshes in WCET analysis. We further

show that these methods reduce the power consumption in

the DRAM by reducing the number of precharges without

affecting data retention.

Contributions:

1) This paper gives a detailed analysis of the impact of

DRAM refresh delays on the predictability for embed-

ded systems with timing constraints and in particular

hard real-time systems. It identifies the sources that

affect response times when the accesses to DRAM

by the processor are not synchronized with DRAM

controller activity.

2) We show that most commonly used analytical method

to estimate the delay due to DRAM refreshes on

WCET of tasks is insufficient in the presence of

preemptions.

3) Two novel approaches to mitigate the impact of

DRAM refresh are developed. The basic idea be-

hind both approaches is to remove the asynchronous

nature of hardware DRAM refreshes. By modeling

and realizing DRAM refresh as a periodic task in

software and performing the refresh operations in burst

mode, delays due to refreshes can be isolated from

application execution. (i) The first method disables

hardware auto-refresh in favor of a purely software-

based refresh task. (ii) The second method combines

hardware and software based approaches in a hybrid

scheme. Here, the software initiates hardware refresh

in burst mode at regularly scheduled and well-defined

intervals for a fixed duration of time.

4) We show that these new methods also result reduced

DRAM power consumption by about 5% due to a

lower number of row precharges.

5) Both approaches to mitigate refresh unpredictability

have been implemented on multiple hardware plat-

forms, and the pros and cons of each in terms of

performance, overhead and predictability are discussed

and experimentally evaluated.

These methods effectively eliminate DRAM auto-refresh

unpredictability and have the additional benefit to actually

reduce subsequent memory access delays that otherwise

would be incurred under hardware auto-refresh.

Naı̈vely, disabling auto-refresh seems dangerous as

DRAM-stored values would be lost if a software refresh

is missed. In a hard (or mixed criticality) real-time system,

however, any deadline miss of a hard real-time task also

renders the control system faulty. It is thus paramount to

ensure that deadlines are met for all hard real-time tasks,

including but not limited to the DRAM refresh task, and we

demonstrate that this objective can be met in practice.

The cost of a single asynchronous DRAM refresh is small

relative to typical task periods. Accounting for this cost

at the schedulability analysis level offline, however, turns

out to be a daunting task. After all, variations in execution

times of task make it notoriously difficult to constrain the

point in execution where a refresh occurs dynamically. Our

approach combines the advantages of improving DRAM

performance, lowering its power consumption and providing

flexible scheduling, notably not precluding future extensions

for non-preemptive scheduling or scheduling with limited

preemption points.

Variable latencies for memory references as a result of



DRAM refresh are a problem not only in hard real-time

systems. For example, Predator [1], a hardware approach to

make SDRAM memory controllers predictable for refreshes,

was originally motivated by a need for highly predictable

memory latencies during high-definition television decoding,

which falls into the domain a soft real-time multi-media.

We argue that our methods are universally applicable and,

in contrast to Predator, do not require costly hardware

modifications.

This paper is structured as follows. Section I provides an

overview and motivation for this work. Section II describes

different methods for performing DRAM refreshes and their

trade-offs. Section III presents the approach used in our pa-

per. Section IV elaborates on implementation details and the

experimental framework. Section V presents and interprets

experimental results. Section VI contrasts our work approach

with prior work. Section VII summarizes our contributions.

II. DRAM REFRESH MODES

As discussed in Section I, every row in a DRAM should

be periodically refreshed in order to retain the data. Refresh

may be accomplished for a given row of DRAM cells by

presenting the corresponding row address in combination

with asserting the row address strobe (RAS) line. This

method of refresh is called RAS Only Refresh (ROR). In this

method, it is necessary for the hardware/software performing

the refresh to keep track of which DRAM rows are refreshed

and ensure that all rows of DRAMs are accessed within the

specified refresh interval. Many modern DRAMs provide

an alternative method to perform refreshes using a special

command cycle. One example of such a special cycle is

where the column address strobe (CAS) line is asserted prior

to the row address strobe (RAS) line, commonly referred to

as CAS-Before-RAS (CBR) refresh. When utilizing the CBR

method to refresh DRAMs, it is not necessary for the hard-

ware/software performing the refresh to track row addresses.

Instead, we program the DRAM controller by sending a

sufficient number (4096 in our case) of CBR cycles within

the specified DRAM retention interval (64 ms in our case).

The internal circuitry in the DRAM controller maintains

a refresh counter per bank and refreshes successive rows

for every refresh command until all rows within the bank

are refreshed. Depending on when refresh commands to

successive rows are sent, we can classify DRAM refresh

scheme as either a distributed refresh or a burst refresh.

A. Distributed Refresh in Hardware

In this method of refreshing DRAMs, a single refresh

operation is performed periodically, as illustrated in Figure

1. Once a full cycle of refresh is complete, it is repeated

again starting from the first row. This is currently the most

common method for refreshing DRAMs. Most memory con-

trollers use this method to perform auto-refresh in hardware.

However, this method causes the DRAM response time to

Table I: Delays due to Interfering Refresh Cycles

Old Row Ref. Row Next Row Normal Delay Delay w/ Refresh

n n n tCAS tRP+tRAS+tCAS
m n n tRP+tRAS+tCAS tRP+tRAS+tCAS
m n m tCAS tRP+tRAS+tCAS

vary depending on the relative time and the row numbers of

memory accesses by the processor and the DRAM refresh.

It is well known that, whenever a DRAM reference by

the processor is blocked by a auto-refresh operation, the

processor has to wait for a delay bounded by tRAS+tRP.

However, we make another key observation here, which

has not been considered by related works and show that

its omission leads to WCET bound violations that render

hard real-time systems incorrect: A DRAM refresh closes a

previously opened row by the processor and opens up the

new row being refreshed. Hence, the next memory access

by the processor, likely to the same row, now requires the

refresh row to be closed and the old row to be reopened at

an additional cost of tRAS+tRP.

Table I shows the additional delay suffered by the proces-

sor due to an intervening refresh in addition to the latency

of the refresh operation itself. Depending on which rows are

accessed by the processor and refresh operation, the memory

exhibits different latencies. The “Old Row” column indicates

the previously opened row in the DRAM. “Ref. Row”

indicates the row being refreshed. “Next Row” indicates

the next row being accessed by the processor following the

refresh operation. “Normal Delay” is the delay suffered by

the processor during the next memory access in the absence

of any interim refresh operations. “Delay with Refresh” is

the delay for next memory access due to an interim refresh

operation, excluding the latency of the refresh operation

itself. With an interim refresh operation, next memory access

always takes tRP+tRAS+tCAS as the DRAM controller is

not aware of which internal row is actually refreshed.

Thus, we see that a refresh operation not only delays

by making the processor wait for a memory access for

the duration of the refresh operation itself, but also causes

additional delays for future accesses as rows need to be

reopened.

Existing methods estimate the increase in WCET for tasks

due to DRAM refresh using the formula given by Atanassov

and Puschner [2], expressed as:

T
refr
WCET = TWCET + ⌊

TWCET

tRint − tmax
delay

⌋ × tmax
delay (1)

This formula computes the maximum number of refresh

operations that can occur during a task’s WCET and multi-

plies it with cost of each refresh. For example, if we consider

a task with a WCET of 1000 µs, at the rate of one refresh

for every 15.6 µs and 200 ns maximum refresh delay, there



Figure 1: Different DRAM Refresh Methods. See [12].

can be a maximum of 65 refresh intervals during the entire

task execution, which increases the task’s WCET to 1013

µs. Now consider that this task gets preempted by higher

frequency tasks / interrupts every 100 µs, each running

for 20 µs. This means that our 1000 µs task now runs in

chunks of 80 µs each. There can be a maximum of 6 refresh

intervals during this 80 µs period. Thus, during the total task

execution time of 1000 µs, there can be a total of 76 refresh

intervals. This increases the WCET of task to 1015.2 µs,

which exceeds the 1013 µs bound from Eq. 1.

This example illustrates that the actual delay caused by

refreshes in the presence of preemptions is dependent on the

number of preemptions and the duration of each time slot

during the task execution. Predicting the maximum number

of preemptions due to interrupts, higher priority tasks and the

interval between the preemptions is not a straight forward

problem. In systems where DRAM and other peripherals

share the same bus, it is necessary that all unrelated bus

traffic cease during the entire period of a refresh operation

to avoid contention, which is hard to model [2]. The time

required for a DRAM refresh in these systems thus degrades

system performance not only from a memory availability

standpoint, but also because of the time that the bus is

unavailable during DRAM refresh, precluding other non-

memory access bus traffic during that time.

As an example, the DSP platform we used in our experi-

ments has 16MB DRAM space split across 4 banks that can

be accessed and refreshed in parallel. Each bank (4 MB)

has 4096 rows of 1KB requiring a total of 4096 refreshes.

In distributed refresh mode, the refresh rate of a typical (and

also this) DRAM is 15.6 µs with a duration of 150 ns for

refreshing one row. Thus, the entire DRAM is refreshed

once every 64 ms with a total total overhead of 614 µs

for 4096 refreshes. This ratio of 1-2% overhead is typical

for DRAM technology, but it does not yet take into account

the overhead of additional tRP/tRAS delays for individual

DRAM references that interfere with refreshes occurring in

the background.

B. Burst Refresh in Hardware

An alternative method for performing DRAM refresh is

called burst mode in which a series of explicit refresh

commands are sent, one right after the other, until all rows

are refreshed. Once a sufficient number of refresh commands

are sent to refresh the entire DRAM, no more commands are

sent for some time until the beginning of the next refresh

period as illustrated in the Figure 1. The majority of the

DRAM controllers do not readily support this mode of

refresh in hardware. Even though we can configure them

to send refresh commands one right after the other, they

often lack the ability to stop and set up rates for subsequent

bursts. Even when this mode is supported in hardware, they

still interfere with the task execution making their timings

unpredictable as described earlier.

III. OUR APPROACH

The basic problem with the hardware-controlled DRAM

refresh is that the periodic refresh events generated by the

DRAM controller and the memory access events generated

by the processor are not synchronized with each other.

Whichever event comes later will have to wait for the former

to complete. Also, an interleaving refresh operation delays

the next memory access. The central idea of our approach

is to remove the asynchronous nature of the two events and

schedule the two events at predetermined time intervals so

that they do not interfere with each other. Below, we describe

two methods to perform DRAM refresh using this approach.

A. Software-Assisted Predictable Refresh

In this method, a new periodic task with a reserved time

slot is created for performing the DRAM refresh in software.

This task issues precharge operations of different rows in a

back-to-back manner, i.e., after one refresh completes, the

next is started instantly. It makes use of RAS Only Refresh

(ROR). To refresh one row of the DRAM memory using

RAS Only Refresh, the following steps must occur:

First, the row address of the row to be refreshed must

be applied at the address lines. The RAS line must switch

from high to low while the CAS line remains high. Then, at

the end of the required amount of time, the RAS line must

return to high. The ROR refresh is not commonly supported

in DRAM controllers. However, simply reading any word

within some other DRAM row would have the same effect

as refreshing the currently open row, except at a slightly

higher cost of putting the column address (CAS latency) and

fetching the word into the register. The DRAM controller



Figure 2: Power supply current of a typical DRAM during refresh. See [14].

tracks the currently open row in each of the DRAM banks

and automatically issues the Activate (ACTV) command

before a read or write to a new row of the DRAM. On

systems with caches enabled, we will have to make sure that

our access reaches the DRAM row by using cache bypass

instructions (e.g., atomics).

B. Hybrid Software-Initiated Hardware Refresh

The second method is a hybrid hardware/software method

in which the period of the refresh interval is overwritten by

reprogramming the DRAM control registers. Most DRAM

controllers allow the refresh interval to be configured. In-

stead of requiring fixed delay (15.6 µs in our example)

between the two refresh cycles, we configure them to occur

one right after the previous refresh cycle. Once this refresh

period is configured and hardware refreshes are enabled,

the refresh task just waits for a predetermined amount of

time to let the entire DRAM be refreshed and then disables

the refresh altogether. When the refresh task is waiting, the

processor can be forced into a reduced power state or it

can perform calculations not involving the DRAM. At the

beginning of the next refresh period, the refreshes are re-

enabled with zero delay between the refresh cycles and

the same pattern is repeated. This behavior is similar to

the hardware burst refresh method in terms of its timing

diagram (see Figure 1). In contrast to the hardware-induced

burst, our scheme starts and stops each burst of refreshes

through software control at pre-scheduled intervals. No other

tasks are executed when a refresh task is running. This

can be ensured in a real-time system by assigning the

highest priority to the refresh task or by disabling and re-

enabling refreshes each time the refresh task is preempted

and resumed respectively. Further, instead of sending one

long burst, it is possible to send multiple smaller bursts more

frequently as long as enough refresh commands are sent

within the refresh threshold. Once all rows are refreshed,

no refresh is going to occur until the next invocation (after

the next release) of the refresh task. As seen earlier, the

duration of one burst of refreshes (614 µs) is about 2 orders

of magnitude smaller than the refresh period (64 ms). In

between invocations of the refresh task, real-time tasks in the

system execute with guaranteed absence of any interference

from DRAM refreshes. This method makes use of the CAS

before RAS (CBR) Refresh. The main difference between

ROR and CBR refresh is the method for keeping track of

the row address to be refreshed. With ROR, the system

must provide the row address to be refreshed. With CBR,

the DRAM memory keeps track of the addresses using an

internal counter.

C. Impact on DRAM Energy Consumption

As we have seen earlier, performing a refresh operation

on DRAM involves closing (precharge) the currently open

row and activating the row being refreshed in every bank.

The major source of energy usage in a DRAM comes

from these precharge operations. Figure 2 shows the power

supply current during the refresh operation (essentially a row

precharge) for a typical DRAM in self-refresh mode [14].

We can clearly see that we can reduce the energy consumed

by the DRAM by reducing the number of precharge oper-

ations wherever possible. As we have seen, an intervening

refresh operation closes the currently open row that is cur-

rently being accessed by the processor. When the processor

tries to read this row again, it has to close (precharge) the

new row and activate the old row that it wants to access.

This costs an additional precharge operation and, hence, a

small amount of additional power. In our approach, since all

refreshes occur in bursts at pre-scheduled intervals, they do

not interfere with other tasks in the system. This realization

led us to conduct experiments on the energy consumption

of DRAMs under different methods explained in this paper.

Section V-D discusses these results.

IV. IMPLEMENTATION

We implemented our methods on three different embedded

hardware platforms. The first platform is a TMS320C6713

DSP Starter Kit (DSK) module from Spectrum Digital. This

board has a Texas Instruments TMS320C6713 DSP chip

running at 225 MHz. This is a 32-bit processor with an

advanced Very Long Instruction Word (VLIW) architecture,

eight independent functional units that can execute up to 8

instructions per cycle, fixed and floating point arithmetic, 2

levels of caching, up to 256KB of on-chip SRAM, 512KB

of flash memory, an on-chip DRAM controller and 16MB

of SDRAM memory. We utilized the programming environ-

ment and the compiler supplied though the Code Composer

Studio v3.1 from Texas Instruments. The second embedded

platform features a Samsung AX4510 microcontroller board.



The Samsung S3C4510B is a 32-bit ARM7 TDMI RISC

processor design running at 50MHz clock speed. It also has

8KB of configurable on-chip SRAM/unified cache, an on-

chip DRAM controller, 4MB of external Flash and 16MB of

external SDRAM. We used the Keil Embedded Development

Tools for development and testing on this platform. The third

platform is a IBM PowerPC 405LP evaluation board which

is used exclusively for the SDRAM energy measurement

experiments. More details about this platform is given later

in the section V-D. All programs were written in C and

assembly on these platforms.

Other Threads ...PeriodicTest Thread

Custom RMA Scheduler

MicroC OS II RTOS

DSK 6713 Kit

TMS320C6713
Processor

Figure 3: System Architecture

Figure 3 depicts the layered system software architecture

utilized in our experiments on the embedded platform. Our

implementation effort includes porting a commonly used

real-time operating system, Micro C/OS-II [8], which has a

fixed priority preemptive scheduling. We then implemented

a rate monotonic (RM) scheduler [10] on top of Micro

C/OS-II with novel support for creating and running periodic

threads of arbitrary periods imposing strict execution-time

control within each period. If a thread does not complete

execution by its deadline, it is preempted and rescheduled

during the next period by the scheduler. This scheduler is

also capable of monitoring the total execution time of each

task with a precision of 4 CPU clock cycles excluding

the time spent inside interrupt service routines and the

scheduler overheads. We utilized the same system software

architecture on the ARM platform. Micro C/OS-II and our

custom RM scheduler are ported to this platform and provide

the same API to the applications on both platforms. Hence,

the test application can be run on both platforms with minute

modifications.

V. RESULTS

We performed several experiments on the embedded

platforms discussed in the previous section. This section

describes these experiments and the results.

A. Unpredictable Timings under Hardware DRAM Refresh

First of all, we wanted to assess the effect of DRAM

refresh cycles on the timing of application tasks, in a

controlled environment with a real workload and selectively

disabled caches. We used a bubblesort algorithm to sort 100

integer elements as a test load. We disabled the instruction

and data cache in all these experiments in order to force

memory accesses for every instruction, which provides better

control over the experiment. The test load function is run

inside a periodic task of 400 ms period.

We executed this workload on three different scenarios.

First, we ran the load on SRAM memory. For this purpose,

we modified the linker script to place all code, data and stack

segments in the on-chip SRAM. The on-chip SRAM has a

very low latency and, unlike DRAM, does not require peri-

odic refreshing. We observed that the workload takes exactly

the same amount of time in every iteration. This is because

the on-chip SRAM does not need periodic refreshing and

exhibits uniform latency every time it is accessed.

Next, we executed the same load on a TI cycle-accurate

device simulator for the TMS320C6713 processor. The mea-

sured times were same as that of the SRAM-based execution.

Finally, we ran the same workload on SDRAM memory,

which requires refresh. The SDRAM controller is initialized

using the default configuration script supplied along with the

6713DSK kit. This causes the SDRAM controller to send

one auto-refresh command every 15.6 µs. Every time an

auto-refresh command is received, the SDRAM internally

refreshes one row in every bank. The 6713DSK SDRAM

has four banks, 4096 rows per bank and 1024 bytes per

row. Thus, the SDRAM requires 4096 refresh commands to

refresh the entire memory. The entire SDRAM is refreshed

approximately every 64ms. With the SDRAM controller

correctly configured to retain the data, we modified the linker

script to place all code, data and stack in SDRAM. The

earlier workload is run again with this setup and the resulting

times are indicated by the top-most line in Figures 4 and 5

for the DSP and ARM platforms, respectively.

We make the following observations from the graphs.

First of all, the measured times for SDRAM are much

higher than for SRAM. This is caused by the higher latency

of SDRAM compared to the on-chip SRAM. (Of course,

SRAM is much more costly and significantly smaller than

DRAM so that many embedded systems utilize DRAM in

practice.) Secondly, the measured values are very jittery

in nature. There are mainly two reasons for variations in

DRAM response times. First of all, every time a new row

is accessed within a bank, the SDRAM needs to close the

current row and open the new row, which requires tRP

+ tRAS time. However, since we access the same set of

memory addresses in every iteration of the workload, this

cannot be the reason for variations in the graph. The same

conclusion is is also true for the CAS latency (tCAS) that

is incurred every time we access different columns of the

same row.

Secondly, the SDRAM auto-refresh cycles occurring dur-

ing the workload execution also cause variations in the

time taken. As we saw earlier, one auto refresh occurs

every 15.6 µs and each refresh takes time for one Row
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Figure 4: Memory Latencies for DRAM Refresh Techniques on DSP Platform in Time Range [19,290-19,340] µs

Access Strobe (tRAS) and Row Precharge (tRP). The refresh

happens asynchronously from the point of view of program

execution. The processor needs to access memory when it

has to fetch a new instruction or data. The worst-case delay

occurs when there is a refresh in progress every time the

processor accesses the memory. The best-case behavior oc-

curs when the processor is not accessing memory whenever

there is refresh in progress. Further, an intervening refresh

cycle could close the currently opened row by the processor

causing the next memory access by the processor to take

longer. This causes the observed degree of unpredictability

in the measured time as shown in Figures 4 and 5.

B. Software-Assisted Predictable Refresh

Next, we modified the code to disable SDRAM auto-

refresh and created a separate periodic task to refresh all

the SDRAM rows in software, as described in Section III.

The refresh task was created with a periodicity of 10ms. It

refreshes a subset of rows in each period, such that the entire

SDRAM is refreshed within 60ms. Thus, when the workload

thread runs, it never has to wait due to an auto-refresh in

progress. Figure 4 shows the results for this configuration.

As can be seen from this graph, the measured times with

software-assisted refresh (second line from the top) in all

intervals are uniform. Also, the average time is less than that

with hardware-based SDRAM auto-refresh. This is because

task execution is never interrupted by an asynchronous

auto-refresh. This graph illustrates that, by delegating the

SDRAM refresh responsibility into a dedicated periodic task,

other real-time tasks in the system become isolated from the

erratic latency response of the SDRAM due to auto-refresh.

Performing the SDRAM refresh in software instead of

hardware has some additional overheads. First of all, in

hardware, for every auto-refresh command sent by the

controller, one row is refreshed in all the banks in parallel.

Since we have to explicitly read one word from every

row during software refresh, we cannot take advantage of

this bank parallelism. Thus, instead of sending 4096 auto-

refresh commands, we now need to access 4 × 4096 rows

to entirely refresh the SDRAM. Also, sending a hardware

auto-refresh command does not utilize the address and data

buses, nor does it bring any data into cache. However, in

a software refresh, since we explicitly read one word from

every bank, we potentially evict data from cache. This can be

avoided in many embedded processors that support cache-

bypass load instructions. In the absence of bypass support,

such evictions can be modeled in static cache analysis to

bound WCETs and cache-related preemption delays [9],

[15], [19]–[21]. Nonetheless, any memory access requires

bus bandwidth. Because of these overheads, the total time

spent for a software refresh is larger than that of a hardware

auto-refresh. In our experiments on the DSP platform, we

measured that the software refresh task, as described above,

takes about 16% of the processor time compared to a

maximum of 4-5% overhead in hardware auto-refresh. Yet,

we not only increase predictability but also performance of

all other tasks in the system by a moderate 2.8% to 0.16%

(for smaller and larger workloads, respectively, where the

latter is shown in Figure 4) due to absence refresh-incurred

delays on memory references.

We also ran the same experiments on our ARM platform

using bubble sort on 50 elements. The results are shown

in the Figure 5. Since this platform has a much slower

processor frequency (50MHz), the difference in the speed of
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DRAM and the processor is less significant compared to the

TI DSP platform. Hence, we only observe minor variations

in the measured times due to background DRAM refreshes.

Again, the software-based refresh technique has succeeded

in producing uniform timing values.

In an effort to improve the performance of software

refresh, we implemented a set of optimizations. One op-

timization is that instead of accessing every successive row

one after the other linearly, we access one row from each

of the four banks and then move to the next row. It is

also important to make the four load instructions from four

banks independent of each other. This enables the SDRAM

to pipeline these loads. A read in progress on one bank will

not block the read in other banks. With these optimizations

in place, we measured the overhead of the refresh task to be

about 12%, which is lower than in the earlier case, but still

more than the hardware auto-refresh overhead.

C. Hybrid Software-Initiated Hardware Refresh

Our second method improves the performance further

by utilizing the hardware refresh capabilities in a different

manner. In this approach, we initially disable the hardware

auto-refresh. A periodic refresh task is again created with

a 10ms period. During each period, this task first enables

the hardware auto refresh when invoked. But instead of

configuring for one refresh for every 15.6 µs, the SDRAM

controller is configured to send successive refresh cycles

back-to-back without any delay. The refresh task waits

for a calculated amount of time after which it disables

the auto-refresh. The refresh task is allowed to run for a

predetermined amount of time in each period, such that

the entire SDRAM is safely refreshed, e.g., within 60ms

in case of the TI DSP. Since this method uses the hardware

auto-refresh, all banks can be refreshed in parallel, which

implies that no data is actually transferred between memory

and processor, i.e., caches remain completely unaffected.

Figures 4 and 5 show the measured times for this hybrid

approach. In Figure 4, the the lines for the hybrid and

software approaches coincide with each other as measured

cycle times are identical for both approaches. As can be seen

from the graphs, the measured times are constant for both

the DSP and ARM platforms. We measured the processor

overhead of the refresh task to be about 9%, which is

significantly lower compared to the non-optimized software

refresh approach.

There is one problem with the current implementation of

this approach. Most of the SDRAM controllers do not track

how many auto-refresh cycles they have sent. Because of

this, the refresh task cannot determine exactly when it has

completed sending the required number of refresh cycles.

The only method to mitigate this problem is to allocate time

for the refresh task in excess of worst-case refresh time.

We also plan to prototype a modification to the SDRAM

controller on an FGPA to track the exact number of auto-

refresh cycles it has sent. The refresh task can use this

information to more accurately time the auto-refresh. The

SDRAM controller can be made more intelligent to support

this method. A similar approach is also possible for DRAMs

that support monitoring of the leakage discharge on a per-

row basis.

D. Reduction in DRAM Energy Consumption

Our experiments to assess the energy saving potential of

the new refresh method was performed on an IBM PowerPC
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405LP evaluation board [16]. This board is very suitable

for conducting power-related experiments with support for

Dynamic Voltage and Frequency Scaling (DVFS). Voltage

and frequency can be scaled in software via user-defined

operation points ranging from 266 MHz at 1.8V to 33 MHz

at 1V. There are four PC-133 compatible SDRAM memory

modules (1M x 32b x 4 internal banks, 128Mb, non-ECC).

The four 16-MB modules are arranged to provide 64MB

of total SDRAM memory. Individual SDRAM memory

modules are arranged on the evaluation board in banks

to improve throughput. In this board design, there are 4

modules arranged as four banks, each module containing

four internal banks. This board has several probe points

that enable us to measure the voltage and current of all

SDRAM modules. We used an analog data acquisition board

to measure the voltage and current supplied to the SDRAM

modules. A real-time earliest deadline first (EDF) scheduling

policy was implemented as part of a user-level threads

package under the Linux operating system running on the

board. A suite of task sets with synthetic CPU workloads

was utilized, similar to the task set of pattern one in DVSleak

[25]. Each task set comprises ten independent periodic tasks

whose WCET is in the range of 1ms to 100ms. The task set

is designed to allow user control of the CPU/memory load so

that we can study the SDRAM power consumption at various

load points. On this platform, we implemented the refresh

task within a Linux kernel module. When this module is

loaded, it disables auto-refresh by programming the DRAM

Controller and starts a periodic task at 10 ms, which takes up

the responsibility of refreshing. At every invocation, this task

refreshes a subset of rows using our hybrid refresh method.

Figure 6 compares the energy consumption of the SDRAM

at different load points (from 10% to 90%) between our

approach and hardware auto-refresh. As can be seen from

the graph, our approach always consumes less energy than

the hardware auto-refresh method. We obtained about 5%

energy savings on the average for the same amount of work

in a fixed period of time.

VI. RELATED WORK

Past work on DRAM refresh focuses on hardware prin-

ciples, such as refresh methods (mostly in patents), power

enhancements, fault tolerance support or discharge moni-

toring [3]–[7], [17], [22]. One exception is the work by

Moshnyaga et al. that utilizes operating system facilities

to trade off DRAM vs. flash storage to mitigate current

differences in access latencies, bandwidth and power con-

sumption [13]. In contrast to our work, theirs does not

address refresh side-effects on predictability. Our work is

rather in the spirit of prior work on increasing the pre-

dictability of hardware peripherals for real-time software,

such as bus-level I/O transaction control [18]. Predator [1] is

a predictable SDRAM memory controller using a hardware-

based approach to achieve a guaranteed lower bound on

efficiency and an upper bound on the latency in the presence

of SDRAM refreshes and multiple users sharing the same

SDRAM. In contrast, our approach is fully software based

and succeeds in completely eliminating the unpredictability

due to DRAM refreshes. Predator was motivated by a lack

of predictability of a soft real-time application area in the

multi-media domain, namely real-time processing for high-

definition television during decoding but is applicable to

hard real-time as well, just as are our methods.

VII. CONCLUSION

In this paper, we examined the effect of DRAM refreshes

on the predictability of real-time tasks. We proposed two



novel methods to increase predictability of hard real-time

systems in the presence of DRAM refreshes, namely (1) a

software-assisted refresh and (2) a hybrid software-initiated

hardware refresh. Both methods were implemented and

evaluated on two embedded platforms. Experimental results

confirmed that both methods result in predictable DRAM

accesses without additional refresh delays. We further dis-

cussed the cause of overheads for DRAM accesses with re-

spect to our methods. In the future, additional optimizations

could be applied to these methods. We are pursuing FPGA-

based modifications to a DRAM controller to add native

support for burst refreshes in hardware. The burst refresh

time can be overlaid with non-memory based activities,

such as in-core computation, I/O operations, or memory

accesses from other on-chip memory devices. Overall, our

new methods alleviate the unpredictability of DRAMs due to

refreshes, which facilitates design of hard real-time systems

with DRAMs in an unprecedented manner.
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