
Power Tuning for HPC Jobs under Manufacturing
Variations

Neha Gholkar1, Frank Mueller1, Barry Rountree2

1North Carolina State University, USA, ngholka@ncsu.edu, mueller@cs.ncsu.edu
2Lawrence Livermore National Laboratory, USA, rountree1@llnl.gov

ABSTRACT
As we approach the exascale era, power has become a pri-
mary bottleneck. The US Department of Energy has set a
power constraint of 20MW on each exascale machine. To
be able achieve one exaflop in 20MW, it is necessary that
we use power intelligently to maximize performance under
a power constraint.

Most production-level parallel applications that run on a
supercomputer are tightly-coupled parallel applications. A
naive approach of enforcing a power constraint for a paral-
lel job would be to divide the job’s power budget uniformly
across all the processors. However, previous work has shown
that a power capped job suffers from performance variation
of the processors due to manufacturing variations leading
to overall sub-optimal performance. We propose a 2-level
hierarchical variation-aware approach of managing power at
machine-level. At macro-level, PPartition partitions ma-
chine’s power budget across jobs to assign a power budget to
each job running on the system such that the machine never
exceeds its power budget. At micro-level, PTune makes job-
centric decisions by taking the performance variation into
account. For every moldable job, it determines the optimal
number of processors, the selection of processors and the
distribution of the job’s power budget across them, with the
goal of maximizing the job’s performance under its power
budget.

Our evaluations show that at micro-level, PTune achieves
a performance improvement of up to 29% compared to the
naive approach. PTune does not lead to any performance
degradation, yet frees up almost 40% of the processors for
the same performance as that of the näıve approach, under a
hard power bound. PPartition is able to achieve a through-
put improvement of 5-35% compared to uniform power dis-
tribution.

1. INTRODUCTION
The supercomputing community is headed toward the

era of exascale computing, which is slated to begin around

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

2020. Today’s fastest supercomputer, Tianhe-2, consumes
17.8MW to deliver 33.86PFlops [?]. If we were to build an
exascale machine with today’s technology it would consume
up to 350MW of power. A typical power plant generates 1
GWatt of power, which is sufficient to power 700,000 homes
[?]. The US DOE has set a power constraint of 20MW per fu-
ture exascale systems to maintain a feasible electrical power
demand. In order to get an exaflop under this constraint, we
need at least an order of magnitude improvement in power
efficiency with respect to today’s system [?, ?, ?, ?].

Exascale systems are expected to be power-constrained.
One of the key contributions in the power-constrained do-
main is hardware overprovisioning[?]. The idea is to procure
more hardware capacity than what can be operated at its
maximum power under a power constraint. In other words,
the power that is budgeted for a such a system is not suffi-
cient to run the entire system at maximum performance.

Fig. ?? depicts this idea to lay the foundation for the
rest of this paper. Let the hardware overprovisioned system
consist of X processors and let the power budgeted for this
system be Y Watts. As shown in the figure, with Y Watts
total system power only a part of the system (< Y pro-
cessors) can be utilized at peak power (collection of nodes
in red). Another valid configuration is to utilize the entire
system at low power. One of the several other intermedi-
ate configurations is to use medium power levels and uti-
lize a portion of the system larger than that at peak power
but smaller than that at low power. Depending on the ap-
plication’s characteristics (memory-boundedness, compute-
boundedness, communication-boundedness), different appli-
cations achieve optimal performance on different configura-
tions. In a nutshell, power procured for a system must be
managed as a malleable resource to maximize performance
of an overprovisioned system under a power constraint.

Peak Power Medium Power Low Power No Power

Figure 1: Hardware Overprovisioning on a Power-
Constrained System

To facilitate power management, the semiconductor in-
dustry and other hardware manufacturers are providing var-

ious hardware features like power clamping and on-chip
power measurement mechanisms [?], as well as component
power measurement infrastructures [?, ?]. Several mecha-
nisms of modulating the power levels of processors are avail-
able. Dynamic Frequency Voltage Scaling (DVFS) allows
the programmer to set the frequencies and voltages of the
processors at different levels leading to different power lev-
els. From Sandy Bridge onwards, processors Intel support)
Running Average Power Limit (RAPL) interface [?] that
allows the programmer to bound the power consumption of
the package (PKG) and the memory (DRAM). A package is
a single multi-core processor shipped by Intel. In this work,
we use the PKG domain of RAPL to bound the power con-
sumption of processors.

Different processors within the same model and stepping
consume different amounts of power to complete the same
work, i.e., the processors are not equally power efficient.
This variation can be attributed to the manufacturing vari-
ability introduced by the fabrication process. Under uniform
power bounds, the variability in power efficiency of the pro-
cessors translates into variation in their performance. This
observation has been documented in [?].

Let power efficiency be defined as the performance per
Watt. Performance is quantified in terms of number of in-
structions retired per second (IPS). We show that under a
power bound the manufacturing variability transforms into
variation in peak power efficiency. We make two important
observations. First, not all processors are equally power
efficient at a power bound. The most efficient processors
are most efficient at lower power bounds whereas the least
efficient processors are the most efficient at higher power
bounds.

To be able to achieve the goal of maximizing science un-
der a power constraint, at machine-level (macro-level) job
schedulers need to be power-aware, i.e., in addition to job
scheduling decisions, they also need to make power schedul-
ing decisions across jobs assigning power budgets to the jobs.
Most of the jobs on supercomputers are comprised of mul-
tiple and often coupled parallel scientific simulations that
execute on several processors simultaneously. A näıve ap-
proach of enforcing a power constraint for a job is to evenly
distribute power across all the processors of the job. When
a job is assigned a power budget PB and it is scheduled on
n processors, each of the processors will be bounded at PB

n
as per this näive strategy. We call this uniform power. A
job allocation may consist of processors that are not equally
power efficient at a single power bound, i.e., capping them
at uniform power would not lead to optimal performance.
Hence, at micro-level, i.e., within a job, it is necessary to
take the variation in power efficiency into account to make
optimal power decisions.

We propose a 2-level hierarchical solution that performs
Power Partitioning (PPartition) at macro-level and Power
Tuning (PTune) at micro-level to maximize the science done
per Watt. PPartition aims at improving the throughput of
the machine by (re-)partitioning a machine’s power budget
across jobs while scheduling them. PTune is a variation-
aware power manager for moldable jobs whose number of
processors can be chosen at dispatch time. For every job,
PTune maximizes its performance under its job power bud-
get (assigned by PPartition) by determining the following:

• The optimal selection of a subset of processors from
the available ones; and

• the distribution of the job’s power budget across the
selected processors.

PTune follows an off-line approach that makes these deci-
sions before the beginning of job execution.

PTune achieves a job performance improvement of up to
29% over uniform power. PTune does not lead to any perfor-
mance degradation, yet frees up 40% of the resources com-
pared to uniform power. PPartition and PTune together
improve the throughput of the machine by 5-35% compared
to conventional scheduling on an overprovisioned machine.

In this work, we make the following contributions:

• We characterize the performance of contemporary In-
tel processors with multiple codes at multiple power
bounds. Performance variations of up to 30% are ob-
served across these processors. Using this data we con-
duct a power efficiency study that forms the basis for
the work.

• We propose PTune, a variation-aware job power tuner
that optimizes a job for performance under a strict job
power constraint.

• We propose PPartition, a variation-aware resource
manager that manages a machine’s power budget as
a resource to maximize the throughput of the machine
under a machine-level power constraint.

• We evaluate PTune and PPartition using three of the
NAS Parallel benchmark codes [?] and a molecular
dynamics proxy application CoMD [?].

The paper is organized as follows. Section ?? presents
the motivation for this work. Section ?? states the problem
statement. Section ?? gives an overview of our approach.
Sections ?? and ?? describe per-job power tuning and cross-
job power partitioning, respectively. Section ?? discusses the
implementation of PTune. Section ?? presents the experi-
mental setup and the evaluation of the model. Section ??
discusses related work. Section ?? summarizes the contri-
butions.

2. MOTIVATION
Until recently, the research community has focused on

minimizing energy usage of supercomputers. Considering
the US DOE mandate for a power constraint per exascale
site, efforts need to be directed towards minimizing the
wasteful usage of power while maximizing performance un-
der this constraint.

As stated in the previous section, uniform power capping
is the näıve approach of enforcing a job level power con-
straint. In order to understand what happens under such a
scheme, we characterized the performance of 600 Ivy Bridge
processors on a cluster called Catalyst at Lawrence Liver-
more National Laboratory, CA. We ran three of the NAS
Parallel Benchmark (NPB) suite codes [?], viz., Embar-
rassingly Parallel (EP), Block Tri-diagonal solver (BT) and
Scalar Penta-tridiagonal solver (SP), and CoMD, a molecu-
lar dynamics proxy application from the Mantevo suite [?]
at several different processor power bounds on all the proces-
sors. The processor power bounds were set using the PKG
domain of RAPL. The results are depicted in Fig. ??. The
x-axis represents power in Watts while the y-axis represents

Instructions Retired per Second (IPS) in billions. We ob-
served that the cluster becomes non-uniform under power
bounds. Performance variations of up to 30% are observed
across this cluster for these applications. Maximum per-
formance of 77, 50, 80, and 60 billions IPS is achieved for
CoMD, EP, BT and SP, respectively. This variability is due
to the manufacturing variations that manifests itself in fluc-
tuations in unbounded power consumption across different
processors.

50 60 70 80 90 100 110

40
50

60
70

80

Comd
Power [Watts]

In
st

ru
ct

io
ns

 p
er

 S
ec

on
d

[in
 B

ill
io

ns
]

50 60 70 80 90 100 110

30
35

40
45

50

EP
Power [Watts]

In
st

ru
ct

io
ns

 p
er

 S
ec

on
d

[in
 B

ill
io

ns
]

50 60 70 80 90 100 110

40
50

60
70

80

BT
Power [Watts]

In
st

ru
ct

io
ns

 p
er

 S
ec

on
d

[in
 B

ill
io

ns
]

50 60 70 80 90 100 110

30
35

40
45

50
55

60

SP
Power [Watts]

In
st

ru
ct

io
ns

 p
er

 S
ec

on
d

[in
 B

ill
io

ns
]

Figure 2: IPS vs. Power for each processor on Catalyst. The
rainbow color palette is used to represent several processors.
In each plot, the curves in red (bottom) depicts the least
efficient processors while the curves in orange (top) represent
the most efficient processors.

On studying these results further, we found that this vari-
ability in performance translates into variation in peak power
efficiency of the processors.

Power Efficiency
Let power efficiency be defined as the number of instructions
retired per second per Watt of operating power.

Fig. ?? represents the power efficiency curves of the pro-
cessors on the cluster. We run several benchmarks (NPB
EP, BT, SP) and a proxy application (CoMD) on the clus-
ter at 15 power levels from 51W to 120W in intervals of 5W.
The x-axis represents the operating power in Watts and the
y-axis represents the power efficiency in billion IPS/W. The
rainbow palette used in the previous graph is reused to rep-
resent different processors. Each curve (or each color) in the
plots corresponds to a unique processor.

We make the following observations from these experi-
ments:

• The power efficiency of a processor varies with its oper-
ating power and is non-monotonic. It is also workload-
dependent.

• Peak power efficiency varies across processors. Man-
ufacturing variability translates into variation in peak

50 60 70 80 90 100 110

0.
8

0.
9

1.
0

1.
1

Comd
Power [Watts]

P
ow

er
 E

ffi
ci

en
cy

=
IP

S
/W

at
t [

in
 B

ill
io

ns
]

50 60 70 80 90 100 110

0.
55

0.
65

0.
75

EP
Power [Watts]

P
ow

er
 E

ffi
ci

en
cy

=
IP

S
/W

at
t [

in
 B

ill
io

ns
]

50 60 70 80 90 100 110

0.
7

0.
8

0.
9

1.
0

BT
Power [Watts]

P
ow

er
 E

ffi
ci

en
cy

=
IP

S
/W

at
t [

in
 B

ill
io

ns
]

50 60 70 80 90 100 110

0.
55

0.
65

0.
75

SP
Power [Watts]

P
ow

er
 E

ffi
ci

en
cy

=
IP

S
/W

at
t [

in
 B

ill
io

ns
]

Figure 3: Power Efficiency in IPS/W vs. Operating power.
The rainbow color palette is used to represent several pro-
cessors. In each plot, the curves in red (bottom) depict the
least efficient processors while the curves in orange (top)
represent the most efficient processors.

power efficiency of the processors.

• Efficient processors are most efficient at lower power
bounds whereas the inefficient processors are most ef-
ficient at higher power bounds.

The bottom line is that there is a unique local maximum in
every power efficiency curve that occurs at disparate power
levels for different processors. Starting from the minimum
power, increasing the power assigned to a processor leads
to increasing gains in IPS. However, increasing the power
beyond the peak efficiency point of a processor leads to di-
minishing returns. Hence, when power is limited, processors
should operate at power levels close to their peak efficiency
to maximize the overall efficiency of the system. Since the
peak efficiency points for efficient processors are at lower
power levels than for the inefficient processors, the optimal
configuration should select lower power levels for efficient
processors and higher power levels for inefficient processors
to maximize performance. On the contrary, a näıve / uni-
form power scheme caps all the processors at identical power
bounds. Hence, it is sub-optimal.

An optimal algorithm should aim at leveraging the non-
uniformity of the cluster to maximize the performance of a
job under its power constraint. We propose PTune, a power-
performance variation-aware power tuner that exactly does
this for each job. For every job, given a power budget, it
determines the following: (1) the optimal number of proces-
sors (say N); (2) selection of N processors; and (3) the power
distribution (say pi) across the selected N processors.

3. PROBLEM STATEMENT

The problem statement is stated as follows:Given a ma-
chine level power budget, how should the machine’s power
be distributed across (a) jobs and (b) tasks within jobs on
a given system, where (b) is discussed later. For (a), the
process of making these decisions at macro-level of jobs is
called power partitioning. Each job on the machine receives
its own power partition.

We address the following questions:

1. How many partitions do we have at a time? I.e., we
need to determine how many jobs should be scheduled
at a time.

2. What is the size of each of the power partitions? I.e.,
we need to determine the power budget assigned to
each of the jobs.

For (b), at the micro-level, given a hard job-level power
budget PJi, we need to determine the optimal number of
processors, nopt, with a power distribution (p1, p2, ... ,
p(nopt−1), pnopt) such that performance of the job is maxi-
mized under its power budget. The constraint on the power
distribution is expressed as

n∑
k=1

pk ≤ PJi;min power ≤ pk ≤ max powerk.

Here, min power is the minimum power that needs to
be assigned to a processor for reliable performance and
max powerk is the maximum power consumed by the kth

processor (uncapped power consumption) for an application.
The performance of a job can be quantified in terms of num-
ber of instructions retired per second (IPS). For a parallel
application on n processors, the effective IPS is the aggre-
gated IPS over n processors (JobIPSn). Hence, the objec-
tive function is

Maximize(JobIPSn). (1)

A processor’s IPS is a non-linear function of the power at
which it operates. Each processor can be power bounded
at several levels using the RAPL interface and thus forced
to operate at various power levels within a fixed range. We
know that unbounded power consumption is variable across
processors while achieving the same unbounded (peak) per-
formance. This is depicted in Fig. ??. The x-axis is the
power at which the processor operates and the y-axis is the
IPS (in billions) of the processor. Each solid curve corre-
sponds to the most efficient processor while the dotted curve
correspond to the least efficient processor. The following two
observations are made from this data:

1. On a single processor, the performance (IPS) achieved
at any fixed power level is different for different work-
loads.

2. The performance of an application on two different
processors at any fixed power level is not the same.

This means that when determining the optimal distribu-
tion of power across processors it is necessary to take the
processor characteristics and the application characteristics
into account. One solution may not fit all applications. The
optimal configuration for an application on one set of proces-
sors may be different from that on another set of processors
because of manufacturing variation.

50 60 70 80 90 100 110

20
30

40
50

60
70

80

Power [Watts]

In
st

ru
ct

io
ns

 P
er

 S
ec

on
d

[in
 B

illi
on

s]

Comd
SP
BT
EP

Efficient Proc
Inefficient Proc

Figure 4: IPS vs. Power for efficient and inefficient proces-
sors.

4. PROPOSED SOLUTION
We propose a 2-level hierarchical approach of managing

power as a resource (see Fig. ??). The parameters of the
model are given in Table ??. We make the assumption that
the power consumption of the interconnect is zero, i.e., inter-
connect power is beyond the scope, and so are task-to-node
mapping effects on power. We only consider processor power
in this work and assume moldable jobs.

Large Job Queue

Backfilling Jobs

PPartition
Power Partitioning

PTune
Power Tuning

Macro Level

Micro Level

For all jobs, determine:
1. job's power budget
2. nopt

3. selection of nopt
 processors &
4. power distribution
 across them

Figure 5: Hierarchical Power Manager.

At the macro-level, we propose PPartition, a technique
of partitioning a machine’s power budget across jobs while
scheduling them. Once a job is dispatched by a conventional
scheduler (e.g., slurm or Maui/pbs), PPartition calculates its
power budget. If the required power is not available, it steals
power from the previously scheduled jobs and provisions this
power for the new job. If sufficient power cannot be made
obtained, PPartition overrides the conventional scheduler’s
decision based on free resources (nodes) and does not sched-
ule this job until required power is available.

At the micro-level, we propose PTune, a power balanc-
ing model that determines the distribution of a job’s power
budget (one job at a time) across an optimal selection of
processors (among all free resources) to maximize the per-
formance of a job under its power budget.

5. PTUNE
Fig. ?? depicts the micro-level power tuner. For each job

Ji, power budget PJi is calculated at the macro-level by the
Power Partitioner. For every job with this assigned power
budget,

PTune answers the following questions:

Table 1: Model Parameters

Parameter Description PPartition PTune
Nmax maximum number of Input N/A

processors on a machine
Nalloc number of processors Output N/A

already alloced to jobs
Pm/c power budget of the machine Input N/A
nreq number of processors Input Input

requested by a job
nopt optimal number of Output Output

processors for a job
n number of processors for a job N/A Variable

under its power budget
PJi power budget of the ith job Output Input
pk power cap of kth N/A Output

processor within a job
min power minimum processor power cap Input Input
max powerj maximum processor power cap Input Input

of the jth processors
power-ips table characterisation data Table ?? Input Input

Table 2: Power vs. IPS Table

Power Cap[W] IPS in Billions Measure Power [W]
60 46.43 59.99
80 64.83 79.88
100 76.33 99.43
120 79.13 104.66

1. How many (nopt) and which processors should a job
run on?

2. What should be the power (p1, ..., pnopt) assigned to
each of the nopt processors?

Let us start by addressing the first question. A pro-
cessor needs to be assigned at least the minimum power
(min power) that is architecturally defined for every family
of processors and is constant across all processors, i.e., the
lower bound on the thermal design power (TDP). However,
the maximum or unbounded power (max powerk) consump-
tion of the processors is non-uniform due to manufacturing
variations [?].

Fig. ?? shows the maximum power consumption of 600 Ivy
Bridge processors. The x-axis represents all the processor
sorted by their power consumption and the y-axis represents
the maximum power consumption in Watts. In order to
maximize the performance of a job under a constant power
budget, it is necessary to choose more efficient processors
from the set of available processors.

5.1 Sort the Processors
The first step towards determining the optimal configu-

ration is to sort the available processors by their relative
power efficiency. This is equivalent to sorting them by their
unbounded power consumption. Let the sorted set of pro-
cessors be indexed by k.

We divide this distribution of processors into quartiles,
viz., Q1, Q2, Q3 and Q4, in the order of efficiency and pick
processors from one or more of these quartiles for evaluation
purposes.

5.2 Bounds on Number of Processors
The lower bound on n, n⊥, can be calculated by determin-

ing the maximum number of processors that can be capped
at their maximum power, max powerk, under the power

PTune(PJi , n)

Inputs:
- Job power budget PJi
- n, requested procs
- characterisation data

Outputs:
- nopt selected processors
- power distribution
 across nopt procs

Figure 6: PTune

●●
●
●●●
●●
●●●
●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●
●

●

0 100 200 300 400 500

70
80

90
10

0
11

0
12

0

ProcessorID
U

nb
ou

nd
ed

 P
ow

er
 C

on
su

m
pt

io
n

[W
at

ts
]

●
●
●
●●
●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●●
●

●

●
●●●●

●

●●
●
●●
●●
●●●
●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●
●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●●

●●
●
●●●
●●
●●●●●●

●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●

●

●

Comd
SP
BT
EP

Figure 7: IPS vs. Power for efficient and inefficient proces-
sors.

budget. The selection of processors is reformed in the sorted
order as described above. n⊥ is given by the largest value
of n that satisfies the following constraint:

PJi ≥
n∑

k=1

max powerk.

The upper bound on n, n>, represents the number of pro-
cessors that can be operated at min power under the power
budget. The bound n> is calculated as follows:

n> =
PJi

min power
.

The processor count, n, is iterated from n⊥ to n>, and in
each step, the next efficient processor is added to the set of
processors. Job-level performance, JobIPSn, is calculated
in each iteration by DistributePower() for the power budget
PJi and a given number of processors, n.

JobIPSn = DistributePower(n, PJi, (p1, ..., pn−1))

wheren⊥ ≤ n ≤ n>, (2)

The optimal number of processors, i.e., nopt, is the value of
n at which a job’s IPS is maximized. PTune leads to nopt ≤
n. Thus, PTune tends to reduce the number of processors
required for a moldable job so that spare processors can be
utilized by other jobs.

JobIPSnopt = max(JobIPSn⊥ , JobIPS(n⊥+1),

..., JobIPSn>). (3)

5.3 Distribute Power : Mathematical Model
DistributePower(), takes three inputs, viz., the number of

processors n, the job’s power budget PJi, and the power dis-
tribution across n−1 processors determined in the previous
iteration. The output of this function is the maximum job
IPS that can be achieved under PJi Watts with n proces-
sors. It also calculates the optimal power caps, (p1, ..., pn),
for n processors, which forms an input for the next iteration.
This can be mathematically expressed as follows:

DistributePower(n, PB, (p1, ..., pn)) =

DistributePower((n− 1), PB − pn, p1, ..., p(n−1))+

getProcIPS(n, pn) (4)

getProcIPS(k,pk) accesses the power-ips characterization
data gathered statically. It returns the expected perfor-
mance (IPS) of the kth processor when it is capped at pk
Watts.

IPS

Po
we

r C
ap

Proc1
Proc2

de
lta

_p
ow

er

▲IPS
1

> ▲IPS
2

DonorReceiver

Figure 8: Identifying the donor and the receiver of discrete
power

5.4 Power Stealing and Shifting
An iteration consists of two main phases, viz. Power Steal-

ing and Power Shifting. DistributePower() consists of two
main steps:

(1) Power is stolen in discrete quantities (delta power)
from the n−1 processors to provision power for the nth pro-
cessor (see Fig. ??). The victim/donor processor is the one
that suffers minimum loss in IPS when delta power is stolen
from it. If aggregate stolen power is at least min power, an
additional nth processor is added to the processor set.

(2) Power is shifted from a donor to a receiver in dis-
crete quantities, delta power, across the n processors. The
victim/donor processor is identified by (1). The receiver
is the processor that gains maximum IPS on receiving
delta power.

6. PPARTITION
Fig. ?? depicts the macro-level power partitioning algo-

rithm. The power partitioner co-operates with the conven-
tional scheduler. PPartition receives information on the per-
formance variations across processors. It always chooses the
most efficient nreq processors of the available processors (or a
subset thereof) to schedule a job. When job Ji is dispatched
by the conventional scheduler, its initial power budget, PJi,
is calculated as shown in the diagram. If the required power
and processing resources are available, PTune determines
the optimal configuration for the job and the job is sched-
uled. If resources are available but the required power is in-
sufficient, power is stolen from already scheduled jobs. This

is called power repartitioning (lower right blue/shaded box
in Fig. ??) and detailed next.

Power Partitioning (macro-level)

Job request Ji(nreq)
n = nreq
Job power budget PJi = x Pm/c

M/C's unused power ≥ PJi
&

Processors available ≥ n
PTune(PJi, n)

Repartition Power Across Jobs

Decisions made:

1. What is the optimal power
budget for Ji ?

2. How much power should be
stolen from which of the jobs?

Processors
Available ≥ n

Cannot
Schedule Ji

True

False

Outputs:
1. nopt
2. selection of nopt processors
3. power distribution across nopt
 processors

n
Nmax

Inputs:
1. Ji dispatched from the Job
 Queue
2. Machine's Power Budget (Pm/c)
3. Availability of Processors across
 the Cluster
4. Chactererisation data

True

False

Figure 9: PPartitioning: Repartitioning Power.

Power Repartitioning
The power repartitioning algorithm is shown in Fig. ??. As
all of the machine power budget is already used up by the
Nallocated processors, a fair power share for the new job is
calculated as

PJi = Pm/c ∗
n

n + Nallocated
, (5)

where n=nreq.

Algorithm : Repartitioning Power for accomodating
the ith job

n = nreq

/* Job's power budget proportional to the proportion
 of machine requested */
PJi = Pm/c x

// Get nopt for the job under power budget PJi.
nopt=PTune(PJi, n)
While (nopt < n) {
 n = nopt

 // PJi proportional to the proportion of busy
 // processors requested

PJi = Pm/c x

 // Recompute nopt for the reduced power

nopt=PTune(PJi, n)
}

/* Repartition power across jobs to provision power
 for the ith job.*/
for(k in 1 to (i-1)) {

power_to_be_stolen[k] = PJi X

total_stolen_power = total_stolen_power +
 ShrinkPartition(power_to_be_stolen[k], k)

}
If (total_stolen_power <PJi){

PJi = total_stolen_power
// Recompute nopt
nopt=PTune(PJi, n)

}

n
Nmax

n
Nalloc+n

jobpowerbudgets [i]
Σ jobpowerbudgets

Figure 10: PPartition, PTune and the interaction between
them.

The job is initially power tuned for the requested nreq

processors under PJi Watts. If there are sufficient proces-
sors left for the required power budget, i.e., nopt ≤ n, then
n is set to nopt. Notice that this initial PTune call may
have reduced the number of processors from nreq to a lower
number nopt. Due to that, we need to recompute (in the

while loop) the proportionate power the new job with nopt

processors should have due to power partitioning across all
jobs. This new power budget, PJi, then becomes the base
for another PTune, and so on, until the number of proces-
sors for the new job reaches a fixed point (stabilizes) in the
while loop. The fixed point guarantees a fair power level
relative to other jobs, but we still need to find other jobs to
steal just enough power for this job.

In the following for loop, power is stolen from each of the
scheduled jobs in a proportionate manner to each others’
power budget. This is accomplished by partition shrinking,
which consists of (1) stealing just enough power and (2)
power tuning for the remaining power of a job and the same
number of processors (since we assume moldable but not
malleable applications). Here, we steal as much power as
possible while retaining heterogeneous power bounds across
a job’s processors to respect process variations and thus en-
sure a high IPS.

The aggregate stolen power of other jobs is offered to the
new job. If the stolen power is less than that of the last
PTune call, which was PJi, then the new job needs to be
tuned one more time. If the stolen power was sufficient for
this last tuning step, the new job is scheduled and existing
ones are power re-tuned under the new settings. If, however,
the stolen power is insufficient, no power is redistributed,
i.e., all jobs remain unchanged in their power settings and
the new job is deferred until at least another job completes.

7. IMPLEMENTATION
We modified the libmsr [?] library to gather the pro-

cessor characterization data. We implemented a power-
performance profiler using the MPI profiling interface
(PMPI) that invoked various subroutines of the libmsr li-
brary to assess the power and the performance of MPI ap-
plications. We captured several fixed counter values, power
consumption and completion times for each application on
all the processors. The processor power consumption was
measured using Intel’s RAPL interface. This characteriza-
tion data is made available available to PTune and PParti-
tion.

We assume that the jobs are moldable. Our power man-
ager works in co-ordination with the conventional job sched-
uler. Once a job is dispatched by the conventional sched-
uler, the power manager (PPartition+PTune) determines its
power budget, the selection of processors from those avail-
able, and the power distribution (or processor power caps)
across them. We simulated the conventional job scheduler
in R. We assume a large job queue (> 384 processes) and
a backfilling queue (< 48 processes). We assume up to
Nmax=550 nodes with 12 cores each (6600 processes). If
the power manager decides to schedule the job, power dis-
tribution across its processors (and power repartitioning if
required) is enforced using RAPL.

For evaluating our power manager, we compare it with a
uniform power manager that distributes Pm/c evenly across
processors. We assume three different configurations, pro-
cessors capped at min power, 75W, and the upper Thermal
Design Power (TDP), which is the maximum power. Jobs
are scheduled on a portion of the machine constrained by a
power limit of Pm/c.

8. EXPERIMENTAL SETUP

Experiments were conducted on the Catalyst cluster at
Lawrence Livermore National Laboratory (LLNL). It is a
324-node Ivy Bridge cluster. Each node has two 12-core
Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz processors
and 128 GB of memory. We used MVAPICH2 version 1.7.
The codes were compiled with the Intel compiler version
12.1. The msr-safe kernel module provides direct access to
Intel RAPL registers via libmsr [?]. We used the package
(PKG) domain of RAPL that provided us the capability of
capping power for each of the processors in an experiment.
The environment was simulated in R.

We again used EP, BT, and SP from the NPB suite and
CoMD from the Mantevo suite in their pure MPI versions.
We exponentially increase the node count for our experi-
ments. The inputs were weakly scaled for different node
counts. We report performance in terms of completion time
in seconds and power in Watt. The reported numbers are
averages across ten runs.

SP BT

Co
m

d EP

Ti
m

e
[S

ec
on

ds
]

0
50

10
0

15
0

20
0

10
2% 11

0% 11
5%

10
6%

10
6% 11
0%

10
7%

10
7%

10
9%

10
9%

10
8%

10
9%

Q1 (baseline)
Q1 & Q2
Q1 & Q4
Q4

Figure 11: Performance variation on 16 processors

SP BT

Co
m

d EP SP BT

Co
m

d EP

32 processors 64 processors

Ti
m

e
[S

ec
on

ds
]

0
50

10
0

15
0

20
0

11
8%

11
2%

10
5%

95
%

10
3%

10
2%

10
6%

10
2%

Q1 & Q4 (Baseline)
Q2 & Q3

Figure 12: Performance variation on 16 and 32 processors

9. RESULTS
Experiments were conducted for single job power tuning

and multi-job power partitioning.

Process Variation — Sorting is a Must
Process variation or (CMOS process variation) is the vari-
ation in the attributes of the transistor that occurs at the
time of fabrication. This causes variability in the unbounded
power consumption of the processor chips, which is trans-
lated into variation in performance under a power constraint.
Previous work [?] and Section ?? has already established
that the cluster is inhomogeneous under a power constraint
because of this process variation. We also observe that
scheduling a job on different sets of fixed number of pro-
cessors under a constant power budget leads to variation in
the performance of a parallel job.

We present a selection of configurations to demonstrate
this behavior in Figures ?? and ??. The x-axis represents
the codes and the number of processors. The y-axis indicates
the completion time in seconds. The codes are run on sev-
eral combinations of processors from one or more quartiles
of the processor distribution. The numbers on the top of the
bars indicate percentage slowdown with respect to the base-
line. The processors are uniformly capped at 51W in this
set of experiments, i.e., they maintain a constant job power
budget of 8KW, 16KW, and 32KW for 16, 32, and 64 proces-
sor experiments, respectively. The baseline for 16 processor
experiments (Fig. ??) is the performance on the processors
belonging to quartile Q1. For 32 and 64 processors (Fig. ??),
the baseline is the performance on the processors belonging
to Q1 and Q4 (also see legends). Q1 consists of the most
efficient processors whereas Q4 consists of the least efficient
processors. We observe performance slowdown ranging from
2% to 18%.

We observe that performance deteriorates as we include
less efficient processors (Q2, Q3, Q4) in the mix. Hence,
the optimal selection of nopt processors should consist of the
most efficient processors from the available ones. At macro-
level, PPartition chooses efficient processors to schedule the
dispatched job, and at micro-level, PTune aims at further
eliminating the inefficient ones from this selection.

PTune
Let us evaluate the effectiveness of PTune using the afore-
mentioned codes. In Fig. ??, we present results for three
different combinations of processors belonging to different
quartiles. There are three data points corresponding to each
code.

In the Figure, nLOWER (synonymous with n⊥) is the mini-
mum number of processors that operate at maximum power
such that their aggregate power does not violate the job
level power constraint. This configuration most closely re-
sembles the worst case power provisioning as processors are
not power constrained. PTune is the data point correspond-
ing to optimal configuration suggested by the power tuner.
Uniform power corresponds to the näıve approach of dis-
tributing the job’s power budget evenly across all processors
in a job. This is the baseline configuration.

Performance
Fig. ?? represents on the y-axis performance (top graph) in
terms of wall-clock time in seconds and the number of pro-
cessors recommended by the power manager (bottom graph)
over different codes and quartiles to which the processors
belong (x-axis). The numbers on the bars indicate the run-
time reduction and utilized number of processors relative

the baseline in percent.
We observe a performance improvement of up to 22%.

The gains are dependent on the combination of processors
from different quartiles as well as on workload. PTune is able
to free up to 38% of the resources while achieving similar or
higher performance than the baseline configuration.

Scalability
We evaluate PTune on up to 128 processors. Fig. ?? presents
results addressing the scalability of PTune. PTune achieves
performance improvements of as much as 29% with a min-
imum of 1%. More significantly, in case of the minimal
performance improvement, PTune frees up 23% of the pro-
cessors, which subsequently become available to the next
scheduled jobs.

We observe an error of less than 2% between the total job
power consumption (measured via RAPL) of the PTune rec-
ommended configurations and the assigned job-level power
budget across all experiments.

PPartition
In this section, we perform a macro-level evaluation of our
2-level model. We simulate the conventional scheduler that
dispatches jobs from multiple queues, one at a time. Let n
be the number of processes. The scheduler handles 3 queues,
1 large job queue (n ≥ 768 or n ≥ 64 processors), and two
backfill queues (n ≤ 48 or n ≤ 4 processors, 48 ≤ n ≤ 384 or
4 ≤ n ≤ 32 processors. Larger jobs are scheduled first fol-
lowed by backfilling jobs to improve the system utilization.
We assume Nmax = 550 processors. Our job mix consists
of 25% jobs from each EP, SP, BT and CoMD.

We assume a hardware overprovisioned machine with ma-
chine power budget Pm/c = 28KW . Fig. ?? depicts a
scenario in which the job scheduler is oblivious of power
management. The machine’s power budget is uniformly dis-
tributed across all the processors. We call this näıve schedul-
ing. The scheduler schedules job on this machine as long as
the required number of processors are available. Fig. ?? de-
picts the scenario when our power manager is in action. It
schedules jobs in a variation-aware and a power-aware man-
ner. The x-axes in both the plots represent job identifiers
ordered by the time that they are dispatched under the con-
ventional scheduler. We can see that the large 64 processor
job is scheduled first followed by the backfilling jobs. The
left y-axis denotes job performance in IPS. Each of the red,
green and blue curves represents a job’s performance as more
and more jobs are scheduled over time (moving right along
the x-axis).

Our scheduler starts with jobs at high power budget and,
hence, high performance. But as more jobs are dispatched,
power is stolen from the previously scheduled jobs. This
leads to a drop in their performance. In return, we are able
to schedule more jobs at the expense of the performance of
already running jobs. In this scenario, PPartition is able
to schedule 58 jobs whereas the power-oblivious scheduler is
able to schedule only 36 jobs. The performance of most of
the first 36 jobs (that are scheduled under both the schemes)
of our approach is at least as good as the näıve one. In ad-
dition to these jobs, our power control is able to schedule 22
more backfill jobs that further improve the overall through-
put of the machine (compared to the näıve approach) under
the same power constraint.

SP BT Comd EP SP BT Comd EP SP BT Comd EP

Q1+Q4 Q1+Q2 Q2+Q4

Ti
m

e
[S

ec
on

ds
]

0
50

15
0

25
0

12
3%

96
%

10
0% 91

%
81

% 10
0%

89
%

94
%

10
0%

95
%

86
%

10
0% 10

8%
85

%
10

0% 84
%

78
% 10

0%

93
%

86
% 10

0%

90
%

87
%

10
0% 12

4%
91

%
10

0% 10
0%

84
% 10

0%

94
%

98
%

10
0%

10
4%

93
%

10
0%

nLOWER PTune @ nopt Uniform Power(Baseline)

SP BT Comd EP SP BT Comd EP SP BT Comd EP

Q1+Q4 Q1+Q2 Q2+Q4

Nu
m

be
r o

f P
ro

ce
ss

or
s

0
5

10
15

20

50
%

69
%

10
0%

50
%

69
%

10
0%

62
% 75

%
10

0%

62
%

81
% 10

0%

50
%

69
%

10
0%

50
% 62

%
10

0%

56
%

75
%

10
0%

62
%

81
% 10

0%

44
%

69
%

10
0%

44
%

62
%

10
0%

56
%

75
%

10
0%

56
%

75
%

10
0%

Figure 13: Evaluation of PTune on 16 processors from one or more quartiles.

Uniform Power Distribution Pm/c=28KW

0
50

0
10

00
15

00
20

00
25

00
30

00

Jo
b

IP
S

[B
illi

on
s]

N
o

m
or

e
jo

bs
 c

an
 b

e
sc

he
du

le
d

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

M
/C

 P
ow

er
 o

r I
PS

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1 3 5 7 9 11 14 17 20 23 26 29 32 35

Job# [ordered by dispatch time]

64 processors
32 processors
4 processors

● M/C power norm. wrt Pm/c
M/C throughput norm. wrt to Max

Figure 15: Uniform power distributed across the machine

The right y-axes depict the job-level power as a fraction
of (normalized to) the overall provisioned system power,
Pm/c, in one line graph (circles) and normalized to maximum
power in the other (crosses). Both graphs track each other
closely, but under our power control, the machine power is
reached much earlier after about 10 jobs whereas all 36 jobs
are required to reach this level in the näıve case. These ini-
tial jobs are also able to achieve higher performance under
our scheme (>1500 Billions IPS) than that in the näıve case
(900 to 1500 Billion IPS and 2100 Billion IPS for the large
job) before the rest of jobs are scheduled, and these jobs
would thus terminate earlier as they have progressed fur-
ther under our power control than for the näıve case. This
shows that when there are fewer jobs running on a machine,

PPartition + PTune Pm/c=28KW

0
50

0
10

00
15

00
20

00
25

00
30

00

Jo
b

IP
S

[B
illi

on
s]

N
o

m
or

e
jo

bs
 c

an
 b

e
sc

he
du

le
d

●

●

●

●

●

●

●

●

●

●
●●

M
/C

 P
ow

er
 o

r I
PS

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55

Job# [ordered by dispatch time]

64 processors
32 processors
4 processors

● M/C power norm. wrt Pm/c
M/C throughput norm. wrt to Max

Figure 16: PPartition + PTune

our power manager is able to direct all machine power to
where the work is to maximize performance under a power
constraint unlike the näıve approach.

Fig. ?? presents a comparison of the throughput of our
scheme compared to three other näıve schemes. The x-axis
denotes the machine’s power budget and the y-axis depicts
the throughput of the machine normalized to a maximum
throughput of 39KW (left set of bars). Uniform capping
schemes assume that an appropriate number of randomly
selected processors on the machine are already capped at
Pm/c/Nmax, 75W (mid-way between minimum power and
TDP), and TDP, such that their aggregate power does not
exceed the machine’s power budget. The rest of the pro-
cessors in these configurations are not available to the con-

SP BT Comd EP SP BT Comd EP SP BT Comd EP SP BT Comd EP

8 processors 32 processors 64 processors 128 processors

Ti
m

e
[S

ec
on

ds
]

0
50

15
0

25
0 NLOWER PTune Uniform Power (Baseline)

11
5%

90
%

10
0% 89

%
84

% 10
0%

10
6%

85
% 10

0%
93

%
89

%
10

0% 11
4%

98
%

10
0% 93

%
83

% 10
0%

10
4%

97
%

10
0%

74
%

71
% 10

0%

10
0%

82
%

10
0% 82

%
76

% 10
0%

96
%

90
% 10
0%

94
%

87
%

10
0% 98

%
84

%
10

0% 83
%

81
% 10

0%
10

2%
99

%
10

0%
93

%
89

%
10

0%

SP BT Comd EP SP BT Comd EP SP BT Comd EP SP BT Comd EP

8 processors 32 processors 64 processors 128 processors

Nu
m

be
r o

f P
ro

ce
ss

or
s

0
50

10
0

15
0

50
%

75
%

10
0%

50
%

62
%

10
0%

50
%

75
%

10
0%

62
%

75
%

10
0% 53

%
69

% 10
0%

50
%

66
% 10
0%

59
% 78
%

10
0%

62
%

78
%

10
0% 53
% 69

% 10
0%

52
% 66

% 10
0%

61
% 78

% 10
0%

62
% 81

% 10
0%

51
% 67

%
10

0%
49

% 65
%

10
0%

59
% 77

%
10

0%
61

% 79
% 10

0%

Figure 14: Evaluation of PTune on processors from Q1 and Q4 quartiles.

ventional scheduler in the näıve scheme. PTune+PPartition
represents our model that makes variation-aware decisions
about scheduling jobs across the entire machine under a
machine-level power constraint. The percentages on the top
of the bars indicate how much lower the throughput per
naive scheme is compared to our solution. Our model con-
sistently achieves 5-35% higher throughput.

28 KW 33 KW 39 KW

M/C power Budget (Pm/c)

M
/C

 th
ro

ug
hp

ut
 n

or
m

. w
rt

m
ax

im
um

 th
ro

ug
ht

pu
t

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

100%

86%
91%

65%

100%

91% 91%

68%

100%
95% 95%

72%

PTune+PPartition (Ref.)
Uniform Capping at (Pm/c)/(Nmax)
Uniform Capping at 75W
Uniform Capping at TDP

Figure 17: Throughput

Fig. ?? depicts the performances of all the jobs that are
scheduled under each scheme indicated along the x-axis. The
y-axis denotes job’s performance normalized wrt. to the
aggregate job performance under respective schemes. We
see that our approach (scheme 1) is able to schedule a much
larger number of jobs than the näıve scheduling (scheme 2)
by trading off performance of some jobs.

0.
00

0.
05

0.
10

0.
15

0.
20

28 KW 33 KW 39 KW

Jo
b

Pe
rfo

rm
an

ce
 n

or
m

. w
rt

Sy
st

em
's

Pe
rfo

rm
an

ce

1 2 3 4 1 2 3 4 1 2 3 4

1
2
3
4

PTune+PPartition
UC@[(Pm/c)/(Nmax)]
UC@75W
UC@TDP

64 processors
32 processors
4 processors

Figure 18: Job performance. A job is represented by a tri-
angle.

10. RELATED WORK
Energy has been an important issue in high performance

computing (HPC) for over a decade. Supercomputers as old
as BlueGene/L have been built with the goal of maximizing
power efficiency. Power-scalable clusters that are equipped
with voltage and frequency scaling have existed for over a
decade that enabled researchers to study the energy prob-
lem in HPC. Freeh et al. [?] investigated the energy-time
trade off of MPI applications to prove that it is feasible to
save energy by scaling the processor down to lower energy
levels with or without time penalty depending on the appli-
cation. Springer et al. [?] proposed a combined approach of

performance modeling and performance prediction for min-
imizing the execution times of MPI applications under en-
ergy bounds. They used voltage and frequency scaling on
single cores of a small cluster of up to 10 nodes for their ex-
periments. In addition, there is abundant work presenting
algorithms that use frequency and voltage scaling mecha-
nisms for energy savings [?, ?, ?, ?, ?]. In contrast, our
work uses power clamping via the Intel RAPL interface like
Rountree et al. [?]. Totoni et al. [?, ?] presented an ILP
based runtime system that schedules work on one or more
cores of a multi-core chip to meet the power or performance
constraint. Our work differs from this work in terms of gran-
ularity. We manage resources at processor chip level. We
use either all or no cores of a chip or a multi-core processor.

System-wide solutions for power constraint systems have
been proposed that aim at increasing the throughput of sys-
tems by leveraging the idea of hardware overprovisioning [?,
?, ?, ?, ?]. Sarood et al. [?] proposed a scheme of deter-
mining an optimal number of nodes under strong scaling of
applications executing on an overprovisioned system while
distributing power between CPU and memory. Etinski et
al. [?, ?] proposed the use of DVFS at job scheduling-level
to save energy and improve overall job performance. Patki
et al. [?] proposed power-aware backfilling to improve the
throughput of the system. Ellsworth et al. [?] presented a
power scheduler that enforced a system-wide power bound
by reallocating power across the cluster. Our work differs
from all of the above because our approach is variation-
aware. It takes the performance variation into account while
scheduling and tuning jobs for performance.

The two foundational papers for performance optimiza-
tion across inhomogeneous processors are [?] and [?]. The
former is the first mention of processor inhomogeneity under
a power bound in the HPC context. The latter provides a
much more detailed analysis of the phenomenon across mul-
tiple clusters and provides a set of simple algorithms for in-
telligent power balancing. These algorithms, while ground-
breaking, suffered from two serious limitation. First, the
processor power model assumed CPU clock frequency in-
creased proportionally with power. While that is a useful
simplification, our work here shows that the story is not
nearly so simple.

Second, the algorithms assumed the ideal number of nodes
to use was fixed a priori. Making this assumption reduces
the problem to something far more tractable, but results in
making direct comparisons between our approach and their’s
nearly impossible. In this paper, we have tackled what we
consider to be a far more difficult problem: determining the
ideal number of nodes from first principles. For the same
node count, we would expect similar performance from both
our approach and Inadomi’s. Highlighting the benefit of
our first-principles approach by comparing to Inadomi run-
ning on a non-ideal number of nodes violates an assumption
of Inadomi’s algorithm. While the result of both of our ap-
proaches is a power schedule, we are solving a fundamentally
different problem.

Kappiah et al. [?] presented a system that saves energy
at the expense of execution time by scaling down the fre-
quencies of the cores when they encounter slack time in an
MPI application. Rountree et al. [?] used linear program-
ming to establish a bound on optimal energy savings of an
MPI application and presented a runtime algorithm to save
energy in HPC applications with negligible delay [?]. Power

conservation by means of turning off unwanted nodes is pro-
posed in [?]. In the above presented solutions, authors used
one core per node and their goal was to maximize energy
savings with minimal impact on the execution time. In con-
trast to these solutions, we are intolerant to performance
degradation. We use multicore processors and our goal is to
minimize the completion time as long as we stay within the
power budget.

11. SUMMARY
We presented a hierarchical variation-aware machine-wide

solution for managing power on a hardware overprovisioned
machine. It consists of a macro-level Power Partitioner that
makes power and job scheduling decisions and a micro-level
Power Tuner that determines the optimal processor selection
and their power caps for a job, such that its performance is
maximized under a power constraint. PTune achieves up
to 29% improvement in performance as compared to uni-
form power capping. It does not lead to any performance
degradation, yet frees up to 40% of resources as compared
to uniform power capping. PPartition is able to improve
the throughput of the machine by 5-35% compared to näıve
sheduling under the same machine power budget.

We established that under a power constraint, the vari-
ability in performance transforms into variation in peak
power efficiency. We believe that this variation in power
efficiency should be one of the primary considerations in the
future power management research.

