
DINO: Divergent Node Cloning for Sustained Redundancy in HPC

Arash Rezaei, Frank Mueller
Department of Computer Science, North Carolina State University, Raleigh, NC.

Abstract—Complexity and scale of next generation HPC
systems poses significant challenges in fault resilience methods
such that contemporary checkpoint/restart methods may be
insufficient. Redundant computing has been proposed as an
alternative at extreme scale. However, redundant approaches
do not repair failed replicas, and a given job can only continue
execution as long as there exists at least one healthy replica per
task. Replicas are logically equivalent, yet may have divergent
runtime states during job execution, which complicates on-the-
fly repairs.

In this paper, we present a redundant execution environment
that quickly repairs failures via DIvergent NOde cloning
(DINO). DINO contributes a novel node cloning service in-
tegrated into the MPI runtime system that solves the problem
of consolidating divergent states among replicas on-the-fly.
We provide execution time analysis. Experimental results over
multiple benchmarks indicates that DINO can recover from
failures nearly instantaneously, thus retaining the redundancy
level throughout job execution. The resulting resilience of
a dual redundant system with cloning nearly matches that
of triple redundancy, yet at a third lower cost in terms of
resources.

Keywords-Fault Resilience; HPC; Node Cloning

I. I NTRODUCTION

Reliability has been highlighted as a problem for next
generation supercomputers [1], [2], [3]. In projections, sys-
tem reliability drastically decreases at exascale and system
mean time to failure (MTTF) would be in the order of
few hours without major hardware and software advances.
Node failures are commonly due to hardware or software
faults. Hardware faults may result from aging [4], loss
of power, and operation beyond temperature thresholds.
Software faults can be due to bugs (some of which may
only materialize at scale), complex software component
interactions and race conditions that require rare parallel
execution interleavings of tasks. (A recent study [5] has
tracked 736 faults in Linux 2.6.33 over time). The de-facto
method for fault tolerance in HPC is Checkpoint/Restart
(CR). Applications are periodically checkpointed, and their
state is written to persistent storage. Upon failure, the
application is rolled back to the last checkpoint, its stateis
retrieved from storage in all tasks, and execution resumes
from this point. However, the cost of checkpointing and
especially writing checkpoints to a parallel file system (PFS)
is high. For future extreme scale systems, this potentially
causes CR overheads to dominate wallclock time instead of
spending most time on core application execution [6], [7],
[8].

An alternate resilience method is redundant computing
[7], [9], [10]. It aims at improving reliability and availability
of systems by allocating two or more components to perform
the same work. Although redundancy adds to the cost and
complexity of systems, it scales with system size. Resilience
actually increases with redundancy at large scale, much in
contrast to CR [7]. However, current redundant approaches
do not provide a sustained redundancy level during job
execution. When a process of a job fails, replicas ensure
that the application can progress in execution. This requires
that there by at least one healthy replica, i.e., should all
replicas of an MPI task fail, then the entire job fails. Current
redundant systems rely on higher degrees of redundancy
(more replicas) to provide fault resilience at large scale and
over extended periods of time for long-running jobs.

Considering the cost of higher degrees of redundant
computing, both in terms of computing resources and power,
we introduce node cloning as a means to sustain a given
redundancy level. The core idea is to “repair” node failures
with the assistance of healthy replicas. A healthy replica is
cloned onto a spare node to recreate the failed process in
“mid-flight”. As a process is cloned onto a spare node with
a clean operating system state, it also implicitly becomes
rejuvenated in terms of the execution environment (operat-
ing system state and shared libraries) for the process. We
integrate this service within the MPI runtime and provide
experimental results for our system. We show that such
a system not only eliminates the need (and overheads) of
CR schemes, but also provides a sustained resilience level
throughout job execution.

Contributions: To address shortcomings in current redun-
dant systems, we provide the following contributions in the
DINO system:

• We devise a generic node cloning service and integrate
it into the MPI runtime under redundancy. It represents
a reactive method that eliminates the overheads related
to traditional CR schemes. There is also no need
for PFS storage to keep large checkpoint files, i.e.,
PFS acquisition costs and system failure rates (due to
absence of PFS failures) would be much lower.

• We contribute a novel method to overcome divergence
in execution with minimal message logging. The execu-
tion of replicas does not occur a lock-step fashion. They
can easily diverge, thereby introducing complexity to
the recovery mechanism. We devised a novel algorithm
to establish communication consistency to facilitate

recovery.
• We discuss DINO’s performance on several MPI bench-

marks. The time to recover from failures is short
enough to make our approach practical. Time to regain
dual redundancy after a node failure varies from 5.60
seconds (LU with 32 processes) to 90.48 seconds (FT
with 16 processes), depending on process image size
and cross-node transfer bandwidth.

• We analyze job completion times and extrapolates
results to extreme scale. With a node MTTF of 50
years [11]. Compared to CR, dual redundancy with
cloning neither introduces checkpointing overhead (due
to storage, network, filesystems etc.) nor requires re-
computing after restarts. At extreme scale, when CR
overhead prevents jobs to make progress, our cloning
approach completes the job in much shorter time and
complements dual redundancy without cloning. Com-
pared to triple redundancy, it also utilizes33% less
computing resources and power, yet provides similar
job completion time up to 1 million nodes. We also
show that 25 spare nodes suffice for a 256k node
system when nodes can be repaired, independent of the
computation to communication ratio of applications.

The paper is structured as follows: Section II lists the
assumptions we make. Challenges are discussed in Section
III. Section IV introduces the design and architecture of
DINO. Analysis of job completion time are presented in
Section V. The experimental evaluation is provided in Sec-
tion VI. Section VII presents the related work. Section VIII
summarizes the paper.

II. A SSUMPTIONS

This work targets tightly-coupled parallel application-
s/jobs executing on HPC platforms using MPI-style message
passing [12]. Should a single node fail, the entire job is
affected and typically needs to be started from the beginning.
We assume a fail-stop failure model, i.e., a computing node
will stop functioning after the occurrence of a fault.

Suppose there is a job that requirest hours to run on
n nodes to complete without any failures. This is called
plain execution time. We consider systems withr levels of
redundancy (at the process/MPI task level). Our system then
consists ofr × n active computing nodes, wheren logical
processing nodes (MPI tasks) are seen by the user while
redundant shadow nodes remain transparent. We also assume
the availability of a small pool of spare nodes. Spare nodes
are in a powered state but initially do not execute any jobs.
We further assume absence of a single common-mode fault
in the system. Common-mode faults (e.g., power failure of
an entire HPC system) cause all operational nodes to fail
simultaneously.

We call a “sphere” the set of all nodes executing the same
code with the same input. All nodes (r×n) comprise a total
of n spheres, where each sphere contains nodes of the same

replica (same MPI task). A complete sphere failure with
the primary node and its corresponding shadow nodes is
considered a job failure under redundant execution. DINO
additionally triggers cloning operations as soon as a node
failure is detected. The intuition here is to quickly regain
the original redundancy level as there is no checkpointing
in the system. In contrast, if CR is used exclusively (or in
conjunction with redundancy but without cloning), a sphere
failure triggers the latest snapshot to be restored such that
the job’s execution is resumed from that state.

III. C HALLENGES

There are a number of challenges involved in providing
node cloning when MPI jobs are running. These challenges:

A. High performance node cloning service

A generic service that clones the processes, including the
runtime/kernel state and memory content onto a spare node
is the first challenge. This service requires that processes
are already isolated from rest of the job, i.e. ongoing
communication is finalized and no new communication will
start (a.k.a, quiesce). The performance of this service affects
the overall job completion time. Off-the-shelf checkpointing
libraries like BLCR [13] or MTCP [14] could provide the
needed functionality. However, the downtime to take the
snapshot, save it to storage and retrieve it from storage
followed by restoring the snapshot is quite high. Thus, a
high performance approach is required.

B. Divergent states

One of the main technical challenges is how to overcome
divergence in execution and to do so with only minimal
message logging. The execution of replica nodes does not
occur a lock-step fashion, i.e., they tend to diverge not within
computational regions but also by advancing or falling
behind relative to one another in terms of communication
events. This would generally require message over large
periods of time. Instead, we devised a novel algorithm to
establish communication consistency that tolerates diver-
gence due to asymmetric message progression and region-
constrained divergence in execution.

C. Integration to the runtime system

An important aspect of a process is the relation of its state
to the rest of the processes. Cloning a process without careful
resuming of its communication state results in inconsistency
and job failure.

IV. DINO

DINO benefits from a node cloning service for a given
process at its core. Node cloning creates a copy of a running
process (asource node) onto aspare node. While the cloning
mechanism is MPI agnostic, it is applied to processes
encapsulating MPI tasks in this work. (DINO also considers
the effect of cloning on the MPI runtime system, as detail

Normal Operation

Failure

Channel Quiesce

Channel Resume

Clone

N0 N1 N2 N3

N4

MPI App.

MPI App.

MPI App. MPI App.

MPI App. MPI App. MPI App. MPI App.

pre-copy

Pages

Sphere 1 Sphere 2

Sphere 2

P0 P1 P2(main)

P0 P1

P3(shadow)

P3(shadow) P2‘(main’) Normal Operation

Figure 1: Dual Redundancy and Node Cloning

later.) Fig. 1 shows how the system retains dual redundancy
in case of a failure. Suppose two dual redundant processes,
P2(main) andP3(shadow), are logically equivalent (i.e., both
perform the same computation) and run onN2 and N3,
respectively. If nodeN2 fails after some time, its shadow,
located onN3 (source), is cloned ontoN4 (spare node) on-
the-fly.

A process is created onN4 with the same number of
threads. WhileP3 is performing its normal execution, its
memory is “live copied” page by page to the newly created
process. This happens in an iterative manner. When we
reach a state where few changes in dirty pages (detailed in
the implementation) remain to be sent, the communication
channels are drained. This is necessary to keep the system
of all communication processes in a consistent state. Af-
ter this, P3’s execution is briefly paused so that the last
dirty pages, linkage information, credentials, etc. may be
sent to N4, i.e., a processP ′

2 has been created onN4.
Then, communication channels are resumed and execution
continues normally. Between channel draining and channel
resumption, no communication may proceed. This is also
necessary for system consistency with respect to message
passing.

A. Equalization Algorithm

In the following, we explain problems rooted in com-
munication inconsistency with an example and provide the
details of how we address them. Fig. 2 shows a simple
MPI example under dual redundancy in terms of MPI rank
layout. Dual redundancy doubles the number of process
and Fig. 2(b) indicates the corresponding terminology for
virtual, native and replica ranks, where a virtual rank with
its two boxes represents a sphere. The native rank is the rank
assigned bympirun within the range[0, 3]. The rank API
call, MPI_Comm_Rank, returns the virtual rank. The MPI
processes of each replica sphere, so-called replica ranks,are
numbered[0, 1]. Thus, rank 0 and 2 aremain and shadow
pairs, and rank 1 and 3 aremain and shadow pairs.

if rank = 0 then
Computation();
Isend(1);
Isend(1);
Waitall();
Computation();

else if rank = 1 then
Computation();
Recv(0);
Recv(0);
Computation();

end if
(a) A simple program

Virtual Rank 0

Virtual Rank 1

Native Rank: 0 Replica Rank: 0

Native Rank: 2 Replica Rank: 1

Native Rank: 1 Replica Rank: 0

Native Rank: 3 Replica Rank: 1

(b) Redundancy layout

Figure 2: A simple program and its redundancy layout

Recv(x) is a blocking andIsend(x) is a non-blocking
call. An Isend call is mapped toIsend2(x, y) and denotes
a send to rankx and its corresponding replica. ARecv(x)
is mapped to aRecv2(x, y) call, as well. Note that send (or
receive) requests are always posted in pairs. In other words,
the number of posted send (or receive) requests to any two
replicas are equal. We call this thesymmetry property and
exploit it in the equalization algorithm.Isend2 andRecv2
are as follows, wherewaitall in the latter blocks until the
preceding non-blocking calls finish.

Isend2 (x, y){
Isend(x);
Isend(y);

}

Recv2 (x, y){
Irecv(x);
Irecv(y);
Waitall();

}

Fig. 3 describes the execution of 4 ranks along with a
failure scenario. Suppose at the mark “X” in Fig. 3, rank
0 fails. Then ranks1 and 3 get the first message from2
and are blocked to receive a message from0. Rank2, after
sending all of its messages, continues execution and reaches
the waitall. At this point, all processes are blocked and a
recovery strategy is required.

Note that we clone rank2 to a spare node to create0′.
Rank 0′ starts executing the application from thewaitall.
Therefore, neither0 nor 0′ ever execute the Send2 calls
(dotted area in Fig. 3). Consequently, ranks 1 and 3 will
never receive those two messages from0′. In the first stage
of the equalization algorithm, all outstanding sends where

1: Computation() Recv2(0, 2) Recv2(0, 2) Computation()

3: Computation() Recv2(0, 2) Recv2(0,2) Computation()

2: Computation() Isend2(1, 3) Isend2(1, 3) Waitall() Computation()

0: Computation() Isend2(1, 3) Isend2(1, 3) Waitall() Computation()
,

�
? �

?

�
? �

?

Blocked

Blocked

Blocked

Figure 3: Execution with a failure Scenario

rank 2 is the receiver are drained. Recv requests are posted
by 1 and 3 and the message is saved in a temporary buffer
(indicated by check-marks) whose size is bounded by the
number of asynchronous events being awaited next. Receives
from 0, highlighted by question marks, remain a challenge.
Note that dual (identical) messages are received from rank
2. Ranks 1 and 3 simply cancel the outstanding (ongoing)
receive request from0 and skip incrementing a message
counter on the next receive from0. This provides message
equalization across the clones in this example.

Algorithm 1 shows the steps for Quiesce. At first, all
outstanding send requests involvingshadow are drained. A
modified version of the bookmark exchange protocol [15] is
utilized. The original bookmark protocol creates a consistent
global snapshot of the MPI job. In our modified bookmark
protocol, each process communicates withshadow the num-
ber of messages it has sent toshadow and receives how
many messages are sent byshadow (and vice versa). Then,
the following question can be answered: Have I received
all the messages thatshadow has put on the wire? If not,
then message(s) remain on the MPI communication channel
(e.g. buffered or in transmission) and should be drained.
Processes exchange message counts, and Recv requests are
posted to drain and save them in temporary buffers. Later,
during normal execution when a Recv is posted, these drain
lists are first consulted to service the request. At the end of
the drain phase, no more outstanding send requests to/from
shadow nodes exists in the system.

In general, three cases could occur with regard to the
number of received messages to a rankR with respect to
communication with the failed rankmain and its shadow
after the drain phase:
(1) Received (main) = Received (shadow)
(2) Received (main) < Received (shadow)
(3) Received (main) > Received (shadow)
Case 1 creates no problem as it reflects message symmetry
within a sphere. Case 2 is discussed above and requires
a combination of canceling and skipping future message
events until counters are equalized. In case 3,main’ will
send messages that have already been received byR before

Algorithm 1 Equalize Algorithm
1: /* 1. Exchange communication state with shadow */
2: if rank = shadow then
3: bookmarks∗array;
4: for (i = 0; i < nprocs; i + +) do
5: if i = shadow || i = Main then
6: continue;
7: end if
8: /*send bookmark status, then receive into
9: appropriate location in bookmarks array */

10: send bookmarks(i);
11: recv bookmarks(i, array[i]);
12: end for
13: else
14: bookmarkbkmrk;
15: /*Receive remote bookmark into bkmrk then send*/
16: recv bookmarks(shadow, bkmrk);
17: send bookmarks(shadow);
18: end if
19:

20: /* 2. Calculate in-flight msg(s) and drain them */
21: Cal and Drain();
22:

23: /* 3. Recvs: Calculate skip or repeat */
24: if rank 6= shadow then
25: X ← Received(shadow) − Received(Main);
26: if X > 0 then
27: skip recv ← X
28: else if X < 0 then
29: repeat recv ← |X|
30: end if
31: end if
32:

33: /* 4. Sends: Calculate cancel */
34: if rank 6= shadow then
35: X ← Sent(shadow) − Sent(Main);
36: if X > 0 then
37: cancel send ← X
38: end if
39: end if

it failed. Thus,R must re-issue receives frommain’ up to an
equalized count but silently absorbs the messages, i.e., by
using a dummy receive buffer. Silent absorption is crucial
since computation inR may have advanced to the point
where data destinations of message receives could have been
modified by calculations. The above is reflected in stage 3
of Algorithm 1. Similarly, three cases can be considered for
the number of sent messages after the drain phase:
(1) Sent (main) = Sent (shadow)
(2) Sent (main) < Sent (shadow)
(3) Sent (main) > Sent (shadow)

Case 1 is already symmetric, no action is required. Case 2 is
fixed by canceling the outstanding sends ofR to main. As
the number of posted sends to main and shadow are equal
(symmetry property), the difference is due to ongoing send
requests, which can be canceled. This is reflected in stage 4
of the algorithm. Case 3 is impossible due to the symmetry
property, which ensures thatposted sends are represented
by symmetric sent-counts due to message draining before
cloning.

This algorithm does not support wild-cards and assumes
collective operations implemented as point-to-point.

B. Architecture with Open MPI

Fig. 4 shows our system architecture where novel DINO
components are depicted as shaded boxes. RedMPI provides
a transparent interpositioning layer for MPI calls between
application and the MPI runtime system (Open MPI). Open
MPI has 3 layers: the Open MPI (OMPI) layer, the Open
Run-Time Environment (ORTE) and the Open Portability
Access Layer (OPAL). OMPI provides the top-level MPI
API, ORTE is the interface to the runtime system, and OPAL
provides a utility layer and interfaces to the operating sys-
tem. The commandmpirun interacts with the cloning APIs
to launch tools on source/spare nodes. The node cloning
system provides generic process-level cloning functionality
via extensions to BLCR [13]. The quiesce and resume phases
are triggered through signals relayed to each process. The
quiesce phase includes the equalization algorithm and pauses
the communication. Subsequently, the resume phase updates
the internal data structures and resumes the communications.

C. Implementation

The node cloning service consists of three extension tools
to BLCR namedrestore, pre-copy andclone. In the
following, we explain the steps of cloning concisely.
Pre-copy. This phase transfers a snapshot of the memory
pages in the process address space, which are communicated

OMPI

BLCR

Operating System

RedMPI

Application

Cloning API

ORTE

OPAL

O
p
e
n
 M

P
I

Quiesce

Skip Protocol

mpirun

restorepre-copyclone

Q
u
ie

sc
e
 S

ig
.

R
e
su

m
e
 S

ig
.

Pause Com.

Resume
Update DS.

Equalize

Resume Com.

Figure 4: DINO Architecture

Restore Pre-copy

Fork

Clone syscall

pthread_create

Signal

No. of threads

Barrier

Barrier

Memory Map

All non-zero memory pages

Loop: Only dirty pages

exit

Current Node Spare Node

K
er

n
el

Figure 5: Pre-copy phase

to the spare node while normal execution of the process
continues on the source node (see Fig. 5). We use TCP
sockets to create a communication channel betweenlocal
andremote nodes. The pre-copy approach is similar to [16].
Thepre-copy tool signals the process. The signal handler
then creates a thread and opens a communication channel
with therestore tool on the spare node. Vital meta data,
including number of threads, is transferred. The receiver
side creates the required threads and enters a barrier. Then,
threads enter the kernel and one thread walks through the
page table and unmaps all virtual memory regions. The
barrier ensures that all threads exit the user mode safely
before the unmapping operation. The spare node receives the
memory map from the pre-copy thread. All non-zero pages
are transferred and respective page dirty bits are cleared in
the first iteration. In subsequent iterations, only dirty pages
are transferred after consulting by a dirty bit. We apply a
patch to the Linux kernel to keep track of the modified
memory pages via main memory unit (MMU) dirty bits. In
this approach, we shadow the dirty bit within the reserved
bits of a page table entry (PTE). When the aggregate size
of dirty memory is lower than a threshold or the difference
of aggregate dirty memory in consecutive iterations is less
than a threshold, the pre-copy thread exits (e.g., the threshold
may be 1MB).
Channel Quiesce.The purpose of this phase is to create a
settle point with the shadow process. This includes draining
all in-flight MPI messages. The runtime system also needs
to stop posting new send/recv requests. We build this phase
on top of the functionality for message draining provided
by the CR module of Open MPI [17]. The equalization
algorithm described in Section IV-A is implemented here.
Through careful synchronization, we ensure that the quiesce
phase never interrupts an MPI call or violates the symmetry
property.
Clone. This phase stops the process for a short time to trans-
fer a consistent image of its recent changes to therestore
tool. The memory map and updated memory pages are

transferred and stored at the corresponding location in the
address space inP’. Then, credentials are transferred and
permissions are set. Restoration of CPU-specific registersis
performed in the next phase. The signal stack is sent next
and the sets of blocked and pending signals are installed.
Inside the kernel, we use a barrier at this point to ensure
that all threads have received their register values before
any file recovery commences. Then, POSIX interval timers
are transferred and saved, but they are not activated yet. We
next transfer file information and restore open files. Files
opened in write mode on a globally shared directory (e.g.,
NFS) can cause problems (due to access by bothShadow
and main′), a problem considered in orthogonal work [18].
As the very last step, the POSIX interval timers are resumed.

Channel Resumption. In this phase, processes re-establish
their communications channels withShadow and main′.
All processes receive updated job mapping information,
reinitialize their Infiniband driver and publish their endpoint
information.

D. Runtime Requirements

MPI System Runtime. In Open MPI, daemon processes,
created at job launch, run on each node. Daemons assist
as part of the out-of-band (OOB) channel, redirect output,
and play a role in the initialization and finalization of the
job. The off-the-shelf Open MPI runtime does not allow
to dynamically add nodes (e.g., patch in spare nodes to a
running MPI job) and, subsequently, to add daemons to this
job. We implemented this missing functionality, including
manipulation of job data structures, creation of a daemon,
redirection of I/O and exchange of contact information with
the mpirun process. Another issue is posed by the fact
that native ranks ofShadow andmain′ at the end of cloning
have identical state. We overwrite the native rank ofmain′ in
the MPI layer with the corresponding native rank within its
sphere (cf. Fig. 2(b) for the rank layout). Finally, there are
communication calls issued by the RedMPI layer that violate
the symmetry property. These control messages are required
to ensure correct MPI semantics under redundancy, e.g., for
MPI calls like MPI_Comm_split and wildcard receives.
We distinguish them and only consider application-initiated
calls when computingskip andrepeat numbers of algorithm
1.

OS Runtime. Many modern Linux distributions support
prelinking, which enables applications with large numbers
of shared libraries to load faster. Prelinking is a method of
assigning fixed addresses to and wrapping shared libraries
around executables at load time. However, these addresses
of shared libraries differ across nodes due to randomization.
We assume prelinking to be disabled on compute nodes to
facilitate cloning onto spare nodes.

V. COMPLETION TIME ANALYSIS

The objective of this section is to provide a qualitative
job completion analysis for redundant computing to assess
the effect of our resilience technique.

We make the following assumptions in the mathemati-
cal analysis. (1) Node failures follow a Poisson process.
Subsequently, the time between two failures follows an
exponential distribution. (2) There is a pool of spare nodes
available to be used in case of failures. Failures can occur at
any time, even during cloning. (3) In case of an unsuccessful
cloning (e.g., a failure in the spare node), we retry the
operation. We assume that the healthy replica itself never
fails during cloning. (The short time required for cloning of
seconds relative to job executions of hours/days allows us
to make this assumption.) We consider exponential failure
distribution for the system since it has been shown that al-
though Weibull distribution may capture failure distributions
more accurately, exponential distribution provides sufficient
accuracy in HPC [19].

We use the following notation:
• t: Failure-free execution time of the application
• r: Degree/level of Redundancy
• α: Communication/computation ratio of the application
• θ: MTTF of one compute node
• λ: Failure rate of one compute node
• Θ: MTTF of the whole system
• Λ: Failure rate of the whole system

The total application execution time with redundancy can be
calculated as:

tred = (1 − α)t + αtr (1)

Redundancy and Cloning. We add one more parameter
for our calculation in this section:

• c: Time for failure-free execution of a cloning operation
The cloning operation can fail. The probability of system
survival until timet is e−Λt. Thus, the probability of failure
in (0, c) is 1 − e−Λc. The expected cloning time can be
calculated as a sum of two cases. The derivation of the
expected cloning time is presented below.

tclone =Pr(failure before c)

× (expected time of failure in(0, c))

+ Pr(failure after c) × (c)

tclone = (1 − e−Λc)

∫ c

0

(tΛe−Λtdt) + (e−Λc)(c)

= (1 − e−Λc)(−e−Λc(c +
1

Λ
) +

1

Λ
) + ce−Λc

The total time is the sum of the time to perform actual
computation (t) and the time to recover from failures.

Ttotal = tred + trecovery

Let nf be the number of failures that occur till the appli-
cation completes. On average, a node failure occurs every

θ
n·r . Therefore,nf is calculated asnf = Ttotal · n·r

θ or
nf = Ttotal · λ · n · r. Then, trecovery = nf · tclone. Thus,
the job completion time under redundancy and cloning is
calculated as:

Ttotal = tred + Ttotal · λ · n · r · tclone

=
tred

1 − λ · n · r · tclone

(2)

Checkpoint and Restart.We add the following two param-
eters for our analysis in this section:

• C: Time to take a checkpoint of the job
• R: Time for restarting from a checkpoint

We use Daly’s formula [20] to compute the optimal check-
point interval as

δopt =
√

2CΘ

[

1 +
1

3
(

C

2Θ
)1/2 +

1

9
(

C

2Θ
)

]

− C. (3)

The Job completion time with CR is computed using [8]

Ttotal =
t + tC

δ

1 − ΛtRR
, (4)

where the time spent on restart and rework is

tRR =
(

1 − e−
(R+tlw)

Θ

) [

−e−
(R+tlw)

Θ (R + tlw + Θ) + Θ
]

+ e−
(R+tlw)

Θ · (R + tlw)

and the lost work time is

tlw =
1

(

1 − e
−(δ+C)

Θ

)

[

Θ − Θe−
δ

Θ − δe−
(δ+C)

Θ

]

.

VI. EXPERIMENTAL RESULTS

Experiments were conducted on a 108-node cluster with
QDR Infiniband. Each node was equipped with two AMD
Opteron 6128 processors (16 cores total) and 32GB RAM
running CentOS 5.5, Linux kernel 2.6.32 and Open MPI
1.6.1. The experiments are demonstrating failure recovery
rather than exploring compute capability for extreme scale
due to the limits of our hardware platform. Hence, we
exploit one process per node in all experiments. Experiments
were repeated five times and average values of metrics are
reported.

A. Node Cloning Service

We created a microbenchmark consisting ofmalloc
system calls to control the size of the process image. It has
an OpenMP loop with 16 threads long enough to compare
the performance of our node cloning mechanism with CR.
In CR, we checkpoint the process locally, transfer the image
to another node and then restart the snapshot. We omit the
file transfer overhead and consider the best case for CR
(checkpoint and restart locally). Fig. 6 shows the results
for different image sizes ranging from 1GB to 8GB. Our
cloning approach takes less time than just checkpointing
only without restart. Our cloning is more than two times

0
50

10
0

15
0

20
0 cloning

checkpoint
restart

1GB 2GB 4GB 8GB

0
50

10
0

15
0

20
0

T
im

e
in

 s
ec

on
ds

Figure 6: Microbenchmark (single process with 16 threads) – Node
cloning vs CR

faster that CR in all cases (2.24x for 1GB and 2.17x for
8GB). Cloning is performed via TCP over QDR Infiniband
with an effective bandwidth of 300 MB/s.

B. Overhead of Failure Recovery

In this section, we analyze the performance of DINO. We
consider 9 MPI benchmarks: (BT, CG, FT, IS, LU, MG,
SP) from NAS Parallel Benchmarks (NPB) plus Sweep3D
and LULESH. Sweep3D represents an ASC application that
solves a neutron transport problem. LULESH approximates
the hydrodynamics equations discretely by partitioning the
spatial problem domain into a collection of volumetric ele-
ments [21]. We use input class D for NPB, size320×100×
500 for Sweep3D and size 250 for LULESH. We present
results for 4, 8, 16 and 32 processes under dual redundancy.
FT with 4 and 8 processes could not be executed due to
memory limits. LULESH only runs with cubic numbers of
processes, so we run it with 9 and 27 processes.

Due to lack of support from the Infiniband driver to cancel
outstanding requests without invalidating the whole work
queue and lack of safe re-initialization, current experiments
are performed with marker messages. Every process receives
a message indicating the fault injection, and acts accordingly.
In other words, we inject faults during computation and
measure the cloning time and size of the transferred process
image.

Fig. 7(a) and 7(b) depict the overhead and transferred
data, respectively. NPB are strong scaling applications and
the problem size is constant in a given class. Therefore, the
transferred data and consequently time decreases when the
number of processes increases. In contrast, Sweep3D and
LULESH are weak scaling and the problem size remains
constant for each process, solving a larger overall problem
when the number of processes increases. As a result, weak
scaling benchmarks show negligible difference in overhead
and transferred process image over different number of
processes.

FT has the largest process image. The size of transferred
data for FT with 16 processes is 7GB and takes 90.48

BT CG FT IS LU MG SP Sweep3D LULESH

0
20

40
60

80
10

0

2 x 4 tasks
2 x 8
2 x 16
2 x 32

0
20

40
60

80
10

0

T
im

e
in

 s
ec

on
ds

NANA NA NA

(a) Overhead

BT CG FT IS LU MG SP Sweep3D LULESH

0
2

4
6

8

2 x 4 tasks
2 x 8
2 x 16
2 x 32

0
2

4
6

8

Tr
an

sf
er

re
d

pr
oc

es
s

im
ag

e
in

 G
B

NANA NA NA

(b) Transferred process image

0
10

20
30

40
50

60

BT CG FT IS LU MG SP Sweep3D LULESH

0
0.

25
0.

5
0.

75
1

1.
25

1.
5

pre−copy
quiesce
clone
resume

T
im

e
in

 s
ec

. (
pr

e−
co

py
)

T
im

e
in

 s
ec

. (
qu

ie
sc

e,
 c

lo
ne

, r
es

um
e)

(c) Overhead: Step-wise with 2× 32 processes

Figure 7: MPI Performance Evaluation – Recovery from 1 fault injection

sec, while it takes 46.75 sec with 32 processes to recover
from a failure when transferring 3.52GB of data. LU has
the smallest process image among NPB, data ranges from
2.64GB to 0.36GB with transfer times of 32.51 sec to
5.60 sec for 4 to 32 processes, respectively. For Sweep3D,
the overhead is almost constant at 23.5 sec over different
numbers of processes when transferring a 1.8GB image. The
same applies to LULESH with a constant process image
size of 2.75GB and an overhead of 38.51 sec. The relative
standard deviation in these experiments was less7% in all
cases.

We also measure the time spent in each phase: pre-
copy, quiesce, clone and resume for 32 processes except
for LULESH, where 27 processes are used (see Fig. 7(c)).
The pre-copy phase is shown on the left axis and the rest
of phases are shown on the right axis (which is an order
of magnitude smaller). The majority of time is spent in the
pre-copy phase and the remaining three phases take about 1
sec combined. These three phases take almost similar time
across all the benchmarks with only small variations.

C. Comparison of different methods

Next, we compare the job completion time in three
scenarios with one fault injection. We compare 1x with CR,
2x with cloning and 3x with voting. We use LULESH with
size 250 and run it for 100 iterations with 27 processes.
We selected this setting to solve a larger problem size
with longer execution time. The plain application finishes
in approximately 64 minutes. Under 1x with CR, we choose
the checkpoint interval as 15 minutes. Therefore, a total
of four checkpoints is taken during the execution of the
application. In this scenario, we inject a fault at half the
checkpoint interval (7.5 minutes). Then, we restart from the
latest checkpoint to recover from failure. Table I depicts
the timing of each step. Out of the total time, 4.5 minutes
is spent on checkpointing, 0.85 minutes on restarting, and
7.5 minutes on rework. The job completion time is 77.29
minutes.

For 2x and 3x, we inject the fault at a place which is
logically equivalent to where we injected in the 1x case.
Under 2x, we inject one fault resulting in a complete failure
of a replica and use cloning to regain the dual redundancy

Table I: Completion Time (min.) of LULESH with injecting 1 fault (plain time is 64 min.)
Method App. checkpoint restart rework cloning voting Total (minutes)

1x+CR 64.44 4.5 0.85 7.5 77.29
2x+Cloning 65.12 1.04 66.16
3x+Voting 65.58 0.18 65.76

level. Table I shows the time spent in the application is
slightly more than the plain execution time. The extra time is
overhead due to redundancy. Note that we are running these
experiments at a small scale where the redundancy overhead
is very small (unlike for petascale or beyond). The cloning
time is 1.04 and total time is 66.16 minutes. This shows a
speedup of 1.16x in job completion time compared to 1x.
Under 3x, once a fault is injected, one process constantly
sends incorrect messages. The processes receiving a message
from the faulty process then need to engage in a voting phase
to figure out the correct message. The application time is
measured as 65.58, voting overhead as 0.18, and total time
as 65.76 minutes. Overall, CR overheads are higher than
those of redundant computing.

D. Simulation

Size of Spare Node Pool.This section analyzes the effect
of cloning on the average number of required spare nodes
to still complete a job. Assume each node has aMTTF
of 50 years. On average, everyMTTF/(r × n), a node
fails in the system. Further, assumer = 2 and T = 200
hours. The time to complete the job withα = 0.2, 0.4 and
0.6 can be calculated using Eq. 2. Table II indicates the
number of spare nodes needed for successful job completion
for different values ofn ranging from 18 (n = 16K , α =
0.2) to 465 nodes (n = 256K , α = 0.6). In this case, we
did not consider any repair for the system (MTTR =∞).

If we consider a Mean Time to Repair (MTTR) of 20
hours, the needed number of spare nodes are shown in the
last column of Table II. As we can see, the average number
of spare nodes is ranging from2 to 25, which is only a small
fraction of total number of nodes. Assuming that nodes are
repairable, the average number of required spare nodes turns
out to be independent of theα value. For example, consider
n = 64K. Whenα = 0.2, the job takes252.28 hours, and
we have⌊252.28/20⌋ = 12 repair intervals. Similarly, for
α = 0.4, there are⌊283.45/20⌋ = 14 repair intervals, and
for α = 0.6, there are⌊336.38/20⌋ = 16 repair intervals. If
we divide the number of required spare nodes by the number
of repair intervals, we obtain a bound on the number of
required spare nodes. This value is⌈74/12⌉, ⌈86/14⌉ and
⌈99/16⌉ for α = 0.2, 0.4 and0.6, respectively. In all three
cases, 7 spare nodes are required. Similar conditions holds
for rest, meaning that results are independent ofα.
Job Completion Time. Next, we study the behavior of
different methods at extreme scale. Plain job execution time
(t) is 128 hours and the communication to computation ratio
(α) is 0.2. We use Equations 2 and 4 to extrapolate the job

Table II: Avg. # Required Spare Nodes
MTTR = ∞ MTTR = 20h

Size (n) α = 0.2 α = 0.4 α = 0.6 α = 0.2, 0.4, 0.6
16000 18 21 24 2
32000 36 42 48 3
64000 74 86 99 7
128000 156 182 208 13
256000 349 407 465 25

completion time with cloning and CR, respectively. Under
redundancy we re-execute the job in case of failure and use
the following equation [22]:

Ttotal = (D +
1

Λ
)(eΛtred − 1)

whereD is time to re-launch the job, which is assumed to
be as 5 minutes. The number of nodes ranges from 1K to
200K. We choose two node MTTF values:θ = 5, 50 years.
Four solutions are studied: 1x with CR, 2x with cloning,
2x and 3x. We use Daly’s formula (Eq. 3) to compute the
optimal checkpoint interval for a constant checkpoint and
restart overhead of 10 minutes each. The cloning overhead
is half of the checkpoint overhead (5 minutes) since only a
single node pair involved in cloning requires high bandwidth
communication while CR imposes PFS overheads across all
nodes. (In fact, the difference may be differences may even
be more in favor of cloning at extreme scale.) Fig. 8(a) shows
that completion time for 1x with CR increases from 144.79
to 678.31 hours as the number of nodes increases from 1K to
200K. For 2x with cloning, the execution time first increases
slightly and then with sharper slope for large system sizes.
The steeper slope is due to the cloning overhead at each
failure to regain the redundancy degree. In contrast, 2x
without cloning is not useful at all considering the much
lower cost of 2x with cloning. For 3x, the system MTTF is
long enough that it can accommodate job execution (close
to 180 hours) without sphere failures, but at the cost of 50%
resources (computational and networking) as well as power.
This shows that cloning enables job execution at a scale
that would otherwise be impossible under dual redundancy.
Results forθ = 50 and t = 128 hours (omitted due to lack
of space) show that 2x with cloning outperforms 1x with CR
from about 25k nodes and still provides lower completion
times than 3x beyond 200k nodes at lower resource and
power costs, which is in the projected range of exascale.
Results forθ = 50 and t = 300 hours for up to 2 million
nodes (see Fig. 8(b)) show that dual redundancy with cloning
provides the shortest completion times from about 10k nodes
to 35k nodes and still may remain more competitive than 3x
up to 100k nodes with a completion time of about 600 hours
compared to 450 hours for 3x since the latter has 50% higher

0 50 100 150 200

20
0

40
0

60
0

80
0

10
00

C
om

pl
et

io
n

T
im

e
in

 h
ou

rs

Number of nodes(x1000)

1x + CR
2x + Cloning
2x
3x

(a) θ = 5 years, t = 128 hours

0 50 100 150 200

50
0

10
00

15
00

20
00

C
om

pl
et

io
n

T
im

e
in

 h
ou

rs

Number of nodes(x10000)

1x + CR
2x + Cloning
2x
3x

(b) θ = 50 years, t = 300 hours

Figure 8: Modeled job Completion Time

resource requirements than the former. It also shows that 2x
with cloning is always better than 2x without cloning.

VII. R ELATED WORK

rMPI [23] provides transparent redundant computing.
rMPI is implemented using the profiling layer of MPI. It
does not support certain complex MPI communications and
relies on the MPI library to implement collective operations.
MR-MPI [9] supports partial and full replication and uses
PMPI, the MPI performance tool interface, to intercept MPI
calls. Work in [8] determines the best configuration of a
combined approach including redundancy and CR. They pro-
pose a cost model to capture the effect of redundancy on the
execution time and checkpoint interval. Their result shows
the superiority of full redundancy over partial redundancy
in terms of execution time and specifically dual redundancy.
Our aim is to avoid using CR with redundant computing
due to its higher cost, power consumption, increase in the
number of components and its potentially high PFS failure
rate.

Work in [24] investigates the feasibility of process repli-
cation for exascale computing. A combination of modeling,
empirical and simulation experiments is presented in this
work. The authors show that replication outperforms tradi-
tional CR approaches over a wide range of the exascale
system design space. RedMPI [10] allows the execution
of MPI applications in a redundant fashion and provides
SDC detection/correction. Our work builds on RedMPI but
investigates cloning with redundancy.

A process-level proactive live migration approach is pre-
sented in [25]. It includes live migration support real-
ized within BLCR, combined with an integration within
LAM/MPI. Their experimental results show low overhead.

They also compare process-level live migration against oper-
ating system migration running on top of Xen virtualization.
[26] proposes a framework and architecture for proactive
fault tolerance in HPC, including health monitoring and
feedback control-based preventive actuation. This work in-
vestigates the challenges in monitoring, aggregating dataand
analysis. VMware Workstation [27] provides virtual machine
migration and cloning. In cloning, a snapshot of the VM
is created. The cloned VM is independent from the main
VM. Clones are useful when one must deploy many identical
virtual machines in a group. Cloning in VMs is mainly to
avoid the time-consuming installation of operating systems
and application software. Our work goes one step further
by cloning applications and their runtime state, which is
dependent on other nodes. This is a much harder problem.

VIII. C ONCLUSION

In this paper, we introduced DINO, an approach to
quickly recover from failures in redundant computing. DINO
contributes a novel node cloning service, which has been
integrated into the MPI runtime system. The approach con-
tributes a novel solution to consolidating divergent states
among replicas on-the-fly. This eliminates the need for
checkpointing and consequently the cost of maintaining
dedicated storage and filesystem to host job snapshots. Via
cloning, DINO allows an n-level redundant job to retaining
its redundancy level throughout job execution. Experimental
evaluation using multiple MPI benchmarks suggests low
overhead of DINO for failure recovery. It further demon-
strates that the resilience of a dual redundant system with
cloning nearly matches that of triple redundancy for exascale
system size ranges, yet at a third lower cost in terms of
hardware resources and power.

REFERENCES

[1] K. Bergmanet al., “Exascale computing study: Technology
challenges in achieving exascale systems,” 2008.

[2] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and
M. Snir, “Toward exascale resilience,”Int. J. High Perform.
Comput. Appl., vol. 23, no. 4, pp. 374–388, Nov 2009.

[3] J. Dongarra et al., “The international exascale software
project roadmap,”Int. J. High Perform. Comput. Appl.,
vol. 25, no. 1, pp. 3–60, Feb. 2011.

[4] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo,
“Software Aging Analysis of the Linux Operating System,” in
Proceedings of the 2010 IEEE 21st International Symposium
on Software Reliability Engineering, ser. ISSRE ’10. Wash-
ington, DC, USA: IEEE Computer Society, 2010, pp. 71–80.

[5] N. Palix, G. Thomas, S. Saha, C. Calvès,
J. Lawall, and G. Muller, “Faults in Linux: Ten
years later,” SIGARCH Comput. Archit. News, vol. 39,
no. 1, pp. 305–318, Mar. 2011. [Online]. Available:
http://doi.acm.org/10.1145/1961295.1950401

[6] I. Philp, “Software failures and the road to a petaflop
machine,” in HPCRI: 1st Workshop on High Performance
Computing Reliability Issues, in Proceedings of the 11th
International Symposium on High Performance Computer
Architecture (HPCA-11). IEEE Computer Society, 2005.

[7] K. Ferreira, J. Stearley, J. H. L. III, R. Oldfield, K. Pedretti,
R. Brightwell, R. Riesen, P. Bridges, and D. Arnold, “Evaluat-
ing the viability of process replication reliability for exascale
systems,” inSC, Nov 2011.

[8] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira,
and C. Engelmann, “Combining Partial Redundancy and
Checkpointing for HPC,” inProceedings of the 32nd In-
ternational Conference on Distributed Computing Systems
(ICDCS) 2012, Macau, China, Jun. 18-21 2012.

[9] C. Engelmann and S. B̈ohm, “Redundant execution of HPC
applications with MR-MPI,” in Proceedings of the 10th
IASTED International Conference on Parallel and Distributed
Computing and Networks (PDCN) 2011. Innsbruck, Austria:
ACTA Press, Calgary, AB, Canada, Feb. 15-17, 2011, pp. 31–
38.

[10] D. Fiala, F. Mueller, C. Engelmann, K. Ferreira, and
R. Brightwell, “Detection and Correction of Silent Data
Corruption for Large-Scale High-Performance Computing,” in
Proceedings of the 2012 IEEE conference on Supercomputing,
ser. SC ’12, 2012.

[11] A. Geist, “What is the monster in the closet?” Aug. 2011,
invited Talk at Workshop on Architectures I: Exascale and
Beyond: Gaps in Research, Gaps in our Thinking.

[12] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-
performance, portable implementation of the MPI message
passing interface standard,”Parallel Computing, vol. 22,
no. 6, pp. 789–828, Sep. 1996.

[13] J. Duell, “The design and implementation of Berkeley Labs
Linux Checkpoint/Restart,” Lawrence Berkeley National Lab-
oratory, Technical Report, 2003.

[14] M. Rieker and J. Ansel, “Transparent user-level checkpointing
for the native posix thread library for linux,” inIn Proc. of
PDPTA-06, 2006, pp. 492–498.

[15] S. Sankaran, J. M. Squyres, B. Barrett, and A. Lumsdaine,
“The LAM/MPI Checkpoint/Restart framework: System-
initiated checkpointing,” inin Proceedings, LACSI Sympo-
sium, Sante Fe, 2003, pp. 479–493.

[16] C. Wang, F. Mueller, C. Engelmann, and S. Scott, “Proactive
Process-Level Live Migration in HPC Environments,” inSC,
2008.

[17] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine,
“The design and implementation of checkpoint/restart pro-
cess fault tolerance for Open MPI,” inProceedings of the
21st IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE Computer Society, 03 2007.

[18] S. Böhm and C. Engelmann, “File i/o for mpi applications in
redundant execution scenarios,” inEuromicro International
Conference on Parallel, Distributed, and network-based Pro-
cessing, Feb. 2012.

[19] K. Ferreira, “Keeping Checkpointing Viable for Exascale
Systems,” Ph.D. dissertation, Universoty of New Mexico,
Albuquerque, 2012.

[20] J. T. Daly, “A higher order estimate of the optimum check-
point interval for restart dumps,”Future Gener. Comput. Syst.,
vol. 22, no. 3, pp. 303–312, 2006.

[21] “Hydrodynamics Challenge Problem, Lawrence Livermore
National Laboratory,” Tech. Rep. LLNL-TR-490254.

[22] A. Duda, “The effects of checkpointing on program execution
time,” Information Processing Letters, vol. 16, no. 5, pp. 221
– 229, 1983.

[23] R. Brightwell, K. Kurt Ferreira, and R. Riesen, “Transparent
redundant computing with MPI,” inProceedings of the 17th
European MPI users’ group meeting conference on Recent
advances in the message passing interface, ser. EuroMPI’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 208–218.

[24] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield, K. Pe-
dretti, R. Brightwell, R. Riesen, P. G. Bridges, and D. Arnold,
“Evaluating the viability of process replication reliability
for exascale systems,” inProceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’11. New York, NY, USA:
ACM, 2011, pp. 44:1–44:12.

[25] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott, “Proac-
tive process-level live migration in HPC environments,” in
Proceedings of the 2008 ACM/IEEE conference on Super-
computing, ser. SC ’08. Piscataway, NJ, USA: IEEE Press,
2008, pp. 43:1–43:12.

[26] C. Engelmann, G. R. Vallee, T. Naughton, and S. L. Scott,
“Proactive Fault Tolerance Using Preemptive Migration,” in
Proceedings of the 2009 17th Euromicro International Con-
ference on Parallel, Distributed and Network-based Process-
ing, ser. PDP ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 252–257.

[27] “Getting started with vmware workstation 10,” VMWare Inc,
Tech. Rep. EN-001199-00, 2013.

