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Abstract

Security in CPS-based real-time embedded systems controlling the power grid

has been an afterthought, but it is becoming a critical issue as CPS systems are net-

worked and inter-dependent. This work presents a set of mechanisms for time-based

intrusion detection, i.e., the execution of unauthorized instructions in real-time CPS

environments. The novelty is the utilization of information obtained by static timing

analysis for intrusion detection. Real-time CPS systems are unique in that timing

bounds on code sections are readily available since they are required for schedu-

lability analysis. We demonstrate how micro-timings can be exploited for multiple

granularity levels of application code to track execution progress. Through bounds

checking of these micro-timings, we develop techniques to detect intrusions (1) in a

self-checking manner by the application and (2) through the operating system sched-

uler, which are novel contributions to the real-time/embedded systems domain to the

best of our knowledge.

1 Introduction

The presence of embedded systems is altering today’s life in many facets, and often

in a subtle way that may go unnoticed — unless system failure impacts our lives.

Examples range from non-critical systems (televisions, toasters), moderately critical

systems (HVAC control systems, PHEV charging stations, traffic lights) to highly
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critical ones (power grid control, anti-lock brakes, and flight control systems). The

latter two categories are examples of cyber-physical systems (CPS) where system

control affects human lives or interacts with the environment. Most of these systems

have real-time constraints, and ensuring that such systems are secure from intrusion

and tampering is a design challenge of utmost importance. Securing CPSs dramat-

ically deviates from security in general-purpose computing systems. In the latter,

attacks may result in slower response or no execution at all. Imminent system fail-

ures, if detected, can be mitigated by rebooting or re-installation with a temporary

lapse of services to users.

In safety critical real-time systems, in contrast, slower response or failure could

result in significant environmental damage or even in loss of life. System restarts of-

ten cannot be instant due to an unstable physical system state, e.g., when an aircraft

is in flight or a car is subject to slick roads requiring break control.

In practice, real-time software may have stringent requirements for CPS control.

However, this still leaves vulnerabilities exposed by libraries and specific embedded

domain device software. Attackers may exploit these by eventually executing arbi-

trary code that they have injected. Such code injection attacks have been common

for several years in the general-purpose domain. As more embedded applications

utilize networks they become more susceptible to such attacks, a problem particu-

larly for CPS applications due to their increasing network connectivity.

One critical observation for this work lies in how embedded real-time systems are

designed today. Their unique requirements lend themselves well to security method-

ologies that simply do not apply to general-purpose computing. The key idea of this

work is to rely on static analysis of application code that yields detailed timing

bounds, which can subsequently be exploited to raise the protection of CPS systems

in terms of cyber security.

During system design, timing analysis of embedded real-time tasks provides so-

called worst case execution time (WCET) bounds. These bounds lend themselves

naturally to security analysis. As WCET safely bounds the upper execution times

for specific code sections, execution times above these bounds provide indications

of a system compromise due to intrusion. We have designed a technique for em-

bedded real-time systems where general-purpose domain protection may prove in-

effective: Techniques such as address-space layout randomization [37] and Stack-

Guard [13], designed for a 64-bit address space, can be defeated more easily in

embedded 8/16/32-bit processors with brute-force attacks. Instruction Set Random-

ization [19] and other hardware enhancements [38, 20] impose high-overhead due

to binary rewriting or require additional hardware (with limitations given their static

buffer constraints), the cost and overhead of which simply cannot be accommodated

in lower-end CPS platforms.

Contributions: This work contributes three mechanisms utilizing both instru-

mentation of and analysis from within real-time applications to detect timing per-

turbations resulting from the execution of unauthorized code. The approaches are

demonstrated to be effective both under simulation and on a hardware platform. Us-

ing timing metrics and comparing them with worst-case bounds allows the detection

of security breaches due to system intrusion. In addition, prior to an actual deadline
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miss, one can detect that an application is about to exceed its timing requirements,

which allows one to still trigger appropriate actions in a timely manner before the

deadline. The three mechanisms are:

1. We first introduce T-Rex, which utilizes timing bounds to detect intrusion at a

fine-grained level through instrumentation of return paths. This method allows

the detection of code injections due to smallest timing dilations, i.e., depending

on system parameters as small as 5-22 cycles.

2. The second method, T-ProT, validates intra-task checkpoints via synchronous

scheduler invocations to uncover coarser-grain injections between 9 and 5k cy-

cles.

3. The third approach, T-AxT, exploits asynchronous scheduler-triggered timing

validations of application code sections. It does so without requiring the applica-

tion code to be instrumented.

These security checks can be strategically scheduled to utilize otherwise idle time

in the schedule. By offering different levels of granularity through these schemes,

sufficient time is given to transition to a fail-safe state after intrusion detection.

If properly designed, evasive actions can still be accommodated within real-time

deadlines.

2 Attack Model and Scenario

In this section, we discuss the attack and adversary models that are the premise for

our contributions. We then demonstrate a sample attack under these constraints.

There are a number of scenarios for attacks on embedded systems with or with-

out real-time constraints. Past security work predominantly focused on wireless net-

works in the domain of embedded systems, such as [45]. Models range from passive

packet sniffing to various active attacks, such as network traffic disruption (e.g., jam-

ming, spoofing) and packet data tampering/rewriting. Our approach complements

network-centric protection with application-level intrusion detection.

We assume that one or more network nodes have been compromised or an at-

tacker has successfully authenticated a node under our adversary model. Node au-

thentication may provide adversaries with control to the local (wired, wireless or

ad-hoc) network. Such nodes can be embedded or general-purpose systems, they

may be mobile or stationary. We assume that hardware parameters are not modified

during an attack, i.e., memory latencies and processor frequencies are not mod-

ified by the initial attack code. In contrast to network-level security, we take an

application-centric approach for protection. While past work has focused on the

application-layer network interface for providing protection [48, 49, 47], we focus

on application-intrinsic protection, which does not compete but rather complements

the above schemes. This is based on the premise that attacks originate from ap-

plications before the operating system is compromised. Our work focuses on early
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intrusion detection at the application level before other system or hardware parame-

ters can be manipulated, i.e., on the detection of intrusion on uncompromised nodes

via code injection. Data injection attacks are beyond the scope of this work. We

assume that the user data space is unsafe (partially or fully compromised) at the

time of detection but the operating system space is still trusted as it has not been

penetrated (yet).

In this work, we seek to protect embedded control software by enhancing it with

sanity checks to uncover execution of unauthorized code in addition to regular ap-

plication code. Consider the example in Figure 1 that obtains input data (via fscanf)

from an array of input sensors (e.g., temperatures) that are aggregated and later an-

alyzed to drive feedback-control of an actuator valve. In our attack scenario, a net-

work packet supplies the sensor data from a spoofed or compromised node, which

we implemented on a MIPS ISA platform.

void Sum() {

char localcpy[MAXSIZE];

fscanf(input,"%s\n",&localcpy);

for (i = 0; i < MAXSIZE; i++) {

// Search for data, increment counter, ...

}

// Checkpoint 1 instr. in assembly

}

void read_data() {

input = fopen("SomeNetworkDevice","r+");

Sum();

// Checkpoint 2 instr. in assembly

}

Fig. 1 Sample Code Vulnerability

A buffer overflow is caused by supplying an initial input string that exceeds the

bound of the localcpy array. It overwrites both frame pointer and return address.

When returning from the function after the loop, control is subsequently transferred

to the first instruction in the Sum function (see Figure 2). Upon the second execution

of Sum, a second input corrects both frame pointer and return address to resume

execution as normal. Without ever causing a program fault, this attack results in 2

× MAXSIZE aggregations of legitimate sensor data within thresholds, yet the result

would be averaged incorrectly over just MAXSIZE elements (code omitted). This

may lead to an incorrect overall value that would usually go undetected.

In embedded systems, general-purpose and network-level protection methods are

insufficient for such attacks for a number of reasons.

1. While this attack exploited a common library routine to trigger a buffer overflow,

constraining analysis to a subset of vulnerable routines is insufficient in embed-

ded systems where custom hardware devices expose non-standard input routines

beyond POSIX library routines that may have exploits.
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Fig. 2 Diverted Control Flow

2. Statistical detection methods [22] can be defeated in such a scenario by adap-

tively changing sensory input over time, which requires multiple repetitions of

attacks if they can be detected at all.

3. Signature-based methods can be defeated through spoofing as embedded systems

have limited computational capabilities that allow only symmetric signatures/en-

cryption to be employed. Stronger public/private key pair signatures or encryp-

tion typically cannot be accommodated in given utilization bounds of lower-end

embedded real-time systems [41].

Since our focus is on real-time systems, we follow an approach that differs sig-

nificantly. In real-time systems, statically analyzable timing bounds are calculated

at multiple granularity levels. We exploit time-bound checking as means to detect

intrusions. For the attack in Figure 1, the time from the initially diverted return to

the second return from Sum accounts for 14K additional cycles on the MIPS ISA.

We have developed a number of application-centric techniques that can detect tim-

ing dilations as small as 5-22 cycles. With only minimal runtime overhead in the

order of 1% of the application’s execution time, the above intrusion was instantly

detected. Our method detects not only this injection attack but also a variety of oth-

ers. The approach is orthogonal to methods that protect against other attacks, such

as data injection, timing, and denial of service attacks. Each of these attacks may

require separate approaches for prevention or detection, i. e., it is not realistic to ex-

pect a single method to secure against all of types of adversary approaches. Overall,

time-based security can complement other security mechanisms. While it does not

categorically prevent all attacks, it will raise the bar for code injection attacks.

3 Establishing Execution Time Bounds

In hard real-time systems, a priori determination of execution time bounds is a strict

requirement. After all, a missed deadline may render the entire application incor-

rect. Timing analysis determines an application’s best-case and worst-case execu-

tion time bound (BCET and WCET). This allows verification if a task’s deadline



6 Christopher Zimmer, Balasubramany Bhat, Frank Mueller, Sibin Mohan

can always be met. Timing analysis can be performed via dynamic [8, 42], static

techniques [44, 31] or hybrids of them [5, 30, 43].

Dynamic timing analysis determines the effect of different inputs on execution

time to approximate the WCET, e.g., to determine that an inversely sorted list max-

imizes bubblesort’s computational complexity. Static analysis bounds aggregate

costs of instructions in blocks and then compound the costs of paths throughout

the program taking architectural timing effects into account to derive a safe WCET

bound at compile time. Static timing analysis has been shown to provide safe WCET

bounds [42], much in contrast to the dynamic approach.

There are two reasons for deficiencies of dynamic analysis. (1) Due to explosion

of the input space for just moderately complex software, it quickly becomes infea-

sible to determine worst-case inputs or exhaust all inputs during testing. (2) Even

if worst-case inputs were known, hardware complexity no longer guarantees that

worst-case timing occurs for the algorithmic worst-case input but may rather occur

on other inputs, e.g., cache misses or branch mispredictions.

In this work, we utilize WCET bounds obtained from static timing analysis.

While the objective of traditional timing analysis is to determine WCET bounds

along the longest execution path, our work capitalizes on the ability to exploit timing

results along arbitrary paths. Our work relies on WCET bounds for such paths but

for security reasons and not for schedulability. We utilize the tool chain [18, 34, 32]

depicted in Figure 3 to conduct our study. This enables us to accurately gauge the

WCET bounds of an application (macro view) as well as small groups of instruc-

tions (micro view). A compiler translates the application to annotated Portable In-

struction Set Architecture (PISA) assembly, which is a MIPS-like ISA [10]. This

intermediate code along with loop bounds information is then fed into a control-

flow analysis tool. Subsequently, control-flow analysis and static cache analysis are

performed. The respective outputs are then consumed by a timing analyzer. It de-

rives safe WCET bounds based on the annotated assembly and loop bounds.

Estimate
WCET

Configuration
Caching

Simulator

Cache

Static

Source and Constraint
Files

C Control Flow

Information

Cache

Categorizations

Instruction
Dependent
Machine

Information

Timing
Analyzer

Compiler

Fig. 3 Timing Analysis Tools

To support real-time security, we modified the timing analysis toolset in Figure 3.

The original toolset provided timing feedback at the functional and loop level. We

enhanced the toolset to supply timing bounds for a series of smaller ranges during

the same analysis run including aggregate values of WCET bounds for sequential

instructions plus the cost of branch mispredictions. The resulting bounds are tight

and enable us to determine, within a reasonable margin, if a security breach has

occurred, e.g., through code injection.
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4 Time-Based Intrusion Detection

There may be a variety of motivations for attackers to intrude systems, ranging

from changing data for personal benefit to causing potentially catastrophic dam-

age to the CPS environment, e.g., to overload a power transformer by changing

safety bounds data resulting in irreversible physical damage requiring components

to be replaced (e.g., costly substation transformers). The common idea of our ap-

proach is not to prevent but rather detect intrusions, namely by verifying timing

bounds at checkpoints during application execution. Our approach is generalized by

a common methodology and systematic placement of checks within multiple system

components as described in the following. We distinguish two checkpoint placement

strategies, one that instruments the application and one where the real-time sched-

uler triggers checks called T-AxT. For application-side checkpoints, we promote

what we term macro and micro checks of timing bounds. T-ProT competes with

scheduler-triggered T-AxT checking at the macro level while T-Rex complements

the other two schemes at the micro level.

Checkpoints are realized as synchronous system calls for application instrumen-

tation or reside in the scheduler at preemptions. It is necessary to use system calls

because user space provides insufficient data protection. Thus, we are using the real-

time operating system as our trusted computing base. Critical security data, such as

timing bounds, reside in a different address space than application code to decrease

their vulnerability due to tampering.

Overall, the primary goal of this work is to design and assess methodologies that

provide real-time CPS applications with an intrusion detection security mechanism.

We next present several novel methods that work independently of one another or in

a concerted fashion to provide elevated levels of protection within CPS applications.

4.1 Timed Return Execution (T-Rex)

Our first method, T-Rex, employs application-level checkpoints to detect code in-

jections resulting in buffer overflow attacks. Typically, such attacks overwrite the

return address of a routine whose frames are stored on the stack. Upon return from

a function, control is transferred to the location indicated by the overwritten return

address. Attackers often divert execution to hand-written instructions intentionally

placed in global/stack variables, or they may spawn new programs. T-Rex detects

the former while T-AxT (see below) addresses the latter.

Our T-Rex method employs a pair of checkpoints to compare WCET timing

bounds with actually elapsed wall-clock time along a return (from subroutine) path.

Figure 4 depicts this scenario.

The first checkpoint sets a timer equal to the WCET, and the second checkpoint

cancels this timer. Failure to cancel this timer (due to time overrun) would result

in an interrupt indicating a compromised system. Notice that T-Rex is equally ap-
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Operating System

Main Foo

Function Call and Return

On Return Validate
Query System Clock

Fig. 4 Timed Return Execution (T-Rex)

plicable to arbitrary control transfers, such as function pointers or large conditional

switch/case statements resulting in indirect jumps.

In general, T-Rex stipulated that if the dynamically observed wall-clock delta be-

tween checkpoints exceeds the WCET bound then an excess amount of instructions

must have been executed. Such a bound violation provides an indication of a secu-

rity breach. In contrast to coarser code sections with conditional control flow, static

timing analysis on these straight-line execution regions yields tight WCET bounds.

Return-from-subroutine code comprises a series of loads and stores to restore prior

processor state and unwind the stack. Figure 4 depicts the communication struc-

ture of this method. It shows the application interfacing with the system twice to

obtain values from the system clocks before checking the time-stamp delta against

WCET bounds. A region that exceeds the path-based WCET bound may not nec-

essarily cause the entire program to exceed its overall WCET bound. This is due

to conditional execution where shorter paths may be taken during the remaining of

execution, which compensates for the injection overhead.

As such, T-Rex is well suited for detecting attacks that could not easily be de-

tected at task-level granularity due to deadline misses. This is because violation of

micro-path WCET bounds is a necessary but not a sufficient condition for violation

of a task’s deadline or WCET bound.

The design of T-Rex integrates a state machine into the operating system. T-

Rex requires the use of two separate calls whose order is tracked. In the motivating

example, the attack would cause the timer initiated at the first checkpoint to never

be canceled as the second checkpoint is skipped. A potential system intrusion is

indicated by the corresponding timeout interrupt.

We also check the addresses of the checkpoint to insure that they fall within the

address range of instructions as part of the state machine. Thus, any attack would

have to return back to the application code to shut off the timer using the second

checkpoint. For tight WCET bounds, even the simple code from the attack to jump

to the second checkpoint would be detected. An attacker could potentially disrupt

the control flow of the application by jumping to a non-corresponding second check-

point if slack was available. However, such illegal control flow transitions would be

detected with the T-ProT technique described in the following section.



Intrusion Detection for CPS Real-Time Controllers 9

4.2 Timed Progress Tracking (T-ProT)

Our second mechanism, Timed Progress Tracking (T-ProT), is depicted in Figure

5. T-ProT utilizes synchronous calls at security checkpoints to the scheduler and

validates WCET bounds of longer code sections than T-Rex. The scheduler assumes

the job of checking these bounds against actual elapsed time to provide separation

between protected application and corresponding timing data as the latter resides

within the operating system, i.e., at a higher privilege level and in an address domain

disjoint from the application’s domain. Hence, our timed security does not rely on

data / knowledge embedded within an application. Since such data can potentially

be compromised, separation is a critical design decision.

Task

within timing bounds
Validate Checkpoint

Checkpoint
Invoke 

Operating System Scheduler

Fig. 5 Timed Progress Tracking (T-ProT)

Consider a scenario where the program diverts from the expected control flow.

T-ProT detects several such intrusion scenarios, such as large sections of applica-

tion code that are skipped or failure to return control to the base application, e.g.,

by replacing the executable of a real-time task (through “exec” system calls). Upon

encountering a timing checkpoint, instrumentation forces a synchronous scheduler

call. The scheduler subsequently checks timing bounds for the code section between

the previous and this checkpoint. It then activates a timeout equal to the WCET dis-

tance until the next checkpoint. An intrusion is flagged if no checkpoint is encoun-

tered before this timer elapses, i.e., when the respective timer interrupt is triggered

(instead of being canceled when encountering the next checkpoint). Assuming that

the application was not aborted prematurely due to an attack, we ensure that these

checkpoints are always traversed when a job completes or its deadline expires. This

is ensured by placing checkpoints in control-flow blocks guaranteed to be traversed

during execution (e.g., using post-dominator information [1]).

We controls the sensitivity of protection by determining the instrumentation

points (checkpoints). In some algorithms, the best-case execution time may devi-

ate significantly from the worst-case execution time. For instance, the insertion sort

algorithm has a best-/worst-case complexities of O(n) and O(n2), respectively. The

difference between these bounds provides a substantial margin to orchestrate code

injection. To overcome this problem, checkpoints need to be inserted such that time

distribution is divided in a (uniform) manner to minimize the time between two con-

secutive checkpoints. An example of this would be checkpoints within the loops of

the insertion sort that fire every k iterations. Here, the choice of k determines the
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strength in protection. We assure that there is sufficient slack in the task schedule to

accommodate the timing checks, where scheduler invocations provide a call-back

interface to trigger these checks. This also meshes well with code obfuscation tech-

niques employing multi-version binaries: One can instrument at disjoint points for

otherwise functionally equivalent binaries of the same application. Any attempt to

systematically defeat our timed security approach becomes increasingly more diffi-

culty for attackers by doing so.

A combined approach that uses these two methods bears additional benefits. By

themselves, each approach can detect certain types of attacks. In combination, they

become far stronger. T-Rex provides more fine-grained views of the internals of

application timings thus allowing for targeted detection thresholds for code sec-

tions. However, this fine-grained approach has the shortcoming that detection is

constrained to localized code sections. An attack may remain undetected by method

one if the compromised code never returns to the original application code at all or

only returns to locations that bypass these checks. In another approach to counter

detection, WCET bounds stored within the application could be tampered with. In

such cases, checks would fail to indicate bounds violations. This is precisely where

T-ProT complements T-Rex.

T-ProT provides an ”outside-of-the-application” mechanism to ensure that spe-

cific security checks, placed strategically on the critical path of the application, are

actually executed. These checks occur either when a job has completed or when a

deadline expires, whichever happens first.

Checks allow the operating system to determine if injected attack code caused a

job to bypass our checks or if a return never reverted back to the job’s code at all. T-

ProT, though operating within looser timing bounds at the macro level, uses timing

data in a safer manner. It is protected from application-side buffer overflows because

the data is stored inside the operating system scheduler, an address space in a differ-

ent protection domain than that of the application. In combining the benefit of the

two methods into a single system, we enable a more secure real-time environment

suitable for the CPS domain.

4.3 Timed Address Execution Tracking (T-AxT)

Our approaches so far, T-Rex and T-ProT, both require application instrumentation

for checkpoint placement. An attacker could exploit this fact through application-

specific checkpoint bypass techniques, even though such bypasses are non-trivial to

construct within given timeout bounds. To overcome this weakness, we designed T-

AxT as an asynchronous checkpoint technique coexisting with unmodified applica-

tion code. T-AxT exclusively utilizes the scheduler and timing bounds information

provided at system start to maintain timed security. In T-AxT, the scheduler pre-

empts the application upon timeouts. It then probes the PC value of the preempted

application and compares execution progress to WCET bounds associated with the
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code section between the previous and current PC values of consecutive preemp-

tions.

As T-AxT operates without synchronous calls, it presents an alternative to T-

ProT. But with this technique, bounding the WCET of loops presents a challenge.

As PC values are agnostic towards the progress of loops, the current iteration point

within nests of loops needs to be known. We probe actual values of induction vari-

ables whose locations (registers/memory) are obtained via static analysis (offline,

prior to system start). The scheduler dynamically evaluates polynomial functions

parametrized by actual iteration points to determine if the WCET bound of a code

section has been exceeded. Such sections may span multiple loop nests and itera-

tions. Codes are systematically supplemented during static code analysis with an

induction variable should any loops lack induction variables altogether.

We determine the WCET comparison bounds in either absolute or relative time in

our experiments. We utilize WCET bounds relative to task activation when multiple

execution paths exist. This allows us to eliminate path-aggregate over-estimations

of WCET bounds due to conservative static timing analysis. In contrast, we uti-

lize absolute WCET bounds for sequential straight-line code for finer granularity

of timings. This duality is tailored to tighten WCET bounds checks in loops since

scheduler preemption tends to occur in hot code regions, i.e., predominantly within

loop execution.

In practice, we mostly rely on checks of WCET bounds between two checkpoints

at the highest nesting level. This interaction is depicted in Figure 6. The first check in

the loop is calculated as an absolute checkpoint since no previous checkpoints exist.

The second checkpoint is measured as a delta from the previous checkpoint. This

strengthens timed security as a means of intrusion detection as bounds are tightened

by this method.

Operating System Scheduler

Loop2

Loop1

Start Finish

Fig. 6 Timed Address Execution Tracking (T-AxT)

Since we utilize application instrumentation for two of the timed security tech-

niques, the overall real-time task set has to be reanalyzed after instrumentation. This

ensures that WCET bounds include the instrumentation code. Timing checks by the

scheduler have to be accounted for as well before the real-time schedulability is

reassessed. To avoid that such overheads becomes excessive, which might render

task sets infeasible in terms of real-time scheduling, checkpoints are selected based

on profiled frequencies that are representative task executions in our experiments.

Any detected timing bounds violation indicating intrusion further needs to result in
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evasive actions, such as transitioning to fail-safe states, e.g., through a mode change

that replaces all existing tasks with a new task set governing a shut-down sequence

and network isolation. Such evasive actions are beyond the scope of this work, i.e.,

the focus of this work is on time-based intrusion detection.

Summary: Table 1 presents a high-level comparison between our novel tech-

niques. T-Rex protects against buffer overflows commonly exercised on the return

path of function calls, which requires fine-grained, cycle-level checks in conjunction

with tight bounds on this return path. The overhead of such checks can be high if

functions are called very frequently in tight loops, but could be lower when code is

inlined instead of calling functions in these loops. Since protected code sections are

sequential and bounds are tight, virtually all buffer overflows can be detected, and no

source code changes are required. In contrast, T-Prot requires source code changes to

insert checkpoint calls in between which code sections are timed at a medium grain.

Due to variable loop bounds and conditionals in these code sections, bounds are

moderately tight, and so is the overhead assuming that calls are inserted judiciously.

T-AxT has comparable, if not lower, overhead than T-Prot. It tracks progress using

the program counter and loop invariants, which allows coarser bounds checking, yet

without requiring source code changes as checks are integrated into the scheduler at

preemption points with low overhead.

Property T-Rex T-Prot T-AxT

Timing Method return path add checkpoints at scheduling points

Progress Tracking cycles/instr. time of a task inspect loop counters

Granularity fine: instructions medium: blocks coarse: interrupts

Bounds Tightness very tight moderate loose

Cost/Overhead high moderate low

Intrusion Detection very strong moderate/high moderate/lower

Source code changes none insert calls none

Table 1 Comparison of Intrusion Detection Techniques

5 Implementation

We implemented the mechanisms of T-Rex, T-ProT and T-AxT in two different

experimental frameworks. The first one that combines static timing analysis with

architectural simulation yields simulation results in experiments detailed later. The

second realizes dynamic timing analysis on a concrete embedded system hardware

platform, where we subsequently obtain runtime results. We tested both of our im-

plementations using a set of C-Lab benchmarks [11].
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C Benchmark Function

adpcm Adaptive Differential Pulse Code Modulation

cnt Sum and count of positive and negative numbers in an array

lms An LMS adaptive signal enhancement

srt Bubble Sort

fft Fast Fourier Transform

Table 2 C-Lab Benchmarks

5.1 Simulation Framework

Figure 7 depicts the overall experimental framework. We enhanced a static anal-

ysis framework as discussed in Section 3 to support check-pointing instructions.

These check-pointing instructions allow us to determine the worst case cycle time

at which a particular instruction finishes execution. This information is essential to

determining the WCETs between two consecutive checkpoints under T-ProT. We

further utilize a custom SimpleScalar processor simulator [9] enhanced to support

multitasking and scheduler threads / tasks, which we exploited to implement ear-

liest deadline first (EDF) scheduling [31]. The instruction set architecture for this

simulator is PISA. This matches the input assembly utilized by our timing analysis

tools. For the purpose of this work, we assess benchmark results in SimpleScalar

that match the configurations of the static timing analysis tools.

C Source
Files

Scheduer
WCETs for

Loops/Tasks

Gcc PISA
Compiler

P−Compiler
for PISA

assembly

SimpleScalar Simulator

Security Data

Static
Timing Analyzer

instruction/
data info

C Source Files task set/
binaries

Fig. 7 Framework

As discussed before, these configurations provide a lower bound on the amount

of code injection that may remain undetected. If we were to relax our configura-

tion constraints, WCET bounds obtained by static analysis would become less tight

implying that an attacker could potentially execute more instructions prior to being

detected. To assess this trade-off, we also deployed T-Rex and T-ProT on a concrete

hardware platform (see below).

The scheduler in the SimpleScalar framework supports multiple preemptive and

non-preemptive scheduling algorithms. For the course of this work, we used a pre-

emptive EDF schedule to most accurately show the side effect of our mechanisms

on the scheduler itself. The scheduler is customized to support relative time for each
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thread aggregated during preemptions and at security checks of a task to most accu-

rately track execution progress.

The cache configuration for both the static cache simulator and the timing ana-

lyzer were configured without data caches and with perfect instruction caches, i.e.,

with an I-cache capacity exceeding that of our largest program sizes so that we only

had to account for cold misses. The choice of the cache configuration parameters

was intentional as our objective here was to assess a bound on detectable code in-

jections. In other words, given the tightest possible timings on application code, we

wanted to determine the largest number of cycles that would remain undetected by

our security-enhancing mechanisms. For such a metric, the smaller this threshold,

then stronger the protection will be by our mechanisms.

For T-Rex, SimpleScalar enhancements include two system calls to query timing

information (a) before a return from a function / method, and (b) at the destination of

a function / method return and compare the difference to static bounds. We utilize a

timer and also verify correct sequential ordering of these calls. If call one was issued

without the other, a control-flow violation (intrusion) is detected, that would result

from a buffer overflow attack that returns control flow past the second call. Subse-

quently, a system-defined action, such as transitioning into a fail-safe state, can be

initiated. In effect, the imposed call ordering represents a security side-check that

provides the means to detect certain attacks missed if only execution cycles were

checked. For example, if an attacker were to execute injected code and then transfer

control to the instructions past our second system call in an attempt to bypass our

imposed security, the absence of the second system call would be detected at the

next return from a function when another instance of the first system call is issued.

Call sites are identified by their call stack / PC and frame pointer signature so that

calls from injected attack code are easily identified.

5.2 Embedded Hardware Framework

We also experimented with an actual embedded hardware platform, namely the

DSK6713 kit from Spectrum Digital. These experiments combine dynamic timing

analysis with implementations of T-Rex and T-ProT. The experimental board has a

Texas Instruments C6 (TMS320C6713) DSP chip running at 150MHz featuring a

32-bit processor with Very Long Instruction Word (VLIW) architecture, eight in-

dependent functional units that can execute up to eight instructions per cycle, fixed

and floating point arithmetic, 2 levels of caching and up to 256KB of on-chip SRAM

programmed under Code Composer Studio v3.1. All programs were written in C and

assembly.

This board is also utilized in a CPS project for controlling power devices (solid

state transformers) in a renewable energy project (solar and wind power generation

in microgrids). There, the TI DSP controls silicon-based solid state transformers

during the DC/DC conversion from low to high voltage levels. These transformers

represent the link between micro-grids and the regional power grid backbone. The
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project focuses on controlling renewable energy sources locally and feeding their

power into the regional grid without disruptions. Due to the decentralized nature

of micro-grids, software security is deemed critical in power grids as malicious at-

tacks could potentially damage equipment upstream. Such damage would impact at

a minimum entire suburbs and require manual maintenance. Hence, our work and

the choice of platform are very much motivated by a concrete CPS scenario.

The effectiveness of our mechanisms depends on how accurately we can deter-

mine the WCET bounds and how tight these bounds are relative to average execution

times. The objective of this study is to assess the lower bounds on tightness. In the

experiments on the embedded platform, WCET bounds are determined by dynami-

cally timing execution paths under worst-case scenarios while running the program

on a cycle-accurate simulator from Texas Instruments that simulates the C6713 pro-

cessor along with its on-chip peripherals. Executing the actual code segment repeat-

edly on this simulator using worst-case inputs and hardware settings provides the

observed maximum number of CPU clock cycles for a given code segment. We then

convert these dynamically determined WCET cycles into microseconds by consid-

ering the CPU clock speed. In addition, we tried to reduce the effect of any factors

that adversely influence tightness of WCET bounds.

The following is a list of such factors on the given hardware platform configured

for maximum predictability:

Caches: The TMS320C6713 has separate L1 instruction/data caches and a uni-

fied L2 cache. We chose to disable all caches resulting in tight WCET bounds rela-

tive to average timings. Enabling caches would considerably alter the WCET bounds

to deviate more significantly from their average case, yet still preserve the safety and

validity of upper WCET bounds.

SRAM vs. DRAM: In our experiments, the program code and data reside in

static, non-volatile memory (SRAM), i.e., we do not utilize dynamic, volatile mem-

ory (DRAM) at all. The TMS320C6713 processor has 256KB of on-chip SRAM. If,

in contrast, DRAM were used, we would need to account for periodic self-refresh

cycles. The DRAM controller refreshes row data in different banks of the DRAM

in a row-cyclic manner. This issue is common to all embedded platforms utilizing

dynamically buffered memory and refresh delays are known to present a challenge

in real-time systems.

During such self-refresh cycles that last for a few microseconds, the CPU bus

remains busy. Any attempt to read from the DRAM or other external devices would

then stall the processor as long as the self-refresh cycles are in progress. These self-

refresh cycles are asynchronous events as far as program execution is concerned

and completely transparent. They would thus affect the timing calculations used in

T-Rex. However, strategies exists for exactly measuring the duration of DRAM self-

refresh cycles [3] and to treat DRAM refresh as a higher priority task [6, 7]. Since

the refresh overhead challenge is orthogonal to our work and our aim was to assess

how tight WCET bounds could become, we decided to eliminate these overheads in

experiments by avoiding DRAM altogether and exploiting SRAM instead.

Compiler-Generated Runtime Overhead: In our current experiments we coded

all tests and runtime / operating system code in C to reduce the amount of run-
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time overhead added by the compiler. Hence, instructions between the first and sec-

ond instrumentation points around a function return of T-Rex are limited to stack

unwinding operations and register restores. An object-oriented language, such as

C++, would further add destructor overhead for objects locally declared within the

method. Since destructors are user defined, providing tight WCET bounds for them

presents a challenge.

Our implementation features a layered system architecture depicted in Figure 8.

We ported a commonly used real-time operating system, MicroC OS II [21], which

supports fixed-priority preemptive scheduling. We then implemented a scheduler

based on rate-monotonic analysis (RMA) [25] on top of MicroC OS II. This sched-

uler supports threads of arbitrary periods imposing strict execution time control.

Failure to complete by a deadline results in preemption and rescheduling during the

next period. Most hard real-time systems use similar schedulers in order to guaran-

tee deadline constraints on periodic tasks. We also provide synchronous application

checkpoint calls for implementing T-ProT and monitoring of aggregate execution

time per task with a one microsecond precision, but we exclude the time spent in-

side interrupt service routines and scheduler overheads (due to the complexity of

measuring these).

Other Threads ...PeriodicTest Thread

Custom RMA Scheduler

MicroC OS II RTOS

DSK 6713 Kit

TMS320C6713
Processor

Fig. 8 System Architecture

6 Experiments

We first report the results of our simulation environment before discussing measure-

ments obtained on the embedded hardware platform.

6.1 Common Attack Cycles

In the following, we first consider common shell codes used on Linux systems to

determine typical attack scenarios. This is necessary since timing values of actual

attacks for embedded systems are sparse in literature, at best. Metasploit, a repos-
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itory for shell attacks, contains approximately 35 different Linux/Unix shell code

examples of the same fundamental structure. A jump in the first line of the shell

code transfers to another location within the shell code. This aids in determining

the relative offset for addressing. An “exec” system call then invokes a command of

the attacker’s choice. The most common examples found on Metasploit are useradd,

shell, and tcp open directives.

Figure 9 provides measured timing values for common portions of attack code.

We measure the average cost of execution from the hijacked return to the first in-

struction in the shell code (“Start”) and the average time of an execution system

call (“Execpl”) with null arguments. If actual values are passed, measurements are

significantly larger. E.g., passing “Chmod”, a common attack to modify file permis-

sions, dramatically increases the cycle overhead. The motivation here is to consider

the effectiveness of our methods, and these examples of common shell code attacks

provide realistic timings to this end.

Location Cycles

Start 90

Execpl 2,800

Chmod 5,151,720

Fig. 9 Shell Code Timings

No Caches 4KB I-Cache

Program Function WCET Sensit. WCET Sensit.

SRT Initialize 39 5 21 13

SRT BubbleSort 39 5 30 13

LMS LMS 39 5 30 9

FFT FFT 39 5 25 8

ADPCM Encode 39 5 30 22

ADPCM Decode 39 5 30 22

Fig. 10 T-Rex WCET and Sensitivity cycles

6.2 Simulation Experiments

In our implementation, T-Rex utilizes an absolute task timer to determine the to-

tal time since the simulation start. T-ProT and T-AxT are exercised in a modified

preemptive real-time scheduler under the SimpleScalar environment developed else-

where [31] to keep an aggregate timer for each of the executing jobs. This aggregate

timer is compared against WCET bounds from static timing analysis. It is further

saved in the scheduler-maintained thread control block at preemption and restored

at reactivation. The value is reset at thread / task completion to prepare for the exe-

cution of the task’s next periodic job.

Timed Return Execution (T-Rex) Results

The attack outlined in Figure 1 was successfully detected by T-Rex as a buffer over-

flow since the injected code accounts for 14k cycles, which far exceeds its detection
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granularity of 5-22 cycles. Under legitimate sensor inputs, the sample program pro-

duces the correct output with an additional 40 cycles relative to the application itself.

Figure 10 shows the sensitivity results of T-Rex for varying benchmarks and their

respective functions. In this experiment, the attack code, after executing its injected

code, returns to the exact spot in the code that the original return for a call would

have jumped to. The table then reports the WCET in cycles for the return sequence

as reported by timing analysis (WCET in column 3) and the number of slack cycles

that would remain undetected (sensitivity in column 4), first without considering

caches and in next two columns with a 4KB instruction cache.

The slack amounts to the difference between WCET and actual execution time,

the latter of which is observed from SimpleScalar simulation. The WCET bound

is extremely tight since T-Rex assesses time on a straight-line path of the control

flow. Hence, the window of vulnerability is restricted to a sensitivity of 5 cycles

without and 8-22 with caches. If an attack was to go undetected, it would have to be

constrained to such a small amount of code as an injection. These results provide a

lower bound. The upper bound for undetectable injections is given by the T-ProT or

T-AxT methods, which address larger injections and omission of code sections in

favor of injected code. However, it would be non-trivial to disguising the side effects

of polluting stacks and registers.

The timing bounds and subsequent security checks for straight-line code are

very precise as results in Figure 10 illustrate. Instruction cache effects loosen these

bounds proportionally to the cache miss penalty of 10 cycles (as seen for ADPCM).

Overall, this leaves little room for injected code to go undetected.

Timed Progress Tracking (T-ProT) Results

T-ProT relies on synchronous scheduler checkpoints to dynamically detect intru-

sions by WCET bounds violations. Its effectiveness is assessed by the results in

Table 3, which reports checkpoints between adjacent instrumentation points in the

control flow for each application. For example, checkpoint 0-1 denotes execution

from entry of main() to a later basic block in CNT, 2-3 and 3-4 denote loop en-

try and exit, respectively, while 3-2 denotes a back-edge within the outer and inner

loops, respectively (see Figure 11). For these code sections, Corresponding WCET

bounds (column 3) and sensitivities (column 4) are reported in cycles.

Several checkpoints were instrumented in benchmarks as illustrated for CNT in

Figure 11:

1. immediately after the original variable declarations but prior to the invocation of

loop 1;

2. within the outer loop just prior to the inner loop invocation;

3. in the inner loop with logic surrounding it to only perform the check during half

way through the total iterations of the inner loop; and

4. in the final block of the application just prior to exiting.
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No Caches 4KB I-Cache

Program Checkpoint WCET Sensit. WCET Sensit.

LMS 0 - 1 1,500 44 844 173

LMS 1 - 2 5975 65 3279 774

LMS 2 - 2 17199 259 8699 2120

LMS 2 - 3 11330 210 5549 1430

FFT 0 - 1 1,600 195 846 228

FFT 1 - 2 950 54 697 220

FFT 2 - 2 19,283 2,787 13,955 5,334

FFT 2 - 3 12,709 1,997 9,451 3,831

FFT 3 - 3 5,084 460 3,150 659

FFT 3 - 4 208 48 120 49

CNT 0 - 1 1814 120 786 147

CNT 1 - 2 69 9 46 14

CNT 2 - 3 14083 283 4341 1493

CNT 3 - 2 13599 239 4199 1481

CNT 3 - 4 13726 266 2760 1534

Table 3 T-ProT WCET and Sensitivity cycles

T-ProT has a coarser granularity for the reported bounds on undetectable injections

as indicated by the results in Table 3. These bounds, while smaller in some case,

range up to nearly 5k cycles on the upper end. Hence, scheduler callbacks result

in less sensitivity than return path instrumentation. The more complex control flow

(than just straight-line code as in T-Rex) causes this lower sensitivity.

Loop 2

Start 

Start 
Loop 1

Main

Start

Loop 2
End 

End
Loop 1

End
Main

Checkpoint 4

Checkpoint 2

Checkpoint 1

Checkpoint 3

Fig. 11 CNT Control Flow

Checkpoints are scattered throughout the application as they may cross loop lev-

els, as indicated by Table 4. This reduces the tightness of WCET bounds. WCET

bounds of a loop iteration are generally less tight than straight-line code due to fluc-

tuations in the number of iterations or conditionals inside the loop body. To obtain
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safe worst-case results, we have to conservatively calculate the worst case scenario

(upper bound on loop iterations, longer path for conditional execution) in our static

analysis.

The utilization of instruction caches, as depicted in the last two columns of Table

3, has an impact on the overestimation. This is due to the fact that relative check-

points tend to not incur cache misses as most cold misses occur prior to the first

checkpoint hit.

These scheduler checks result in strengthened support for security. Moreover,

T-ProT is quite versatile in that it may be used to instrument code sections at arbi-

trary points in the application. This makes T-ProT suitable to detect compromised

subroutines in a targeted manner.

There are additional security benefits to using T-ProT. Timing bounds on pre-

emption require a look-up of the previous checkpoint and a comparison of the cur-

rent timing values with the corresponding WCET bounds. When factored into the

application execution, this cost is hardly noticeable and requires only insignificant

additional slack in the real-time schedule of the task set at the benefit of more secure

cyber-physical systems (see Section 8).

Table 4 T-ProT Checkpoint Hits

Program Total Checkpoints Total Hits

LMS 3 203

FFT 4 114

CNT 4 132

Timed Address Execution Tracking (T-AxT) Results

The coarsest granularity of our mechanisms is provided by T-AxT. It is also the most

difficult to attack directly because it resides within the kernel and is not triggered

by checkpoints from tasks. The periodic timer for these results was set at 20k cycles

on a 100 MHz processor clock in simulation. This value was chosen to balance

overhead, e.g., SRT required 2051 checkpoints during job execution (see Table 5).

The coarser granularity of T-AxT is due to aggregation of conservative bounds

during static timing analysis and approximate matching of PC values with WCET

bounds. WCET values were associated with the next-smaller blocks of code relative

to a PC value to conserve storage overhead for WCET bounds. The LMS benchmark

generally retained the highest difference in cycle measurements vs. actual time. This

is due to the complexity and size of multiple inner loops within LMS. The overes-

timation of WCET could be decreased using a finer granular configuration but at a

larger storage cost. The benefit of T-AxT is its ability to bound the WCET of PC-

constrained code sections within or across loops and to verify that the job’s execu-

tion meets these bounds. For a given code section, bounds violations are a sufficient

indication of intrusion.
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Program Period WCET Sensit.

CNT 20,000 21,225 1,225

CNT 20,000 28,200 8,200

CNT 20,000 27,750 7,750

CNT 20,000 27,225 7,225

CNT 20,000 26,775 6,775

LMS 20,000 30,991 10,991

LMS 20,000 28,434 8,434

LMS 20,000 33,473 13,473

LMS 20,000 28,918 8,918

LMS 20,000 32,597 12,597

SRT 20,000 23,400 3,400

SRT 20,000 24,128 4,128

SRT 20,000 22,701 2,701

SRT 20,000 22,372 2,372

SRT 20,000 22,701 2,701

Table 5 Timed Address Execution Tracking

6.3 Experiments on an Embedded Hardware Platform

The DSP hardware provides a platform for the next set of experiments, where both

T-Rex and T-ProT were implemented. The first experiment features the benchmark

ADPCM deployed as a single periodic task. The code of this task is enhanced by

T-Rex to provide timed security. The single-task constraint allows us to control the

experiment by eliminating additional preemptions between first and second calls

that obtain clock values. We determined that the calls themselves add only negligible

overhead. We used “assert” statements at checkpoints to check timing bounds. The

tested assertion here is given by the comparison of the actual time elapsed since

obtaining the first clock value and the expected WCET bound.

Figure 12(a) depicts the output of assertions that were added for trace visualiza-

tion purposes. The first word in every output line indicates the ADPCM function

instrumented, followed by the result of the assertion indicating if it passed or failed.

The number before ’>’ indicates the WCET bound in microseconds for the corre-

sponding function return and the number after ’>’ indicates the actually measured

time for the same in microseconds.

Assertions compare these times with a predetermined WCET bound, which in

this case is determined to be about 3.1 µsecs (rounded up conservatively to 4) for

all functions using the C6713 device cycle-accurate simulator. The output shows

that all timed return path values are within a range of 1-2 µsecs. Hence, all the

assertions pass, i.e., no timing violations were detected implying that no intrusion

was seen.

In the second experiment, calls to a dummy function are issued after obtaining

the first clock value but before a return from a function. In other words, we created

a code injection scenario. The dummy function simply executes an empty loop (no-

op) for 100 iterations before returning to the caller. This simulates code injection
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scalel: ASSERT PASSED 4 > 1

filtep: ASSERT PASSED 4 > 1

dh: ASSERT PASSED 4 > 2
uppol2: ASSERTPASSED 4 > 2
uppol1: ASSERT PASSED 4 > 2

filtez: ASSERT PASSED 4 > 2
encode: ASSERT PASSED 4 > 2

scalel: ASSERT PASSED 4 > 1
dh: ASSERT PASSED 4 > 1
uppol2: ASSERT PASSED 4 > 1
uppol1: ASSERTPASSED 4 > 2
encode: ASSERT FAILED 4 > 16
filtez: ASSERT PASSED 4 > 1
filtep: ASSERT PASSED 4 > 1

Fig. 12 (a) All Asserts Pass (b) Some Asserts Fail

that returns to the original control flow without harming stack values, i.e., the only

noticeable effect is time dilation. Results of this experiment are depicted in Fig-

ure 12(b). As illustrated by the results, code injection through the dummy function

resulted in a large deviation in elapsed time between obtaining clock values on the

return path. Notice that even ten iterations accounting for 1.4 µsecs would suffice

for detection as 2.0+ 1.4 > 3.1, which gives an attacker little room for devising

malicious code. The next experiment features a set of periodic tasks with mixed

periodicities (containing smaller and larger periods than ADPCM) to co-exist with

the ADPCM task. We further experimented with explicit sleep statements prior to

obtaining the first and second clock values in order to force preemptions. As ex-

pected, assertions indicated intrusions in all these cases. These results are omitted

here, since they resemble those reported in the previous figures.

Finally, T-ProT was implemented on the embedded hardware platform. As be-

fore, the WCET bounds between various checkpoints are obtained as the maximum

cycle count for executing the program in a loop on the C6713 cycle-accurate sim-

ulator under worst-case conditions and inputs plus complete path coverage. This

cycle bound is then converted into execution time by adjusting for the CPU clock

speed before comparing with measured time on the hardware at a checkpoint. Our

RMA scheduler provides a built-in mechanism to remember the previous check-

point and assert the validity of the latest checkpoint. Table 6 shows the calculated

WCET bounds and observed runtimes for FFT on the embedded TI DSP hardware

platform. All checkpoints pass in this experiment indicating a safe execution in the

absence of code injection (columns 2-4).

Table 6 Checkpoints of T-ProT for FFT on TI DSP

No Injection Code Injection

Chkpt. # WCET Actual Chkpt WCET Actual Chkpt

Chkpt 0 - 1 3 2 pass 3 2 pass

Chkpt 1 - 1 5 3 pass 5 3 pass

Chkpt 1 - 2 7 5 pass 7 5 pass

Chkpt 2 - 2 4 3 pass 4 3 pass

Chkpt 2 - 3 3 2 pass 3 16 fail

We next injected code that executes between checkpoints 2 and 3 (depicted in

columns 5-7 of Table 6). A small loop is introduced between these two checkpoints

to simulate code injection. Results of Table 6 indicate that all tests between check-

points 2 and 3 fail implying a detected intrusion. Overall, we have shown that our

mechanisms facilitate intrusion detection in both preemptive and non-preemptive
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multi-tasking real-time environments. Thus, CPS applications can universally ben-

efit from these approaches.

7 Trading off Security against Timeliness

The aim of our work is to increase the level of protection against attacks in systems

at the cost of executing additional routines that monitor and check the system behav-

ior. In cyber-physical systems with real-time constraints, these instrumentation and

time validation checks affect system utilization and thus real-time schedulability.

Our sample attack in Section 2 shows that embedded systems with network con-

nections, such as CPSs, are vulnerable to cyber attacks. Reports in practice reinforce

this fact. Most notably, worms have entered monitoring equipment and disabled a

safety system at a nuclear power plant [24]. In another incident, a virus report-

edly spread past firewalls into the accounting system of the main Australian power

company, which did not implement proper physical network separation between ac-

counting and power control subsystems [33]. Further damage was only contained by

reconfiguring servers between the two subsystems to prevent the virus from spread-

ing uncontrolled into the power control subsystem.

These are just two examples illustrating the urgency of providing guards against

cyber attacks in the CPS realm. Our timed security is one such technique readily

deployable to complement existing intrusion detection techniques. The rationale of

such deployment is to further strengthen security as a single protection mechanism

can often be defeated by itself, yet a set of mechanisms is much harder to circum-

vent. In practice, the inherent costs of security are well justified. We also observe

that many real-time systems provide sufficient slack in a task schedule so that se-

curity mechanisms could be accommodated under feasible schedulability. After all,

real-time systems only have to ensure timeliness in the sense that deadlines are met.

As long as deployed security methods, such as timed security, impose overhead

within deadline bounds, correctness is guaranteed.

Conversely, systems with tight slack may limit the level of security that can be

realized. Depending on vulnerability and criticality assessment, such networked sys-

tems may need to be redesigned for more powerful hardware targets, or a paradigm

is needed to provide the ability to selectively augment code with security measures.

Selectivity amounts to a tradeoff between availability of slack to meet deadlines

and safety and vulnerability considerations of code sections. T-Rex, for instance,

increases the execution time of an application due to its inherent instrumentation.

This overhead is assessed in the results of Section 8.

Return-path instrumentation results in the invocation of only few checking in-

stances at execution time in many embedded applications since the bulk of the work

is performed in loops whose bodies do not contain function calls, thus resulting

in negligible timing overhead. In codes containing hot spots in tight inner loops

with function calls, in contrast, security checks impose a significant overhead that

may easily exceed the available slack. In such cases, application code should be
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refactored based on transformation techniques such as inlining, single caller func-

tion specialization, which avoids allocating a new stack frame in place (commonly

performed by the Intel compiler), or reduction of function call frequencies through

restructuring. In future work, the balance between such transformations and security

overhead of T-Rex to target given slack margins should be studied. Overhead is im-

posed by synchronous upcalls and timeout preemptions under T-ProT. This results

in scheduler activations to subsequently check if the application operates within

expected timing bounds. The overhead of the former (upcalls) is more significant

than that of the latter (timeouts) as timeouts are only triggered upon an intrusion

but otherwise canceled. This method should be used in conjunction with selective

placement of checkpoints using strategic and statistical means (e.g., random place-

ment and random activation). Attacks would also become more difficult as random

activations strengthen security.

The overhead of T-AxT can easily be controlled through its scheduler activations.

Should frequent checks be required, timer interrupts would have to be triggered in

shorter intervals adding to the overhead of interrupt service routines. The overall

objective is to provide adequate coverage of checkpoints to maximize overall secu-

rity within the given timing constraints. All methods are designed to allow selective

instrumentation, but the details of such placements and their trade-offs are beyond

the scope of this chapter.

Overall, we developed three security-enhancing methods based on timing infor-

mation already inherent to CPS real-time control systems. Their overheads have

acceptable costs when properly tuned for providing security without compromis-

ing timeliness. By adjusting the frequency of dynamic checks, particularly for less

critical sections, one can trade off overheads for an increase in the vulnerability

level. The trade-off between overhead and level of security is common in general-

purpose computing, yet the implications on timeliness add another equation to this

trade-off. Our techniques target real-time CPS where system criticality outweighs

performance concerns making security a mandate rather than an option. A future

direction of research might investigate the viability of additional security measure-

ments. Some of them are quite feasible, such as exploiting average case execution

times for checks on timing outliers. Such methods are probabilistic and may result

in large numbers of false positives. More accurate results with lower false posi-

tives should be expected based on parametric models of execution time that take

actual loop trip counts of dynamic execution into account, both for BCET/WCET

bounds and average times [31, 29]. Early warning indicators could be dynamically

triggered to activate stringent security checks that bare higher costs or to reduce sys-

tem functionality in order to limit potential damage to the physical side of the CPS

application.
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8 Instrumentation Overhead

We also designed experiments to assess the cost of instrumentation relative to the

performance costs of each of our methods. Table 7 depicts these overheads in per-

cent relative to the application’s base execution time without the security methods.

We distinguish the “default overhead” and “scaled overhead”. The former corre-

sponds to the experiments of Section 6 while under the latter, variations on the

frequency of intrusion checks are featured.

Overheads (default) range from 0.22% to 1.54% for three of the four benchmarks

under T-Rex. Such overheads are negligible assuming just minimal slack in a real-

time task schedule. The higher overhead of 18.71% for ADPCM is due to its mod-

ular structure compared to other benchmarks. It consists of several small functions

that are called within a loop. Thus, T-Rex checks are invoked more frequently at a

deeper nesting level than in other benchmarks. Code restructuring, such as inlining,

reduces this overhead to that of the other benchmarks. For example, after inlining

calls at the inner-most loop levels for ADPCM, the T-Rex scaled overhead was re-

duced to just 0.32%, as depicted in the last column of table 7. For the remaining

benchmarks, default overheads did not justify any inlining so no scaled overheads

are reported for T-Rex. Occasional code restructuring only imposes an insignificant

performance cost.

Depending on the application instrumentation frequency overheads for T-ProT

vary. The default overhead for the experiments in Section 6 ranges between about

7% and 16%. Such instrumentation with a high level of coverage incurs a sizable

performance penalty in performing finer grain security checks. The scaled over-

heads in last column of Table 7 of about 3%-8% correspond to a reduction in the

number of instrumentation checkpoints by half relative to the default method. This

is accomplished by selective activation of instrumentation checkpoints but selective

placement would be a valid alternative as well.

Tunable performance overhead is provided by T-AxT depending on the frequency

of the periodic wake up that initiates the intrusion check. We used a periodic wake

up of 20,000 cycles, which provides a reasonably frequent security check at a dy-

namic overhead comparable to that of T-ProT with a constant default overhead of

approximately 16%. The scaled overhead amounts to about 8% for a 40,000 cycle

instrumentation period (see last column of the table).

Overall, overhead is observed to scale linearly with instrumentation frequency

for all of our techniques. Such scaling is easily controlled (a) for T-AxT through

selection of periods, (b) for T-ProT through rate control and (c) for T-Rex through

inlining, rate control or a combination of both.

9 Related Work

Generic security features have been considered in the context of scheduling of real-

time application tasks in past work. Often, certain out-of-the-box security mecha-
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Table 7 Dynamic Performance Overheads

Method # Benchmark Default Overheads Scaled Overheads

T-Rex SRT 0.22% N/A

LMS 1.54% N/A

ADPCM 18.71% 0.32%

FFT 0.021% N/A

T-ProT LMS 7.55% 3.68%

FFT 16.17% 7.92%

CNT 10.05% 4.92%

T-AxT LMS 15.89% 7.94%

SRT 15.89% 7.94%

CNT 15.89% 7.94%

nisms are applied at the cost of ensuring timeliness while arguing that security is

improved [40, 46].

Past work on embedded systems security has focused on sensor networks in-

cluding remote memory verification and network-related anomaly detection at the

packet or application level [36, 48, 49, 47, 45]. Timing analysis is considered in

literature as a means to reverse-engineer encryption techniques [35] instead of uti-

lizing it for protection. The emphasis of this work is on utilizing timing analysis

bounds to detect code injection attacks [28].

Shao et al. use a hardware/software combination to detect attacks [38], which is

closely related to our work. The first technique adds a new stage to the processor

pipeline to check on an address before data is written to it. If the value is greater than

that of a special register delimiting vulnerable stack regions then write is denied. The

second technique uses a new “sjmp” instruction to XOR the write address with the

value stored in the special register to assess validity of the jump target. Other ap-

proaches rely on hardware buffers to store return addresses [20] when buffer space is

available. These techniques do provide security with negligible performance over-

head but at the cost of specialized modifications to hardware. Our work does not

require special hardware support.

Significant work has been performed in the area of security of general-purpose

and server environments in which attacks are more prevalent. These systems are

generally much larger and more difficult to impose restrictions on due to their

general-purpose nature. Efforts at reducing opportunities for code injection in these

environments has resulted in concepts such as canary value placement. Buffer over-

flow may be detected in general-purpose systems by placing canaries adjacent to the

return address on the stack, which may be overwritten in an attack [13]. If a tam-

pered canary is detected prior to transferring control at a return, the program aborts

itself. Canaries are typically pseudo-randomized at compile time to increase the dif-

ficulty of success during buffer overflow attacks. Thus, simply placing the canary

value onto the stack next to the return address, which avoids detection for known

canaries, becomes challenging [13]. Yet, even pseudo-randomized canaries can be

exploited in systematic repeated attacks.

In general-purpose systems, another protection mechanism employed is to utilize

address-space layout randomization (ASLR) [37]. The stack is placed in a hard-to-

guess location in the memory. If an attacker attempts to jump to code placed on
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the stack, it becomes difficult to infer absolute stack addresses where attack code

may have been injected. This method is best suited for systems that employ 64-

bit addressing spaces, i.e., where ample room for stack placement exists such that

repeated brute-force attempts are statistically ineffective. However, such techniques

may be circumvented by repeated attacks in a space-constrained embedded real-time

system with 8/16/32-bit address spaces [37].

Dan et al. [15] discuss power grid challenges while Mitchell and Chen [27] pro-

vide a survey of CPS intrusion detection approaches of which we mention a few but

otherwise refer the reader to the survey. Different detection techniques (knowledge

vs. behavior) and deployment scenarios (host vs. network) are discussed. Many sys-

tems employ behavior-based techniques [23, 2], optionally using domain-specific

knowledge [17] and are often targeted at wireless communication [39]. Several ap-

proaches follow a model-based approach utilizing varying methods ranging from

regular expressions [12] over Petri nets [26] to neural nets [16].

This work extends our prior publication [50] by the following contributions: It

contains more detailed explanations of our technical approach, tightness of bounds

for detecting intrusions, motivational scenarios, more illustrative discussions of ex-

amples, a discussion of deploying hybrids of the proposed methods in a mutually

complementing manner, consideration of scheduler interactions, discussions on re-

sorting to fail-safe modes, measures to ensure tight WCET bounds, future early-

warning enhancements, and a discussion of future work on cyber security specific

to CPS.

10 Conclusion

Our work contributes three novel software methodologies that provide enhanced se-

curity in deeply embedded real-time systems, such as Power Grid control devices.

We attain elevated security assurance through two levels of instrumentation that

enable us to detect anomalies, such as timing dilations exceeding WCET bounds.

(1) T-Rex: Tight timing bounds of selected code sections are obtained during static

timing analysis at no extra cost during the required schedulability analysis and are

subsequently utilized to monitor execution during run-time. Buffer overflow attacks

are detected due to exceeded WCET bounds upon return path instrumentation for

code injections as small as 5-22 cycles. (2) T-ProT: Application instrumentation

issues synchronous scheduler calls to assess timing bounds validity for precisely

delimited sections of code. T-ProT by itself uncovers coarser-grain injections be-

tween 9 and 5k cycles at controllable overhead and complements T-Rex. (3) T-AxT:

Asynchronous scheduler-triggered validations of timing bounds are performed for

approximated sections of code, which, compared to T-ProT, obviates application in-

strumentation, results in low overhead and complements T-Rex. Attacks uncovered

by T-AxT alone are consequently the coarsest grained. These security checks can

be strategically scheduled to utilize otherwise idle time in the schedule. Upon vali-

dation of timing bounds, no action is taken. Conversely, upon violation of bounds,
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an alert is raised that provides an opportunity to reduce system functionality, revert

to a fail-safe state or shut down the system altogether pending further investiga-

tion/assessment. To the best of our knowledge, such detection of system compro-

mises through micro-timing information is a novel contribution to real-time sys-

tems.

Within the realm of this work, overheads on performance and tightened security

should become more balanced or tunable by a “dial”. This may also include the ex-

ploitation of average-case execution time in statistical sanity checks or probabilistic

timing analysis-based systems or parametric models [5, 29]. More gradual warning

systems might provide several steps of reduced functionality while raising the bar

for intrusions if threats are detected, similar to the Simplex approach for reliabil-

ity [4, 14].
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