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Abstract

Iterative methods based on block incomplete LU (BILU) factorization are considered highly effec-
tive for solving large-scale block-sparse linear systems resulting from coupled PDE systems with n
equations. However, efforts on porting implicit PDE solvers to massively parallel shared-memory het-
erogeneous architectures, such as general-purpose graphics processing units (GPGPUs), have largely
avoided BILU, leaving their enormous performance potential unfulfilled in many applications where
the use of implicit schemes and BILU-type preconditioners/solvers is highly preferred. Indeed, strong
inherent data dependency and high memory bandwidth demanded by block matrix operations render
naive adoptions of existing sequential BILU algorithms extremely inefficient on GPGPUs. In this
study, we present a fine-grained BILU (FGBILU) scheme which is particularly effective on GPGPUs.
A straightforward one-sweep wavefront ordering is employed to resolve data dependency. Granular-
ity is substantially refined as block matrix operations are carried out in a true element-wise approach.
Particularly, the inversion of diagonal blocks, a well-known bottleneck, is accomplished by a parallel
in-place Gauss-Jordan elimination. As a result, FGBILU is able to offer low-overhead concurrent
computation at O

(
n2N2

)
scale on a 3D PDE domain with a linear scale of N. FGBILU has been im-

plemented with both OpenACC and CUDA and tested as a block-sparse linear solver on a structured
3D grid. While FGBILU remains mathematically identical to sequential global BILU, numerical
experiments confirm its exceptional performance on an Nvidia GPGPU.
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1. Introduction

Block incomplete LU (BILU) factorization has been considered as one of the best precondi-
tioning techniques for large-scale fully implicit simulations. Its variants are particularly popular for
simulations of highly stiff physics systems [1]. One example is multi-phase flows, in which different
behaviors of fluids often lead to poorly-conditioned linear systems. Multi-component reactive flows
are notorious for being extremely stiff due to vastly different time scales of fluid dynamics and chem-
ical reactions. Stiffness can also be a result of inherent nonlinearity of the Navier-Stokes equations,
such as shock and boundary layer interactions. The selection of of linear solver can be rather lim-
ited in these situations. While a direct solver is most desirable, it is prohibitively expensive for 3D
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problems. As a compromise, iterative methods based on BILU-type schemes are often employed.
The robustness and efficiency of BILU are largely contributed by its close resemblance of Gaussian
elimination. Although a global BILU with natural ordering is very useful in sequential codes, its
inherent data dependency poses a daunting challenge for parallelization. One common practice to
extract parallelism is level scheduling, such as wavefront ordering, but its benefit is limited by syn-
chronization overhead and still insufficient parallelism. Other techniques such as coloring or graph
partitioning allow efficient coarse-grained to mid-grained parallelism with little overhead (see, for
example [2, 3, 4, 5, 6]), at the expense of slightly reduced mathematical efficiency. More detailed
reviews can be found in [7, 8, 9]. PDE solvers on large domains often employ message passing par-
allelism. The original computational domain is partitioned into smaller subdomains, each mapped to
a single processor core running a sequential BILU, avoiding further parallelism and corresponding
overhead. Moreover, in a multi-block solver, the original computational domain is already partitioned
into subdomains, so a message passing solution is a natural choice.

Recently, general-purpose graphics processing units (GPGPU) have attracted much attention as a
promising technology for large-scale high performance computation (see, for example, [10, 11, 12,
13, 14, 15, 16]). A GPU, which is essentially a shared memory vector machine, has a potential to
achieve one or two orders of magnitude of performance improvement for highly parallel algorithms.
However, adoption of implicit PDE solvers on GPU remains a challenging subject. It is generally
very difficult for an iterative linear solver on a GPU to utilize BILU-type preconditioners, which are
recursive in nature. While the general difficulty of extracting parallelism from BILU remains, the
massively parallel nature of a GPU renders usual coarse-grained strategies highly ineffective [17],
adding to a perception that BILU is not suitable for a GPU implementation.

Fine granularity is the key for BILU to achieve high efficiency on massively parallel architectures.
A typical GPU has hundreds of computation cores, each of which has much less computation power
and local cache memory than a typical CPU core. Therefore, the benefit of fine granularity is two-
fold. Finer granularity allows the algorithm to be divided into smaller units, thus occupying more
cores with the same total amount of work. Meanwhile, the amount of data each core processes is kept
as small as possible. The latter aspect is particularly important for solving a block-sparse system,
which consists of a large amount of square submatrices of an identical size. If the operation on
one submatrix is mapped to one GPU core, the algorithm easily becomes heavily memory-bounded,
resulting in serious performance penalty.

For BILU algorithms, fine granularity can be accomplished by adopting a two-tier approach. At
the first tier, level scheduling by wavefront ordering is used to resolve the inherent data dependency of
BILU [18]. It allows the parallel processing of a series of subsets, each consisting of data-independent
elements, while maintaining mathematical equivalence to the sequential BILU. The number of grid
points on each subset is relatively small. To achieve finer granularity more parallelism must be ex-
tracted beyond the wavefront scheme. At the second tier, the matrix operations for block submatrices
are parallelized at the matrix element level. While the fine-grained algorithms for matrix-matrix and
matrix-vector multiplications are rather straightforward, a fine-grained algorithm for matrix inversion
is particularly elusive. This is achieved by adopting an in-place Gauss-Jordan elimination with an
element-wise thread mapping.

This paper presents a global fine-grained BILU(0) scheme (FGBILU) that can be readily adopted
to a wide variety of massively parallel hardware and programming frameworks. While new technolo-
gies are constantly being developed, it is often preferable that algorithms are designed to be compati-
ble with open standards that can adapt to ever-changing hardware. With such considerations in mind,
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Figure 1: 7-point stencil on a regular 3D structure

algorithms will be presented in two prevailing programming styles for massively parallel architec-
tures. The “ACC style” targets the directive-based programming frameworks, such as OpenACC [19],
OpenHMPP [20] and OpenMP for Accelerators [21]. The pseudocode notions are self-explanatory,
as the only “directive” is “kernel”, specifying regions to be executed in parallel, along with neces-
sary thread spawning information. Directive-based programming standards allow the same source
code to be compiled into binaries intended for different architectures, greatly improving maintain-
ability and portability. The second style, we call “CL style”, targets the more low-level programming
frameworks, such as CUDA and OpenCL. Additional programming techniques on thread-level syn-
chronization and local shared memory arrays allow more flexibility in algorithm design and offer
better performance potential.

This paper is organized as follows. First, a brief introduction of BILU is given in Section 2,
along with a description of a traditional sequential algorithm. This section also includes a coarse-
grained BILU scheme based on wavefront ordering, which serves as a starting point of the fine-
grained algorithms. In Section 3, the two styles of FGBILU algorithms are discussed in detail. The
scheme includes algorithms for the factorization, triangular solve and iterative correction processes.
The performance of the new scheme is studied in numerical experiments presented in Section 4,
where FGBILU is employed as a block sparse linear system solver for an incompressible Navier-
Stokes solver called INCOMP3D. The paper concludes with discussions on further improvements
and potential applications of FGBILU scheme.

2. BILU on a regular 3D structure

In this section, we revisit BILU(0), the incomplete LU factorization with zero fill-ins for block-
sparse linear system, on a regular 3D IJK structure. Since the discussion of other ILU variants is
beyond the scope of this study, the “zero fill-ins” notation is omitted from now on. ILU was originally
developed as approximate inversion schemes by matrix splitting for sparse matrices [22]. The block-
sparse extension was given much attention when iterative solvers started being employed in more
complex physical problems [23, 24].

Consider the discretization of a coupled PDE system with n unknowns on a structured 3D domain
with a straightforward 7-point stencil, as shown in Fig. 1. 1≤ i≤ I, 1≤ j ≤ J and 1≤ k≤ K are grid
cell indexes and the corresponding dimensions of the domain. Note that all indices, including those
in pseudocodes, are one-based. Implicit time integration with a second-order spatial discretization
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Figure 2: Coefficient matrix A
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scheme on such a stencil results in a block-sparse matrix linear system Ax = b, where the left-hand-
side coefficient matrix takes a form as shown in Fig. 2. Each “element” therein is an n×n submatrix.
Each row corresponds to the discretization centered on a certain grid point. A typical non-boundary
grid point (i, j,k) produces totally 7 block submatrices with the same subscript (i, j,k), which is also
reflected in Fig. 1. Grid location references in algorithms for a general grid point are always limited
to the 7 points in the stencil.

The BILU factorization of A, represented by the multiplication of a lower block-triangle matrix
L and an upper block-triangle matrix U , is given in Fig. 3. BILU with zero fill-in attempts to ap-
proximate A with LU so the residual matrix (LU −A) takes the exact same zero pattern of A. The
submatrices in L and U associate with the stencil in a straightforward fashion, as shown in Fig. 4.

BILU with zero fill-ins ignores all off-stencil multiples of the submatrices. As a result, the sub-
matrices of the factorization can be found by a comparison of submatrices for a general grid point
(i, j,k) on its 7-point stencil:

ai, j,kdi, j,k−1 = αi, j,k ,

bi, j,kdi, j−1,k = βi, j,k ,

ci, j,kdi−1, j,k = γi, j,k ,

ai, j,kgi, j,k−1 +bi, j,k fi, j−1,k + ci, j,kei−1, j,k +di, j,k = δi, j,k ,

ei, j,k = εi, j,k ,

fi, j,k = ζi, j,k ,

gi, j,k = ηi, j,k .

Simple manipulations reveal that the factorization only needs to be carried out for the diagonal blocks
δi, j,k, using the following recurrence:

di, j,k = δi, j,k−αi, j,kd−1
i, j,k−1ηi, j,k−βi, j,kd−1

i, j−1,kζi, j,k− γi, j,kd−1
i−1, j,kεi, j,k . (1)

Note that all di, j,k can be safely assumed non-singular for most physical systems. Out-of-bounds array
references are treated as zero. The BILU factorization can then be expressed as:

M = LU = (D+E)D−1 (D+F) ,

where D is the block-diagonal matrix of the factorized diagonals di, j,k, calculated using Eq. 1. E is
the strict lower block-diagonal of A and F is the strict upper block-diagonal of A.

The factorization leads to an approximation of the original linear system:

Mx̂ = b , (2)

which can be now be solved by two triangular sweeps. The forward sweep solves an intermediate
vector y using the following recurrence:

yi, j,k = d−1
i, j,k

(
bi, j,k−αi, j,kyi, j,k−1−βi, j,kyi, j−1,k− γi, j,kyi−1, j,k

)
.

The backward sweep solves x̂ from y in a similar fashion:

x̂i, j,k = yi, j,k−d−1
i, j,k

(
εi, j,kx̂i+1, j,k +ζi, j,kx̂i, j+1,k +ηi, j,kx̂i, j,k+1

)
.
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Figure 3: (a) L and (b) U factors of the BILU factorization
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Figure 4: (a) L and (b) U factors of the BILU factorization for the 7-point stencil in Figure 2.

Figure 5: Two hyperplanes in a 10×5×5 block.

Finally, the approximated solution x̂ can be further improved by recursively solving a similar linear
system for the residual:

Mξl = b−Ax̂l , x̂l+1 = x̂l +ξl, (3)

until the residual Rl = b−Ax̂l diminishes to a certain level. The subscript l is the iterative index. In
a multi-block PDE solver, block coupling can be achieved by exchanging Rl using message passing
before each iteration.

2.1. Parallel BILU by wavefront ordering
We can see that neither the BILU factorization (Eq. 1) nor the triangular solve (Eq. 2) is readily

parallelizable, as they are both in recursive forms. In particular, the factorization has a data depen-
dency of (i, j,k) on (i−1, j,k), (i, j−1,k) and (i, j,k−1). The triangular solves have similar data
dependencies. On the other hand, all grid points with a constant sum of subscripts i+ j+ k are data-
independent, thus allowing parallel processing. In fact, this is one of the simplest form of leveling
scheduling, that is, identifying a sequence of data-independent subsets (“levels”). In our case, we can
use the sum of the subscripts as the level index p:

p = i+ j+ k .

The number of points on hyperplane p is then denoted as Np.
In a 3D IJK block, each level resembles a diagonal cross-section, called a hyperplane. The se-

quence of hyperplanes propagates in the IJK block like a wavefront, thus giving the name of “wave-
front scheme”. Fig. 5 shows an example of a 10×5×5 block. Each cube therein represents one grid
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Algorithm 1 Generation of wavefront ordering mapping
1: do i = 1, I ; do j = 1, J ; do k = 1, K
2: p← i+ j+ k
3: Np← Np +1
4: W(1, Np, p)← i; W(2, Np, p)← j; W(3, Np, p)← k
5: end do ; end do ; end do

point. Assuming grid location of (1,1,1) is at the lower-right corner of the bottom plane, it can be
found that N5 = 6 for the smaller hyperplane, and N12 = 25 for the larger hyperplane.

Instead of the natural IJK ordering, the grid points are processed in a wavefront ordering. Each
grid point is associated an index pair (p,q), which indicates the hyperplane it belongs to and its posi-
tion in the hyperplane. For a static IJK grid, a mapping W : (p,q)→ (i, j,k) and a list of hyperplane
sizes Np can be readily generated a priori with Algorithm 1.

At this point factorization and triangular solve can be parallelized inside each hyperplane, as
given in Algorithm 2 and 3. The outer loop is sequential over the hyperplanes, which ensures data
dependency. A parallelized inner loop is designated as a “kernel”, with index variables and their
ranges listed inside a pair of curly brackets. One permutation of indices is the smallest unit for
concurrent execution in a parallel implementation. As a convention, the mapping W : (p,q)→ (i, j,k)
is implied whenever wavefront scheme is involved. In a sequential or coarse-grained implementation,
the factorized diagonals di, j,k are often stored in-place as its LU decomposition. This allows a matrix
multiplication with both di, j,k and d−1

i, j,k to be calculated as two triangular sweeps, without using extra
memory space. Note that, in pseudocodes, di, j,k and x̂i, j,k represents the computer variable instead of
its original mathematical meaning. Again, any out-of-bound references should be treated as zero.

Algorithm 2 Coarse-grained parallel BILU factorization
1: do p = 3, I+J+K
2: kernel { q = 1 . . .Np }
3: di, j,k← di, j,k−αi, j,kdi, j,k−1ηi, j,k−βi, j,kdi, j−1,kζi, j,k− γi, j,kdi−1, j,kεi, j,k

4: di, j,k←
(
di, j,k

)−1

5: end kernel
6: end do

One can observe that the coarse-grained algorithms can be readily implemented with OpenMP on
CPU cores. However, such a straightforward wavefront scheme has been considered insufficient to
provide much potential for parallelization [18]. First of all, a coarse-grained wavefront scheme suffers
from insufficient load when processing smaller hyperplanes near (1,1,1) and (I,J,K) corners. If the
parallel paradigm introduces significant overhead during synchronization (OpenMP), the performance
of a parallel algorithm can be rather poor. On the other hand, production-level PDE solvers are
often parallelized over a high-performance cluster with message passing parallelism. To achieve finer
granularity one can simply partition the overall domain into smaller subdomains. Unless message
passing parallelism is absent, coarse-grained shared-memory parallelism such as OpenMP is often
uneconomical for improving the overall performance of a BILU-based PDE solver.
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Algorithm 3 Coarse-grained parallel BILU triangular solve
Forward sweep

1: do p = 3, I+J+K
2: kernel { q = 1 . . .Np }
3: x̂i, j,k← di, j,k

(
bi, j,k−αi, j,kx̂i, j,k−1−βi, j,kx̂i, j−1,k− γi, j,kx̂i−1, j,k

)
4: end kernel
5: end do

Backward sweep
6: do p = I+J+K, 3 , -1
7: kernel { q = 1 . . .Np }
8: x̂i, j,k← x̂i, j,k−di, j,k

(
εi, j,kx̂i+1, j,k +ζi, j,kx̂i, j+1,k +ηi, j,kx̂i, j,k+1

)
9: end kernel

10: end do

3. Fine-grained algorithms on massively parallel shared-memory architectures

3.1. Introduction to GPGPU computation concepts

Recent development of massively parallel architectures, such as GPGPUs, poses new challenges
in high-performance code design. Their heterogeneous nature generally does not provide full capa-
bilities of a traditional CPU core. Current MPI codes designed to run on a CPU core cannot run on a
GPU core, forcing programmers to adopt to a GPU programming model.

A GPU has hundreds of computation cores. Each core is capable of executing one instance of
the kernel code, which is called a “thread”. GPU threads are logically organized as “workgroups”.
Within each workgroup, local shared memory space can be used for data sharing among threads of the
workgroup. The size of a workgroup and the total number of workgroups can both be programmed.
The actual execution of threads is out-of-order, even for threads in the same logical workgroup. GPU
threads are not executed independently, either. In fact, a certain number (fixed by hardware design)
of threads, called a “warp”, are executed in synchronized lock-step. One important consequence of
warp execution is the significant performance penalty by warp divergence (different threads within a
warp need to run different code branches), so conditionals should be avoided if possible.

Our experience shows that a simple port of the coarse-grained BILU on a GPU does not perform
very well [17]. The primary performance constraint is found to be memory boundedness. If one
grid point is mapped to one GPU thread, the coarse-grain factorization would need to access 7 n×n
submatrices per GPU thread. Assuming that n, the number of PDE equations, is 6 (for 3D RANS
using a two-equation model) and that most computations can be carried out in-place, each GPU core
would need to access at least 7× 62× 8 = 2016 bytes of data (each double precision variable uses
8 bytes of memory). Take M2050, a typical second-generation Nvidia GPU used for our numerical
experiments, for example. Its 448 cores share a total of 512KB L2 cache. The coarse-grained BILU
factorization algorithm on this GPU would need to access 2016×448 = 903168 bytes of data simul-
taneously. This number is far more than the size of the L2 cache memory, leading to very poor data
locality. Furthermore, the coarse-grained algorithm quickly becomes intractable as the number of
PDE unknowns increases, because the amount of data scales with n2. The high memory bandwidth
demand can easily overwhelm the cache subsystem of even the most powerful GPU.

In the descriptions that follow, grid location triplets (i, j,k) in subscripts of domain submatrix and
vector variables, namely, α , β , γ , δ , ε , ζ , η , d, b, x̂ and R, are simplified to reduce clustering in

9



pseudocodes. Only the deviation from the center of the 7-point stencil is explicitly indicated. Any
submatrix variable without the triplet is taken at the stencil center (i, j,k). For example, α

u,v
i, j−1,k is

simply written as α
u,v
j−1, and β u,v actually means β

u,v
i, j,k. In pseudocodes, submatrix and vector variables

are easily distinguished from scalar variables, which do not have superscripts.

3.2. ACC-style algorithms

The directive-based GPGPU programming approach closely resembles the shared-memory paral-
lelism for CPUs. Since all parallel sections appear as simple loops, such approach allows the codes to
be written with high maintainability and portability. Indeed, this approach proved invaluable for our
development effort on FGBILU. On the other hand, the ACC style is rather restricted in synchroniza-
tion options, due to the underlying hardware limitations of GPGPUs. In ACC style, the only formal
synchronization method is to end a kernel altogether. As a result, an ACC-style kernel does not allow
any inter-thread data dependency, and any synchronization barrier must be translated into a separate
kernel launch.

3.2.1. Factorization

Algorithm 4 ACC version of FGBILU factorization
Temporary storage: sn,n

3,Np
. A second subscript, q, is implied in all s references.

1: kernel #1 {q = 1 . . .Np, u = 1 . . .n, v = 1 . . .n}
2: su,v

1 ← 〈αu, : , d : ,v
k−1〉; su,v

2 ← 〈β u, : , d : ,v
j−1〉; su,v

3 ← 〈γu, : , d : ,v
i−1〉

3: end kernel
4: kernel #2 {q = 1 . . .Np, u = 1 . . .n, v = 1 . . .n}
5: du,v← du,v−〈su, :

1 , η
: ,v
k−1〉−〈s

u, :
2 , ζ

: ,v
j−1〉−〈s

u, :
3 , ε

: ,v
i−1〉

6: end kernel
7: do r = 1, n
8: kernel #3 {q = 1 . . .Np, ŵ = 1 . . .2(n−1)}
9: a← (ŵ≥ n?1 : 0); w← ŵ−a(n−1); w← w+(w≥ r?1 : 0)

10: b← a(w− r); u← r+b; v← w−b
11: du,v← (1−2a)du,v/dr,r

12: end kernel
13: kernel #4 {q = 1 . . .Np, û = 1 . . .(n−1) , v̂ = 1 . . .(n−1)}
14: u← û+(û≥ r?1 : 0); v← v̂+(v̂≥ r?1 : 0)
15: du,v← du,v +du,r dr,v dr,r

16: end kernel
17: kernel #5 {q = 1 . . .Np }
18: dr,r← 1.0/dr,r

19: end kernel
20: end do

ACC version of the fine-grained factorization algorithm for a hyperplane with index number p
is given in Algorithm 4. The temporary array s, allocated in the global GPU memory, is used for
storing intermediate results during the matrix multiplications. Its first subscript ranges from 1 to 3,
corresponding to the three spatial components. The second subscript q gives the point index within
a hyperplane, which is always implied in pseudocodes. The two superscripts are submatrix indices,
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each ranging from 1 to n. A dot product is written as 〈·, ·〉. Fortran-style colon operators are used to
indicate the range of a certain dimension.

The BILU factorization has two primary steps. The first step of BILU factorization is the calcu-
lation of αdk−1η , βd j−1ζ , γdi−1ε and their sum. Computation of each element in the result matrix
is mapped to one concurrent thread. Because these terms appear in the form of M1M2M3, a synchro-
nization point must be placed between the two consecutive multiplications.

The second step of the BILU factorization is the inversion of diagonal submatrices. di, j,k is a
relatively small but dense matrix, and all inversion algorithms invariably involve recursive processes.
This step is a well-known bottleneck of parallel BILU algorithms. For parallel solutions such as
OpenMP, which has a moderate overhead, the benefit of extracting parallelism from the inversion
algorithm is often negated by heavy synchronization cost. Low-overhead solutions, such as early
vector machines and the later SIMD instructions available in CPUs, are often restricted by poor
support of branching instructions and lack of local storage [25]. A GPU, on the other hand, combines
low-overhead parallelism with a high degree of programming flexibility, allowing it to carry out a
fine-grained BILU factorization efficiently.

Algorithm 5 Gauss-Jordan elimination without pivoting for an n×n matrix
1: do r = 1, n
2: ∀u = 1 . . .n, u 6= r : du,r←−du,r/dr,r, dr,u← dr,u/dr,r

3: ∀u = 1 . . .n, v = 1 . . .n, u 6= r, v 6= r : du,v← du,v +du,rdr,vdr,r

4: dr,r← 1/dr,r

5: end do

To achieve fine granularity in FGBILU factorization, an in-place direct inversion algorithm based
on the Gauss-Jordan elimination (GJE) is employed, whose general sequential pseudocode is given in
Algorithm 5. This method is highly compact and does not require any extra storage, making it partic-
ularly efficient on GPUs. The outer r-loop corresponds to the index of the row being transformed in
GJE. Pivoting is generally not required, but it can be included if necessary. Although GJE is not the
fastest method to calculate inversions, it is rather parallelizable. Also, it can be performed in-place,
avoiding any thread-private arrays. Both factors are highly beneficial for GPU implementations.

Due to data dependencies, inversion must be written as three kernels (#3~5), which are simply
parallel versions of Line 2, 3 and 4 in Algorithm 5, respectively. These three kernels have different
mappings between GPU threads and loop iterations, mapping 2(n−1), (n−1)2 and 1 thread per grid
point, respectively. Conditionals have been translated into index manipulations, avoiding idle threads
for skipped iterations. Because the r-loop runs on a CPU, there are 3n kernel launches to complete
the inversion for one hyperplane.

3.2.2. Triangular solves
While the factorization requires rigorous algorithm design effort, the triangular solves are rather

straightforward, as they involve mostly matrix-vector multiplications. The ACC-style algorithms for
a fine-grained triangular solves are given in Algorithm 6. Forward and backward sweeps are very
similar in structure. Each element in the solution vector is mapped to one GPU thread. Due to data
dependencies, the computation on each hyperplane must be written as two kernels. Similar to the
factorization algorithm, an temporary storage space z is used to store intermediate results.
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Algorithm 6 ACC version of triangular solve
Temporary storage: zn

Np
. A subscript, q, is implied in all z references.

(a) Forward sweep
1: kernel {q = 1 . . .Np, u = 1 . . .n}
2: zu← bu−〈αu, : , x̂ :

k−1〉−〈β u, : , x̂ :
j−1〉−〈γu, : , x̂ :

i−1〉
3: end kernel
4: kernel {q = 1 . . .Np, u = 1 . . .n}
5: x̂u← 〈du, : , z :〉
6: end kernel

(b) Backward sweep
1: kernel {q = 1 . . .Np, u = 1 . . .n}
2: zu← bu−〈εu, : , x̂ :

i+1〉−〈ζ u, : , x̂ :
j+1〉−〈ηu, : , x̂ :

k+1〉
3: end kernel
4: kernel {q = 1 . . .Np, u = 1 . . .n}
5: x̂u← x̂u−〈du, : , z :〉
6: end kernel

Algorithm 7 ACC version of residual calculation in correction steps
1: kernel { i = 1 . . . I, j = 1 . . .J, i = 1 . . .K, u = 1 . . .n}
2: Ru← bu−〈αu, : , x̂ :

k−1〉−〈β u, : , x̂ :
j−1〉−〈γu, : , x̂ :

i−1〉
−〈δ u, : , x̂ :〉−〈εu, : , x̂ :

i+1〉−〈ζ u, : , x̂ :
j+1〉−〈ηu, : , x̂ :

k+1〉.
3: end kernel

3.2.3. Residual calculation in correction steps
During correction iterations the factorization d and the triangular solve procedure remain con-

stant. The residual, R = b−Ax̂, must be calculated, which is then used as the RHS for the upcoming
correction step. The computation can be written in ACC style, as shown in Algorithm 7. The residual
takes a simple form (Eq. 3), which can be trivially parallelized without level scheduling. In total,
n× IJK threads can be spawned by this kernel, usually far more than the number of GPU cores. It is
thus not necessary to write this algorithm in CL style separately.

3.3. CL-style algorithms

Unlike the more restrictive ACC style, the CL style allows thread-level synchronizations across
all threads within the same workgroup, and local shared memory can be used to exchange data within
the same workgroup. This is a major advantage in GPGPU programming, as it greatly increases the
options in parallel algorithms and offers significantly more optimization potential.

When designing CL-style algorithms the programmer must specify the size of workgroups. To
avoid warp divergence, the workgroup size should be a multiple of the warp size (Nwarp). On the
other hand, local shared memory is only shared within a workgroup. To use local shared memory for
resolving data dependencies within a kernel, the workgroup size has to be a multiple of the number of
threads needed for one grid point. A common multiple is usually chosen. Note that the workgroup size
has a preferred range, outside which GPU performance can suffer from inefficient work scheduling.
For larger n the best choice for workgroup size would shift from the common multiples of Nwarp and
n2 to simply the smallest multiple of n2. Hardware also imposes a hard limit on the number of threads
per computation block. For current Nvidia GPU, this limit is 1024, so that in a CL-style algorithm
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n≤
√

1024 = 32. Note that ACC-style algorithms are not restricted by this limit, because thread-level
synchronization is not involved.

Temporary arrays are used as intermediate storage for computing matrix multiplications. Unlike
the ACC version, however, temporary arrays only need to be allocated from the local shared memory,
which is private to each workgroup. As a result, the second subscript qw (implied in the pseudocodes)
ranges from 1 to L, the number of points handled by one workgroup. From our discussion on the
workgroup size, we can see that L is simply the workgroup size divided by the number of threads
mapped to one grid point. For example, in matrix-matrix multiplications, if n = 6 and workgroup size
is 288, then L = 288/n2 = 9.

Algorithm 8 Index reconstruction in CL kernels
1: qw← (IT −1)\n2

2: q← (IG−1)L+qw +1
3: v← (IT −1)\n−nqw
4: u← IT −n2qw−nv
5: v← v+1
6: qw← qw +1

Because of the workgroup arrangement, each CL thread is assigned a workgroup index IG (shared
within a workgroup, distinct for different workgroups) and a thread index IT (distinct for different
threads within a workgroup). Assuming both IG and IT are 1-based, all other indices for mathematics
can be reconstructed with Algorithm 8. Note that integer division (\) is used extensively. Once q is
calculated, (i, j,k) can be further determined by mapping W . For clarity, index reconstruction appears
as a mapping from (IG, IT ) to (i, j, k, u, v, qw) in the kernel header.

3.3.1. Factorization
The CL version of the fine-grained factorization algorithm is given in Algorithm 9, which differs

from the ACC version significantly. The most important feature of the CL version is that each sub-
matrix element is mapped to one constant GPGPU thread. The constant mapping allows the r-loop to
exchange position with the loops over grid points and submatrix elements, while data dependencies
are resolved by thread-level synchronization and local shared memory. Because the inversion algo-
rithm shares the same thread mapping with the multiplication algorithm, they can be merged into a
single kernel. Note that s:,:

1 and s:,:
2 are re-purposed as two alternating read buffers, which resolve data

dependency within each r iteration. As a result, only one synchronization point is required within the
r-loop.

Due to the nature of warp execution, avoiding conditionals is usually beneficial. Conditional
branching inside kernels can often be avoided by two optimization techniques. First, very short
conditional branches, such as Line 8 in Algorithm 9, are likely to be converted into fast predicate
operations by the compiler. Second, computational branches can often be converted to a linear com-
bination with logical coefficients, such as Line 10 in Algorithm 9, at the cost of a slightly increased
amount of computation.

3.3.2. Triangular solves
Similar to the matrix inversion algorithm, the CL version of triangular solves, given in Algo-

rithm 10, further divide the dot products into element-wise operations, which decreases the granular-

13



Algorithm 9 CL version of FGBILU factorization
Local shared memory array: sn,n

3,L. A second subscript, qw, is implied in all s references.
1: kernel { (IG, IT )→(i, j, k, u, v, qw) }
2: su,v

1 ← 〈αu, : , d : ,v
k−1〉; su,v

2 ← 〈β u, : , d : ,v
j−1〉; su,v

3 ← 〈γu, : , d : ,v
i−1〉

3: syncthreads
4: du,v← du,v−〈su, :

1 , η
: ,v
k−1〉−〈s

u, :
2 , ζ

: ,v
j−1〉−〈s

u, :
3 , ε

: ,v
i−1〉

5: syncthreads
6: do r = 1, n
7: t← (r mod 2)+1; a← (u = r?1 : 0); b← (v = r?1 : 0); c← (1−a)(1−b)
8: if (c = 0) su,v

t ← du,v

9: syncthreads
10: du,v← [ab+(a−b)du,v− csu,r

t sr,v
t ]

/
sr,r

t + cdu,v

11: end do
12: end kernel

ity by a factor of n. The thread-level synchronization with the assistance of a local shared memory
array allows the merge of data-dependent operations.

Note that it is also possible to rewrite the ACC version of triangular solves to achieve finer gran-
ularity, similar to the CL version. Doing so would result in four kernels per hyperplane, instead of
two as given in Algorithm 6. This reflects a common challenge in designing massively parallel al-
gorithms, as finer granularity usually introduces more synchronization and memory access overhead.
Kernel launches, as the only synchronization mechanism in ACC algorithms, are much more expen-
sive than thread-level synchronization inside a CL kernel. Algorithm designers must weigh costs
and benefits to make a balanced choice. Our experience shows that, in this case, the extra overhead
associated with ACC kernel launches outweighs the benefit of finer granularity.

4. Numerical experiments

Because FGBILU retains identical mathematical properties of the global sequential BILU, whose
behavior has been well studied [23, 26], this paper will not attempt an extensive study of the BILU
scheme itself. Instead, the tests in this section will focus on understanding the numerical performance
of FGBILU algorithms.

The fine-grained algorithms have been implemented in Fortran and C with OpenACC and CUDA
support. All floating-point operations are in double precision. For baseline comparison, a sequential
BILU code is run on one of 6 cores of an Xeon E5645. An OpenMP implementation of BILU based on
the coarse-grained wavefront scheme is also included in the tests, in order to reveal the full potential
of CPU computations if all cores of the CPU are dedicated to solving linear systems. The fine-grained
algorithms is tested on Nvidia M2050 GPGPUs, which has 448 double-precision cores and 3GB of
global device memory. M2050 is a representative second-generation GPGPU, with a CUDA compute
capability of 2.0. Due to much-improved double-precision and cache memory performance over the
first generation, second-generation GPGPUs have been widely deployed in many high-performance
computer systems. Although third-generation GPGPUs have been available, we choose to carry out
our tests on this GPU to reflect typical performance expected from the most widely adopted GPGPU
hardware.
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Algorithm 10 CL version of triangular solve
Local shared memory array: sn,n

L , zn
L. A subscript, qw, is implied in all s andz references.

(a) Forward sweep
1: kernel { (IG, IT )→(i, j, k, u, v, qw) }
2: su,v← αu,v x̂v

k−1 +β u,v x̂v
j−1 + γu,v x̂v

i−1
3: syncthreads
4: if (v = 1) zu← bu−∑su, :

5: syncthreads
6: su,v← du,v zv

7: syncthreads
8: if (v = 1) x̂u← ∑su, :

9: end kernel
(b) Backward sweep

1: kernel { (IG, IT )→(i, j, k, u, v, qw) }
2: su,v← εu,v x̂v

i+1 +ζ u,v x̂v
j+1 +ηu,v x̂v

k+1
3: syncthreads
4: if (v = 1) zu← ∑su, :

5: syncthreads
6: su,v← du,v zv

7: syncthreads
8: if (v = 1) x̂u← x̂u−∑su, :

9: end kernel

4.1. Verification of FGBILU in INCOMP3D

FGBILU has been implemented as the block-sparse linear solver in INCOMP3D, which is an
implicit 3D incompressible Navier-Stokes solver validated for a range of model problems [27, 28].
The 3D incompressible Navier-Stokes equations are solved on a multi-block structured grid using
finite volume methods. Time integration of the discrete equations is carried out by the artificial
compressibility scheme [29]. Time-accurate simulation is achieved by employing a dual time stepping
procedure (sub-iteration) at each physical time step. A general multi-block grid can be partitioned
over a number of allowable processors. MPI is used to achieve parallel computation on a cluster.
The original version of the solver has been used in the study of a wide variety of CFD problems,
including unsteady aerodynamics [30, 31], two-phase flows [32], and human-induced contaminant
transport [33, 34]. An immersed-boundary method [28] is incorporated to enable computations of
flow around moving objects, but is not employed in this study.

A simplified test case based on a dynamic stall study [35] is used for the verification. An illus-
tration with exaggerated dimensions is given in Figure 6. An SD7003 airfoil, with a chord length of
100mm and a span of 200mm, is placed in the center of the domain, which has a radius of around
1200mm. On the spanwise direction there is an additional 200mm of free flow space on each side of
the airfoil, to allow enough room for finite-span effects. The Reynolds number based on the chord
length is 106, with a free-stream velocity of 0.1m/s. The O-type mesh has 15 million cells, divided
into 204 blocks. Static load balancing is achieved by mapping multiple blocks of various sizes to a
processor. 24 computation nodes are used, each of which executes two computation processes. Each
of the nodes has one Xeon E5645 and two M2050 GPU. Only two of the six cores of each E5645
is used for the CPU version of the code, so that the impact of the interconnection is similar for both
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Figure 6: Illustration of the 3D domain for verification

CPU and GPU simulations. A qualitative comparison is given in Figure 7, showing Q=4 isosurfaces
for the same setting of the SD7003 case. As we can see, the results are virtually indistinguishable.

A breakdown of the main loop run times of the first 100 physical time steps is given in Figure 8.
In this case the number of sub-iterations within each physical time step is 7. The fine-grained linear
solver components (“BILU FACT”, “BILU SOLV” and “BILU CORR”) based on wavefront scheme
achieve very good performance, reaching an average 14.2X speedup over the sequential version of
the linear solver, while preserving identical mathematical behavior. This is a huge improvement over
our previous naive attempt using a coarse-grained implementation of BILU [17]. The flux calculation
(RHS) reaches a moderate 6.7X speedup. MPI and data packing (labeled simply as “MPI”), per-
forms slightly (30%) faster on GPUs. Data exchange speed is largely determined by the underlying
interconnection of the cluster, regardless of how computation is carried out. Hence, such result is
particularly encouraging, as all data exchanges between GPUs must be internally copied to CPUs
first. The improved performance is mostly due to the faster data packing procedure on GPUs, which
can greatly reduce inter-nodal wait time.

In the current GPU implementation of INCOMP3D, the two components responsible for filling the
coefficient matrix, AFILL (invisid flux Jacobian) and TSD (viscous flux Jacobian and time derivative
linearization), account for the primary cause of the performance bottleneck. They are similar in
nature, as both take field variables as input and generate derivatives, causing large amounts of memory
accessed for a relatively small amount of computation. In the current implementation, both tasks are
implemented in a coarse-grained fashion, as the computation for each grid point is mapped to one
GPU thread, making them highly memory-bound. To obtain full performance on GPUs, an ongoing
effort is being undertaken to develop fine-grained versions of these subroutines.

4.1.1. Convergence test on a standalone domain
To demonstrate that FGBILU remains mathematically identical to the original global sequential

BILU, a simple convergence test is carried out. The test data is generated by INCOMP3D, a multi-
block incompressible Navier-Stokes solver [28]. Due to incorporating a two-equation RANS model
we have n = 6. Left hand side and right hand side arrays are extracted directly for a 51×97×63
domain and stored offline, which are then used as the input of a standalone linear system solver
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(a)

(b)

Figure 7: Unsteady RANS simulation results of the (a) unmodified CPU version of INCOMP3D, and (b) GPU version of
INCOMP3D. t = 0.675s.

0 500 1000 1500 2000 2500 3000

24x CPU

24x M2050

AFILL TSD RHS BILU FACT BILU SOLV BILU CORR MPI Other

2484 s

595 s

Figure 8: Main loop run times (in seconds).
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Iteration Sequential BILU FGBILU
0 0.542674993335E+05 0.542674993335E+05
1 0.170814598038E+04 0.170814598038E+04
2 0.131446936261E+03 0.131446936261E+03
...

...
...

11 0.138239874038E-05 0.138239874038E-05
12 0.180227555902E-06 0.180227555901E-06
...

...
...

19 0.126561189429E-12 0.126561185003E-12

Table 1: Sum of squares of residual vector

capable of utilizing all four BILU variances (sequential, OpenMP, OpenACC and CUDA). Table 1
gives the sum of squares of the residual vector Rl for 20 solution steps, including the initial estimation
step and 19 correction steps. We can see that the error does not appear at the 12th digit after the
decimal point for 11 correction steps. These are round-off errors due to different numerical operation
orders, which are contributed by two sources. First, there are some extremely subtle differences
between LU and GJE [36], and their computational procedures take different form. Second, the order
of concurrent parallel execution is not deterministic, causing random round-off errors. For this reason
the exact numbers given by FGBILU (both OpenACC and CUDA versions) are not reproducible.
Neither of these two contributions should cause issues for solving physical PDE.

4.2. Scaling tests for different domain sizes
The sequential BILU does not involve level scheduling, while OpenMP, OpenACC and CUDA

versions use the same wavefront ordering. The primary concern of algorithms based on a wavefront
scheme is synchronization overhead and performance penalty due to smaller wavefronts near the
domain corners. The total process time T varies greatly for different domain sizes. To evaluate an
average process time for one grid point in the domain, a per-point process time is defined:

tp =
T

IJK
.

Test domains are extracted from INCOMP3D solving a series of simple steady-state 3D RANS chan-
nel flows in cubic domains, ranging from 153 (3.4K) to 653 (275K). The number of PDE unknowns
is fixed at n = 6. Once the linear system is extracted it is solved in the standalone solver. Each test
run includes 3 correction iterations. For kernels that are executed multiple times over the iterations,
T is taken as an averaged total kernel run time of one sweep over the domain.

The overall tp is given in Fig. 9, where the effects of insufficient work load caused by the wave-
front scheme near the domain corners is clearly visible. As a general trend, sequential BILU shows
almost constant tp for various domain sizes, while tp of algorithms with wavefront ordering gradually
decreases as the domain size increases. The performance of the 6-core OpenMP version is particu-
larly poor for smaller domains, sometimes even slower than the sequential code running on one core,
indicating heavy overhead incurred by a coarse-grained wavefront scheme. On the GPU, the CUDA
version constantly performs better than the OpenACC version. Similar to OpenMP, the OpenACC
version is also very sensitive to the domain size. For the 3.4K domain it is only slightly faster than
the sequential CPU case.
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Figure 9: tp as a function of grid size (n = 6, 3 correction steps )
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Task # of threads FLOP Data (Bytes)
Factorization n2 8n3 8×7n2

Triangular solve n2 8n2 8×
(
8n2 +3n

)
Residual n 7n2 8×

(
7n2 +3n

)
Table 2: Complexity and global data access amount

Fig. 9(b) gives the per-point process time of the factorization algorithm, which runs only once
in each test, as all the correction steps use the same factorization. While the CUDA version shows
moderate sensitivity on domain size, the OpenACC version performs significantly worse on smaller
domains. In addition to extra overhead by wavefront ordering, this is also caused by the poor memory
access pattern (low cache reuse) in ACC-style algorithms. GPU cores fetch data in batches, called a
“cache line”, which has a size of 128 bytes on the M2050. Each thread in kernel#5 only processes
one DP variable (8 bytes), but it has to fetch the whole cache line of 128 bytes, because di, j,k for
different grid points are located far away from each other. As a result, kernel#3 and #5 become
heavily memory-bounded. In fact, it is very common to observe similar kernel run times for kernel
#3~5, while their computation loads are very different.

The per-point process times of the triangular solve is given in Fig. 9(c). Note that the triangular
solve component runs 4 times, including the initial estimation and correction steps. The average tp

of one run is shown in the figure. Here we can observe a very similar trend of performance penalty
due to insufficient load. The CUDA version has a constant mapping of n2 threads per point, while the
two kernels in the OpenACC version both have only n threads per point. The 6-core OpenMP version
also suffers from small domain sizes, albeit to a lesser degree than factorization.

The process times of the correction component, shown in Fig. 9(d), offer a sharp distinction from
factorization and triangular solve. Note that CUDA version is not necessary for this component, as
discussed in Section 3.2.3. Because residual calculation does not require level scheduling, parallelism
can be achieved for the whole domain. Even smaller domains can easily supply enough work for all
GPU cores. As a result, both CPU and GPU codes show almost constant per-point process time for all
domain sizes. Interestingly, tp of the 6-core OpenMP version decreases slightly for smaller domains,
probably due to cache effects.

If we assume that tp reaches its limit for the largest grid tested, we can do a rough theoretical
performance analysis of the three CL-style algorithms. The estimated numbers of computation com-
plexity and global data access amount are given in Table 2. The factorization involves six n× n
multiplications and one n× n inversion. Counting only floating point multiplications and divisions,
each multiplication has n3 FLOPS and each inversion has roughly 2n3 FLOPS, which leads to a
computation complexity of 8n3 per grid point. We can estimate the complexity of triangular solve
(forward + backward) and the residual calculation to be 8n2 and 7n2, respectively. The amount of
global data accessed can be roughly estimated in a similar fashion. Note that triangular solve has
two kernels, thus the access to the same array in the two kernels must be counted twice. Access to
local shared memory is much faster than global memory, so they are not counted towards the global
memory throughput. tp and speedup numbers by test runs for n = 6 are given in Table 3. They are
then normalized by the number of threads per grid point, whose results are given in Table 4. Global
memory throughput and GFLOPS, can also be determined based on per-thread process times. The
speedup number is calculated from the comparison of tp by sequential BILU on one CPU core and
CL-style algorithms.
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Task Sequential CPU tp FGBILU tp Speedup
Factorization 3.48µs 0.122µs 29X

Triangular solve 0.84µs 0.0604µs 14X
Residual 0.51µs 0.0324µs 16X

Table 3: Per-point process times and speedup (n = 6)

Task Time FLOP Data B/F Throughput GFLOPS
Factorization 3.38ns 48 56 B 1.17 16.6 GB/s 14.2

Triangular solve 1.68ns 8 68 B 8.50 40.5 GB/s 4.8
Residual 5.41ns 42 360 B 8.57 66.5 GB/s 7.8

Table 4: Per-thread process times, complexity, global data access amount, estimated overall throughput and GFLOPS
(n = 6)

An important characteristic number of GPGPU computing is the memory-to-compute (Bytes/FLOP
or B/F) ratio, defined as

B/F =
data accessed per thread

FLOP per thread
,

which is a direct indicator of the algorithm towards being computation-bound (smaller B/F) or memory-
bound (larger B/F). Apparently, factorization is a heavily computation-bound algorithm, which carries
out many more floating point operations due to the O(n3) complexity of matrix-matrix multiplications
and inversions. On the other hand, the residual calculation is mostly memory-bounded. The triangu-
lar solve seems to be a memory-bounded algorithm. However, it has several synchronization barriers,
and its sequential summing operations contribute considerable to computation complexity. B/F values
can be significantly overestimated. In fact, the triangular solve is a moderately computation-bound
algorithm. Algorithms with different B/F ratios require different strategies for performance opti-
mization. To achieve better speedup in a memory-bound algorithm, efforts should be focused on
its memory access pattern to improve coalescence. Although the memory access pattern in residual
calculation is not perfectly coalescent, it is still rather efficient, delivering nearly half of the theo-
retical throughput of M2050 (144GB/s). On the other hand, a computation-bound algorithm must
minimize non-mathematical operations, which include kernel launching (and, consequently, index re-
constructions) overheads, synchronization barriers, redundant operations and warp divergence caused
by conditional branches. It is thus not surprising for the triangular solve to have a lower speedup and
GFLOPS number than factorization, because it involves more kernel launches and much more warp
divergence during the summing steps.

Apparently, a coarse-grained wavefront-based implementation of BILU, such as the OpenMP
version on a CPU, is rather inefficient if many small domains are to be processed. This finding is con-
sistent with the fact that, for CPU-only multi-block implicit PDE solvers, shared-memory parallelism
(OpenMP) is less preferred than message-passing parallelism (MPI) when ILU-type preconditioners
are used. On the other hand, the CUDA implementation performs very well for most of the domain
sizes, due to low overhead, constant thread mapping and a highly coalescent memory access pattern.
OpenACC offers a compromise between sequential code and well-optimized CUDA codes. While
it shows a reasonable performance boost for larger domains, its high sensitivity on small domains
renders it somehow less desirable for general scientific computational applications, where domain
partitioning does not always allow larger domains.
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4.3. Scaling tests for different n
The number of PDE unknowns, n, also has a significant impact on the algorithm efficiency. A

larger n allows finer granularity even for smaller domains, and thus has a positive impact on fine-
grained algorithms. It is very important to investigate the solver’s performance for larger values of n,
which are often encountered in multi-component flows.

To study this, we need to generate block-sparse linear system data for various values of n. How-
ever, it is rather difficult to compile a collection of PDE solvers with different numbers of unknowns.
Instead, a simple technique is employed to generate test data using existing data extracted from IN-
COMP3D. When RANS modeling is turned off, the number of unknowns in INCOMP3D drops
to 4 (u, v, w, p). Along with the data generated by RANS simulation, we can generate test do-
mains of any size for n = 4 or n = 6. As solutions of Navier-Stokes equations, such data sets are
found to converge reliably. Assume that we have two of these test data sets on the same 3D grid:
{α1,β1,γ1,δ1,ε1,ζ1,η1,b1} and {α2,β2,γ2,δ2,ε2,ζ2,η2,b2}, whose number of PDE unknowns are
n1 and n2, respectively. We can simply construct a new data set {α3,β3,γ3,δ3,ε3,ζ3,η3,b3}, such
that, on any grid location (i, j,k):

α3 =

[
In1 0
0 In2

][
α1
α2

]
=

[
α1 0
0 α2

]
, β3 =

[
β1 0
0 β2

]
, . . . , b3 =

[
b1
b2

]
.

The estimated solution of this new data set, on any grid point, would be

x̂3 =

[
x̂1
x̂2

]
.

Hence, this procedure can be used to construct a block-sparse linear system for n3 = n1 +n2, which
has the same grid dimensions as the two original data sets. Using this technique recursively on
existing INCOMP3D data for n = 4 and 6, we can easily construct test data sets that are guaranteed
to converge for any even number (> 4) of PDE unknowns.

Fig. 10 gives the results of a series of runs intended to investigate the effects of varying n. 3
correction steps are used in each run. All test domains therein have roughly constant n2IJK ∼ 1.8×
107, to offer as much work as possible within the limit of GPU memory. Due to the averaging over
the domain size IJK, the per-point process time should roughly scale with n2. To confirm this, Fig. 10
is plotted in log-log scale. Both CPU and GPU versions show good agreement with the n2 scaling law
for larger values of n, while algorithms based on the wavefront scheme deviate from the n2 scaling
for smaller values of n. Note that the domain size decreases for larger n in these tests, so the benefit
of larger n clearly outweighs the performance penalty caused by smaller domains.

As shown in Fig. 10(a), the CUDA version clearly out-performs the OpenACC version for all n
values up to 32. Fig. 10(b) and 10(c) give the process times of the factorization and the triangular
solve components. While the CUDA factorization algorithm performs significantly better than the
OpenACC version for all tested values of n, the CUDA version of the triangular solve algorithm does
not have a clear advantage for larger values of n. This is mostly due to the two summing stages in the
CUDA version, where only 1 out of n threads is doing the summing. For larger n the performance
penalty due to idle cores outweighs the efficiency advantage of the CUDA version on kernel launch
and synchronization. It is possible, however, to mix the CUDA version of factorization and the
OpenACC version of triangular solve to maximize performance for large values of n. In residual
calculation, tp scales with n2 almost perfectly, as shown in Fig. 10(d), because the algorithm does not
involve a wavefront scheme and its associated overhead. Note that CUDA version is not necessary for
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Figure 10: tp as a function of PDE unknowns n

this component, as discussed in Section 3.2.3. From the fact that tp of all three FGBILU components
scales rather smoothly with n2, we can see that the negative impact of large workgroup size due to
large n values is not particularly concerning for the CL-style algorithms. The primary conclusion
drawn from this investigation is that FGBILU algorithms can be expected to perform equally well for
PDE with a wide range of n values. In fact, as n increases, the difference in performance between
OpenACC and CUDA versions gradually decreases, and they both become less sensitive to small
domains.

5. Conclusion

In this study, a fine-grained block ILU(0) preconditioning scheme on a structured 3D grid is
developed for GPGPUs. The parallelization of BILU has been a historically challenging subject,
and the fine-grained nature of GPGPUs only adds to the overall difficulty of the adoption of BILU
on GPGPUs. However, our study indicates that, by using level scheduling techniques and carefully
designing fine-grained algorithms, it is possible for BILU to provide a granularity that is fine enough
for GPGPU adoption. In the newly developed FGBILU scheme, the inherent data dependency of
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BILU is resolved by straightforward one-sweep wavefront ordering. In addition, submatrix operations
are further parallelized at the element (scalar) level, significantly refining the granularity.

To achieve true element-level parallelism, efforts are made to parallelize the matrix operations
involved in the BILU factorization and triangular solve processes. Three primary tasks are identified:
matrix-matrix multiplications, matrix-vector multiplications and multiplications with matrix inver-
sions. While the first two tasks are rather trivial for GPGPU programming, the last task is particularly
difficult to parallelize as the original sequential BILU algorithm does an LU decomposition for the
factorized diagonal submatrices. As a less obvious solution, instead of an LU decomposition, a ma-
trix inversion is adopted, which is carried out by a compact in-place direct inversion algorithm based
on the Gauss-Jordan elimination.

The redesigned fine-grained algorithms are presented in two prevailing programming styles for
massively parallel architectures, which are expected to remain relevant as open standards. With the
directive-based programming style the codes can be written in traditional loop structures, thus allow-
ing the same source code to be compiled into both sequential CPU binaries and parallel GPU binaries,
which greatly facilitates maintainability and portability. The more low-level CL style, on the other
hand, allows more massively parallel programming techniques not available in the ACC style, which
are found to provide significantly more performance potential.

The ACC and CL algorithms are implemented in OpenACC and CUDA, respectively. The cor-
rectness of FGBILU is verified in an incompressible Navier-Stokes solver called INCOMP3D. Stan-
dalone tests are carried out with a focus on studying the effects of domain sizes and the number of
PDE unknowns n. It is found that increasing domain size and increasing n both have positive impact
on performance, because they generally provide more concurrent work and reduce the performance
penalty caused by wavefront ordering. ACC algorithms, due to their higher synchronization overhead
and less efficient memory access pattern, are found to be more sensitive to smaller domain sizes and
smaller n, while CL algorithms, on the other, manage to retain efficiency throughout most of the
tested cases. The difference, however, gradually vanishes for n that is sufficiently large.

To the best of our knowledge, FGBILU is the first successful attempt for a pure GPGPU adoption
of the original BILU(0) preconditioner to achieve significant speedup. Its combined advantages of
mathematical robustness and high performance clears a key roadblock for utilization of GPGPUs in
many important subjects of computational physics, where implicit schemes are preferred. The use of
two programming styles highly compatible with open standards allows straightforward adoption of
FGBILU in most implicit PDE solvers based on structured grids. Because of the inclusion of correc-
tion iterations, FGBILU can also work with block coupling based on message passing parallelism.

There is much room for further improvement of FGBILU. First of all, level scheduling of FGBILU
is currently carried out on CPUs. Using advanced CUDA programming [37], it is possible to rewrite
the algorithms to carry out the level scheduling on the GPU directly, eliminating most of the kernel
launch overhead due to level scheduling. Secondly, FGBILU’s wavefront scheme in its current form
only applies to structured domains. With proper level scheduling techniques FGBILU can be readily
modified to work with unstructured grids.

Finally, the development of FGBILU points out a general direction for adoption efforts of similar
algorithms on massively parallel architectures. Level scheduling is often considered computationally
expensive and inadequate for providing enough parallelism on massively parallel architectures such
as GPGPUs. However, if submatrix operations can be efficiently parallelized at the element level,
the combined granularity of level scheduling and element-level operations can easily fill GPU cores
with well-balanced parallel computations. As stagnation of single core performance persists, such a
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approach can be particularly useful for algorithm designers when facing the ever-increasing demand
for fine-grained adoptions of sequential ILU-like algorithms.
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