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Abstract—In high-end computing, the collective
surface area, smaller fabrication sizes, and increasing
density of components have led to an increase in
the number of observed bit flips. Such flips result
in silent errors, i.e., a potentially incorrect result, if
mechanisms are not in place to detect them. These
phenomena are believed to occur more frequently
in DRAM, but logic gates, arithmetic units, and
other circuits are candidates for bit flips as well.
Previous work has focused on algorithmic techniques
for detecting and correcting bit flips in specific data
structures.
This work takes a novel approach to this prob-

lem. We focus on quantifying the impact of a sin-
gle bit flip on specific floating-point operations.
We analyze the error induced by flipping specific
bits in the IEEE floating-point representation in an
architecture-agnostic manner, i.e., without requiring
proprietary information such as bit flip rates and the
vendor-specific circuit designs.
We initially study dot products of vectors and

demonstrate that not all bit flips create a large error
and, more importantly, the relative magnitude of
the vectors and vector length can be exploited to
minimize the error caused by a bit flip. We also
construct an analytic model for the expected relative
error caused by a bit flip in the dot product and
compare this model against empirical data generated
by Monte Carlo sampling. We then extend our anal-
ysis to stationary iterative methods and prove that
these methods converge to the correct solution in the
presence of faulty arithmetic.
In general, this effort presents the first step to-

wards rigorously quantifying the impact of bit flips
on numerical methods. Our eventual goal is to utilize
these results to provide insight into the vulnerability
of leadership-class computing systems to silent faults
and, ultimately, to provide a theoretical basis for
future silent data corruption research.

I. Introduction
Supercomputers have become an essential instrument

to push the limits of complex simulations and large-
scale data analysis for sciences, industry, and gov-
ernment. High-Performance Computing (HPC) systems
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have reached multi-petascale capabilities with exascale
on the horizon with ever more compute cores. But
recent work shows that faults are becoming the norm
rather than the exception when running applications
at such large scales [1, 2]. Existing fault tolerance
schemes (checkpoint/restart [3, 4, 5, 6]) are reaching
their scalability limitations [7, 8, 9, 10] while others
(e.g., redundant execution [11]), while scalable, may
only become feasible at extreme scale and only via
capacity computing (increasing job throughput) rather
than capability computing (exploiting all resources for
an application) [12].

More significant for this work, hardware protection for
memory (ECC) detects and corrects the vast majority
of bit flips due to radiation from space and decreasing
fabrication sizes of semiconductors [1]. Recent work has
shown that multi-bit upsets are rare events and chipkill
functionality is extremely effective in reducing node
failure rates due to DRAM errors [13], while processing
cores remain largely unprotected [14, 15]. Thus, novel
approaches for scalable resilience, not only in hardware
but also in software, are required when component fail-
ures and soft errors become the norm rather than the
exception for HPC [16, 17, 18].
Contributions: This work calls into question an

assumption that the field of computational science has
taken for granted for quite some time, namely the
assumption that computer arithmetic is reliable. As
systems continue to grow in size and density, and as
fabrication sizes continue to shrink, silent faults in the
hardware may present an increasing uncertainty never
before anticipated by users. The goal of this work is
to understand the implications of faulty arithmetic and
to do so in manner that is theoretically sound and
experimentally reproducible. We seek to quantify the
impact of a single bit flip on specific numerical methods.
From this analysis, we take a first step in characterizing
numerical methods by their resilience to silent data
corruption (SDC) caused by bit flips.

Imagine a scenario where a user runs a numerical code
that converges. The user believes the solution is correct
because no errors were observed. Unknown to the user,
a single faulty arithmetic operation slightly perturbed
their numerical method. While the method converged,



it converged to the wrong solution. It is precisely this
scenario that we are attempting to address. More specif-
ically, given some numerical method and assuming that
a single bit flip silently impacts the arithmetic of this
method, we seek to assess the implications on the overall
solution.

This work approaches the problem of SDC using both
analytic modeling and empirical sampling via Monte
Carlo. We present findings demonstrating that the im-
pact of SDC in arithmetic can be rigorously analyzed.
We also show that it may be possible to exploit the
binary representation of IEEE 754 double precision
numbers to minimize the impact of SDC. We further
show that convergence for certain algorithms can be
guaranteed in the presence of an SDC. Only the number
of iterations to convergence is affected by the bit position
flipped.

This document is structured into three major themes:
1) Fault characterization; 2) modeling and sampling the
impact of a single bit flip in dot products; 3) analyzing
the impact of a silent bit flip on the Jacobi iterative
method, which leads to a generalization that all station-
ary iterative methods are resilient to a silent bit flip in
arithmetic.

II. Related Work
A number of researchers have approached the problem

of SDC in numerical algorithms in various ways; most
research takes the approach of treating an algorithm as a
black-box and observes the behavior of these codes when
run with soft errors injected. Recently, [19, 20] analyzed
the behavior of various Krylov methods and observed
the variance in iteration count based on the data struc-
ture that experiences the bit flip. Shantharam et al.[21]
analyzed how bit flips in a sparse matrix vector multiply
(SpMV) impact the L2 norm and observe the error as
CG is run. Bronevetsky et al. [22, 23] analyzed several
iterative methods documenting the impact of randomly
injected bit flips into specific data structures in the
algorithms and evaluated several detection/correction
schemes in terms of overhead and accuracy. Malkowski
et al. [24] analyzed SDC from the perspective of the L1
and L2 caches and proposed an eviction and prefetching
scheme that minimizes the amount of time data sits in
the unprotected cache. Hoemmen and Heroux proposed
a fault tolerant GMRES algorithm based on the prin-
ciples of flexible preconditioners and demonstrated that
their method is resilient to soft errors [25]. Exemplify-
ing the concept of black-box analysis of bit flips, [26]
presents BIFIT for characterizing applications based on
their vulnerability to bit flips.

Algorithm-based fault tolerance (ABFT) provides an
approach to detect (and optionally correct) faults, which
comes at the cost of increased memory consumption and

reduced performance [27, 28]. The ABFT work by Huang
et al. [27] was proven by Anfinson et al. [29] to work for
several matrix operations, and the checksum relationship
in the input checksum matrices is preserved at the end of
the computation. Consequently, by verifying this check-
sum relationship in the final computation results, errors
can be detected at the end of the computation. Costs
in terms of extra memory and computation required
for ABFT may be amortized for dense linear algebra,
and such overheads have been analyzed by many (e.g.,
[30, 31, 32]). The more subtle problem is that algorithms
have to be manually redesigned for ABFT support tak-
ing numerical properties (e.g., invariants) into account.
Recent work has looked at extending ABFT to addi-
tional matrix factorization algorithms [28] and as an
alternative to traditional checkpoint/restart techniques
for tolerating fail-stop failures [33, 34, 35].

III. Fault Characterization
Let us first establish a clear definition of terminol-

ogy for bit flips and faults in general. According to
Hoemmen’s abbreviated taxonomy [25], our focus is best
described as one on transient silent faults. We extend this
taxonomy by introducing a classification called silent
and present the following definitions:

(1) Silent faults are a subset of soft faults, mean-
ing they do not cause immediate program interruption
and are not detected. These silent faults may occur
in hardware units that do not have any safeguards in
place to detect bit flips, such as the Arithmetic Logic
Unit or registers (and occasionally L1 caches, such as in
BlueGene/L). We do not consider not a number (NaN)
or infinity (Inf) to be silent faults because 1) NaN and
Inf may be trapped using floating point exceptions, and,
more importantly, 2) for the methods presented in this
paper NaN or Inf will propagate to the solution where
they are a clear indicator that something is incorrect.

(2) Transient silent faults are faults that do not
persist in the data, i.e., they corrupt data but do persist
in the output of the operation that used the data. For
instance, a flip in an adder can be modeled as a corrupt
input, but the corrupted input is never saved. Hence,
the corruption only manifests itself in the output of the
adder, which may be saved or used in another operation.

A. Single Bit Flips vs. Multiple Bit Flips
Bit flips are commonly thought to only occur ex-

tremely rarely during arithmetic operations inside of
arithmetic and logic units (ALUs) and floating-point
units (FPUs). This belief is corroborated by years of
experience with ALUs/FPUs units on systems providing
solutions that match analytic solutions. However, recent
work indicates there may be higher bit flip rates than
previously thought, not just in memory but also in



ALUs/FPUs [15, 14]. In this study, we analyze a single
bit flip on the input to some numerical methods, but
this single flip on the input may be viewed as multiple
flips on the output. Consider the multiplication of two
integers, 9 × 3 = 27, and assume a bit is flipped, e.g.,
9→ 13. This results in the following output:

9× 3 = 27 = 1001× 0011 = 011011,
13× 3 = 39 = 1101× 0011 = 100111.

Note how a single flip on the input results in multiple
incorrect bits in the output. It is for this reason that it
may not be appropriate (or even necessary) to model an
excessive number of flips on the input, as the resulting
number of bits differing in the output, particularly with
floating point numbers, can be drastic.

IV. Background: IEEE 754 Specification
The IEEE 754 specification describes various floating

point standards, from which we chose to analyze the 64-
bit double precision specification called Binary64 that
is widely used in scientific computing today. Consider a
number a expressed in scientific notation as

a = m× db, (1)
where m is the mantissa, db is the magnitude, and b is
the exponent. We begin with the analytic model for the
Binary64 format

v = (−1)sign(1 +
51∑
i=0

bi2i−52 × 2e−1023), (2)

where bi is the i-th bit in the mantissa, sign is the sign
bit, and e− 1023 is the exponent, stored using a bias of
1023, which removes the need for an explicit sign bit for
representing negative exponents. The Binary64 format
is depicted graphically in Figure 1, where the 0-th bit
is the least significant bit of the mantissa and the 51-th
bit is the most significant bit of the mantissa. Bits 52
and 62 represent the least and most significant bits of
the exponent. In summary, this specification describes a
format that utilizes 52 bits to represent the mantissa, 11
bits to represent the exponent, and one bit to represent
the sign. The exponent is stored using a bias of 1023.
This bias may be exploited to enhance resiliency as
demonstrated in Section V.
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Figure 1. Representation of the Binary64 IEEE format.

V. Case Study: Vector Dot Products
To begin our investigation, we chose to assess the

susceptibility of the dot product, or inner product, of
two N -dimensional vectors to a silent bit flip in arith-
metic. We make this choice since many linear algebra

operations can be decomposed into dot products and
many numerical methods are built on the concept of
evaluating inner products, typically in the form matrix-
vector products.

A. Analytic Model
Let us present an analytic model for a bit flip in a

double precision floating point number. From this model,
we then compose a dot product. Consider a number
a written in normalized scientific notation following
Eq. (1). Let us define a notation where
• ma is the mantissa of a,
• da is the magnitude of a,

and a = dama. Assuming a is represented using Eq. (2),
we may express a perturbed floating point number cre-
ated by a single bit flip as

â =


a± 2j−52da flip in the mantissa bits, (3a)
a2±2j flip in the exponent bits,(3b)
−a flip in the sign. (3c)

Given two N -dimensional vectors u and v, the dot
product is defined as

u · v = uTv =
N∑
i=1

ci, where ci = uivi. (4)

The absolute error between the correct and perturbed
dot product, assuming a perturbation in u, is

errorabs =

∣∣∣∣∣∣∣∣∣∣

correct︷ ︸︸ ︷
N∑
i=1

ci−


perturbed︷ ︸︸ ︷

N∑
i=1

ci − ck + ûkvk


∣∣∣∣∣∣∣∣∣∣
,

= |ck − ûkvk| ,
where ck is a perturbed product from Eq. (4) and ûk
follows either Eq. (3a), Eq. (3b), or Eq. (3c).

The relative error resulting from a single bit flip in u
or v may be expressed as

error = errorabs∣∣∣∣ N∑
i=1

ci

∣∣∣∣ = |ck − ûkvk|∣∣∣∣ N∑
i=1

ci

∣∣∣∣ . (5)

Assuming that all elements in both vectors have similar
relative magnitudes, then we get

duk ≈ dvk for all k = 1, . . . , N. (6)
This assumption is encouraged by numerical analysts
(but may not always be feasible). This assumption allows
us to construct a theoretically sound model where we
rigorously model the effects of a bit flip for vectors of
similar magnitude. From this, we may correctly and
accurately express a bound on the error produced by
a bit flip. place.

d = max{dui × dvi}, for i = 1, . . . , N,



and the product of two elements may be approximated
as

ci = uivi ≤ d. (7)

Eq. (4) may then be approximated by
N∑
i=1

ci ≈ d×N. (8)

Note that Eq. (8) is not the 1-norm, ||x||1 =
N∑
i=1
|xi|.

We intentionally avoid the use of norms in the analytic
model for two reasons: 1) the norms may be assumed to
be real numbers, when we actually have approximations
based on the IEEE standard, and 2) we wish to create a
model that is based on magnitudes and mantissas, such
that we may understand the impact of a bit flip in each
location. For these reasons, we avoid the use of norms in
our dot product analysis because they are the incorrect
tool with respect to the our modeling effort.

B. Relative Error by Bit Location
Substituting Eq. (7) and Eq. (8) into Eq. (5), we

obtain a closed form for the relative error given a bit
flip in the exponent (errore), sign (errors), and mantissa
(errorm) under the assumption from Eq. (6).

Assume a bit flip happens to an element of u, and the
flip affects a bit in the mantissa:

errorm ≈
mvk2j−52

N
, for j = 0, . . . , 51. (9)

We may bound mvk by recognizing that the mantissa
bits, independent of the magnitude, may range from 2−51

to 2−1. Selecting the maximum, we know thatma ≤ 2−1.
Hence, Eq. (9) may be further simplified to

errorm ≈
2j−53

N
, for j = 0, . . . , 51. (10)

Assuming a bit flip happens to an exponent bit of u,
we have

errore ≈

∣∣∣1− 2±2j
∣∣∣

|N |
, for j = 0, . . . , 10. (11)

Eq. (11) may be further decomposed based on whether
the flip is a 1 to 0, or 0 to 1. Flipping a 0 to 1 in the
exponent implies multiplying the number by some power
of two. This magnifies the error caused by the bit flip.
Conversely, a 1 to 0 implies dividing the number by a
power of two, which minimizes the error caused by a bit
flip.

errore ≈


1− 2−2j

N
,for j = 0, . . . , 10; bitj+52 = 1(12a)

22j − 1
N

, for j = 0, . . . , 10; bitj+52 = 0(12b)

Let us next assume a flip impacts the sign bit of an
element in the vector u. By substituting Eq. (3c) into

Eq. (5), we arrive at the relative error for a flip in the
sign bit

errors ≈
2
N
. (13)

To summarize, the relative error can be generalized
based on the location of the bit leading to three fun-
damental forms for the relative error. We summarize
our findings thus far in Table I. Our next goal is to
express the expected relative error, which will provide a
theoretical basis that is later used to assess the quality
of a Monte Carlo approximation of the expected error.

Table I
Relative error of a single bit flip in dot product of two
N-dimensional vectors with similar relative magnitudes.

Bit Location Relative Error # Bits Eq.

Mantissa
2j−53

N
, for j = 0, . . . , 51 52 (10)

Exponent1→0
1− 2−2j

N
, for j = 0, . . . , 10;

and bitj+52 = 1
11 (12a)

Exponent0→1
22j − 1
N

, for j = 0, . . . , 10;
and bitj+52 = 0

11 (12b)

Sign
2
N

1 (13)

C. Expected Relative Error per Random Flip

Next, we assume a single bit randomly flips while
performing the dot product of two vectors. To this
end, we introduce a discrete random variable ω that
represents the error induced given a single bit flip. We
may now construct the expected value E of the relative
error given a bit flip in a specific location using Table I.

The expected relative error given a bit flip in the
mantissa is

E[ω|bit flip in the mantissa] = 1
52

51∑
j=0

2j−53

N
,

and for the sign bit we have

E[ω|bit flip in the sign] = 2
N
.

The expected value of the relative error given a flip in
the exponent is slightly more complicated, as we must
account for whether the flip was a 1→ 0 or 0→ 1.

E[ω|bit flip in the exponent] = 1
11

10∑
j=0

E[ω|bitj ], (14)

E[ω|bitj ] =


1− 2−2j

N
, if bitj+52 = 1;

22j − 1
N

, if bitj+52 = 0.



D. Monte Carlo Sampling

We next develop a better understanding of how vector
magnitudes and size impact the expected relative error
given that the expected value derivations are based on
the assumption that the two vectors have approximately
the same magnitudes. To conduct Monte Carlo sampling,
we must first determine a mechanism for tallying success,
and we must define what success or failure mean.
• Vector Creation
1) Generated randomly using C stdlib rand().
2) For each vector, we fix each element’s magnitude
to the bit pattern 2−50 to 250 (101 bit patterns).
This corresponds to the base ten numbers in the
range 8.8 × 10−16 to 1.1 × 10+15. This range was
chosen because 2−50 is roughly machine precision,
which is 2−53 for the smallest number. The numbers
in this range are utilizing the highest precision
that Binary64 offers. The further distant from 20

a number is, the lower its precision becomes.
• Sample definition and Error Calculation
1) A random sample is defined by generating two ran-
dom N length vectors and computing the relative
error considering all possible 2× 64×N bit flips.

2) A tally is defined by failure, which we define to be
any relative error that is greater than 1× 10−4.

3) An empirical estimate of the expected relative error
is computed by dividing the number of failures
by the number of bits considered times the vector
length times 2 times the number of random samples
(M) taken for a given magnitude combination, i.e.,
failures/(2× 64×N ×M).

• Visualization
1) To visualize the expected relative error, we con-
struct tallies for each magnitude combination, i.e.,
101× 101 unique combinations, and each combina-
tion is sampled M times.

2) We summarize this information in a surface plot,
where the x- and y-axes denote the log2 of the
relative magnitude of the vector u and v, respec-
tively. The height of the surface plot indicates the
probability of seeing a relative error larger than
1× 10−4.

Figure 2 presents four surface plots as described in the
Visualization bullet. To interpret a graph, the x-axis
indicates the magnitude that all elements of the vector
u were forced to have while the mantissa was randomly
generated. Likewise, the y-axis indicates the magnitude
that all elements of the vector v were forced to have.
Each x-y intersection represents 1,000,000 random vec-
tor samples, where the dot product was computed and
failures tallied. The height of the surface at an [x,y]
location indicates the probability of observing an error
larger than 1 × 10−4 given a single bit flip. The height

of all plots is fixed to the range [0,.4] to facilitate the
comparison between surface plots. From these surfaces,
one may immediately recognized the unusual structure of
these graphs: When both vectors have magnitudes larger
than 20, the probability of failure is noticeably higher;
yet, when both vectors have magnitudes less than 21, the
probability of failure is approaching zero as the vector
size increases.
E. Per Bit Analysis of Surface Plots

To better understand their structure and to illustrate
why these surface plots look the way they do, we take two
slices of the surface and look at the per-bit probability
of a failure. The slices chosen feature vectors with the
same relative magnitudes and inverse relative magni-
tudes. Intuitively, these figures slice from the back-most
corner of the plot to the front for similar magnitudes,
and they slice from the left-most corner to right-most
corner for inverse magnitudes. Comparing Figure 3(a) to
Figure 3(b) reveals that bits immediately left of the 20

axis produce significantly fewer failures than bits on the
right side of the 20 center axis. These variations about
the magnitude 20 can be explained in two ways: First,
by examining the bias used to store the exponent, and
second, by looking at the analytic model we constructed
for a flip in the exponent. Reconsider Eq. (2) where the

Table II
Binary patterns in the exponent.

Exponent Bits
Base10 b62 . . . b52 Bias Relation Effective Exp.

5 10000000001 21025−1023 22

2 10000000000 21024−1023 21

1 01111111111 21023−1023 20

.2 01111111100 21020−1023 2−3

.5 01111111110 21022−1023 2−1

bias of 1023 is used to store the exponents. For example,
to represent 20, 1023 is stored because 20 = 21023−1023.
A brief analysis of the binary pattern of the stored
exponent is shown in Table II. The emphasis here is
on the number of ones versus zeros, which is drastically
different when the stored exponent is less than 1024.
This corresponds to magnitudes slightly less than 21.
We also previously presented an analytic model that

rigorously explains this (see Table I): When the exponent
flips from 1→ 0, we have lim

N→∞
1−2−2j

N = 0. When a bit
in the exponent flips 0→ 1, the error is magnified. The
limit still converges to zero, but it requires a much larger
N .

VI. Comparison of the Analytic Model and
Monte Carlo Sampling

We now compare the error observed through Monte
Carlo samples with the expected relative errors com-
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(b) Vector size N = 10000.
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Figure 2. Probability of observing an error larger than 1× 10−4, given four different vector sizes.

puted in Section V-A.
Figure 4 shows the shape of the analytic expected

relative error given a flip in the exponent, but excluding
the exponent’s most significant bit. The reason for this
exclusion is that, regardless of scaling, a flip in the most
significant exponent bit can produce an extremely large
error. From Section V-E, we know that, given vectors
with relative magnitudes greater than 20, the error will
be large, even up to 1 million length vectors.

In Figure 5, we compare the error observed while
performing Monte Carlo sampling with the expected
error from the model constructed in Section V-A. We
sampled up to M = 1 million random vectors per data
point, which implies a Monte Carlo error of errorMC =
1/
√
M ≈ 0.001. These results confirm the validity of

our model. Hence, the model presented in Eq. (14) may

be used to determine a sufficient vector size that will
mitigate the impact of a bit flip when performing dot
products, assuming similar relative magnitudes.

VII. Stationary Iterative Methods

A. The Jacobi Method

The Jacobi method (see Algorithm 1) is a stationary
iterative method that may be used to solve systems of
linear equations. While this method is rarely used as
the sole means for solving a linear system of equations
in modern codes, it is still used as a preconditioner and,
more recently, as a means to exploit massive parallelism
on accelerators. In this section, we demonstrate that
the Jacobi method is resilient to single bit flips silently
occurring within its arithmetic.



(a) Vector size N = 10000, same relative magnitudes. (b) Vector size N = 1000000, same relative magnitudes.

(c) Vector size N = 10000, inverse relative magnitudes. (d) Vector size N = 1000000, inverse relative magnitudes.

Figure 3. Probability of observing an error larger than 1 × 10−4, by bit position, with bits 39 to 0 never yielding an error larger than
1× 10−4. The left column contains slices from Figure 2(b), and the right column contains slices from Figure 2(d).

The Jacobi method is derived by splitting the N ×N
matrix A into its diagonal and off-diagonal components

A = D−R, (15)
where D is the diagonal of A and R contains the off-
diagonal elements of A. Suppose we seek the solution to
the linear system

Ax = b. (16)

By substituting the split version of A from Eq. (15) into
Eq. (16) and solving for x, we get

x = D−1Rx + D−1b.
We now obtain the Jacobi method by defining the
iterates

x(m+1) = D−1Rx(m) + D−1b,
= Gx(m) + f .

In this form, G = D−1R is known as the iteration
matrix, and convergence analysis is based solely on the
spectral properties of G.

In the context of a bit flipping silently, we have some
sequence of steps where the m-th iterate, x(m), is com-
puted correctly, but a silent arithmetic error perturbs
the m+ 1-th iterate. More precisely, we have

x(1) = Gx(0) + f ,
...

x(m) = Gx(m−1) + f ,

x̂(m+1) =

{
Ĝx(m) + f
Gx(m) + f̂

...
x̂(z) = Gx̂(z−1) + f

where some arithmetic operation on the right-hand side
produces an incorrect result. We assume that the bit flip
is not persistent, i.e., the flip may perturb an element
of G leading to Ĝ, but for all subsequent calculations
G is correct, and likewise for f . This assumption is



Figure 4. Expected relative error for a flip in the exponent,
excluding the most significant exponent bit, assuming vectors have
similar relative magnitudes, and various vector lengths.
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Figure 5. Comparison of observed error caused by a flip in the
exponent, excluding the most significant bit, for sampled vector
sizes having similar relative magnitudes.

valid because we assume that the bit flip impacts a
single primitive arithmetic operation, i.e., addition, sub-
traction, multiplication, and division. We assume that
since G, f , and x(m) are not being written to, any
perturbation that impacts these data structures will not
corrupt the structures themselves — instead, the flip
corrupts the output of the operation (x(m+1)) that used
the perturbed data. This implies that once the bit flip
has occurred, the error from the flip may or may not

Algorithm 1: Pseudocode for the Jacobi Method.
// Use the jacobi method to solve the
// linear system Ax = b
Input: N ×N matrix A
Input: N × 1 vector b
Input: N × 1 vector x(0) initial guess or zero
// Loop until convergence

1 for m = 0 to Convergence do
2 for i = 0 to N do

3 x
(m+1)
i := 1

aii

bi − N∑
j=1
j 6=i

aijx
(m)
j

;

4 end
// Compare residual against stopping

criteria

5 if
∣∣∣∣b−Ax(m+1)

∣∣∣∣
2

||b||2
< Stopping Criteria then

// The Jacobi method has converged
6 break;
7 end

manifest itself immediately. It is precisely this silent
error that we seek to understand and this scenario that
we wish to analyze in terms of its impact on convergence
of the Jacobi method.

B. Proof of Jacobi Convergence
Suppose we are solving the system Ax = b. The

Jacobi method is expressed in the general form

x(k+1) = Gx(k) + f , (17)

where G = D−1R is the iteration matrix and f = D−1b,
D contains the diagonal entries and R the off-diagonal
entries of A. We may also express the solution x implic-
itly as

x = Gx + f .

To prove that the Jacobi method will converge if a bit
flip impacts an arithmetic operation, we introduce the
following lemma. The proof can be found in a number
of texts that we point the reader to [36, pp 163].

Lemma 1. For an arbitrary square matrix Q, the
lim
k→∞

Qk = 0 ⇐⇒ ρ(Q) < 1, where ρ(Q) is the spectral
radius of Q (the absolute largest eigenvalue).

We also must be able to express the error of each
iterate with the solution.

Lemma 2. The error between an iterate x(k) and the
exact solution x may be expressed recursively as

e(k) = Ge(k−1).



Proof: The error between an iterate and the exact
solution is e(k) = x − x(k), substituting x = Gx + f
and x(k) = Gx(k−1) + f in this form we obtain

e(k) = G[x− x(k−1)]
= Ge(k−1) �

Theorem 1. The sequence of vectors x(m) from Eq. (17)
converges to the solution of Ax = b given a silent bit flip
in arithmetic, if ρ(G) < 1.

Proof: Let a silent bit flip in arithmetic happen on
the k-th iteration of Eq. (17). We then have some
perturbed iterate x̂(k) = x(k) + ξ, where ξ is an N -
dimensional vector representing the error caused by a bit
flip. We now must propagate this error ξ from the k-th
iteration to some iteration z, and determine if the error
increases or decrease. First, we express the error that is
introduced at each iteration due to a bit flip. Note that
the error introduced by the bit flip will be propagated
using recursion to latter iterations, and so we must not
incorrectly add any additional new error at subsequent
iterations.

e(z) =


x− x(z) = Ge(z−1) for z 6= k, z > 0;(18a)
x− x̂(z) = Ge(z−1) + ξkfor z = k; (18b)
e(0) for z = 0. (18c)

Recursively applying Eq. (18) from the z-th iteration to
the first iteration, we obtain

e(z) = Gze(0) + Gz−k+1ξk.

By Lemma 1, as z − k + 1 approaches infinity, both
terms will become zero. Therefore, the Jacobi method
will converge to the true solution x in spite of a faulty
arithmetic operation. �

C. Error Analysis
The preceding proof shows that the Jacobi method

will always converge given some numeric perturbation,
but when dealing with computer arithmetic the pertur-
bation may not be numeric. In general, IEEE floating
point numbers can either be numeric, or they may be
infinity (Inf) or not a number (NaN). These special cases
are represented by having all ones in the exponent, and
if the mantissa is zero, then it is by definition a Inf, but
if the mantissa is non-zero, it is NaN.

This could pose a problem, but NaN and Inf are
not silent, both special cases have the property that
any operation on one of them produces its identity, e.g.,
NaN + 1 = NaN . This means that once a NaN or Inf
begins propagating through the solution, it will remain
in the solution. Hence, convergence will be impossible.
Because of these special cases, we only need to enhance
the Jacobi algorithm (Algorithm 1) to be aware of
these special cases so that the code will not remain
stuck in an infinite loop. We can do this by adding a

simple test on Line 4 and appending the condition that
the residual is not a NaN or Inf. This will cause the
Jacobi method to halt, or, alternatively, its iteration
count may be reset and x(m+1) set to x(0), effectively
restarting the algorithm from the beginning. The choice
to halt the algorithm or restart is beyond the scope of
this work. Instead, this work specifically focuses on the
problem that a method may give no indication of a silent
fault and present an incorrect result, which we might
(falsely) believe to be correct. Our aim is to ensure that
the method either eventually converges to the correct
solution, or in the worst case, present a clear sign that
an error occurred (indicated by NaN or Inf).

D. Magnitude Scaling
We now explore the option of using our findings

regarding vector scaling to demonstrate that, if possible,
vector scaling can enable the Jacobi method to converge
to the correct solution in the presence of a bit flip, at
a rate similar to the algorithm executing without the
bit flip. While Figure 5 shows that scaling can minimize
error, the requirement that all values have similar magni-
tudes is hard to satisfy, particularly in iterative methods,
where the vector x changes every iteration. We leave it to
future work to develop a robust scaling technique, but we
will present results demonstrating that, if such a method
was found, the findings in this work allow Jacobi to not
only converge to the correct solution in the presence of
a bit flip, but also to converge at a rate close to the bit
flip-free rate.

We start with an important fact: Given some scalar
α, the scaled linear system (αA)x = αb will produce
the same solution x as if no scaling took place. In
Algorithm 2, we present a modified Jacobi method that
implements scaling. Of particular interest is Line 1,
where we introduce a scaling function that determines
the correct scaling factor. We experimented with two
choices for this function: 1) computing the average mag-
nitude from all elements in A and b, and 2) taking the
maximum magnitude from all elements in A and b. Note
that we can determine the average and maximum by
inspecting the bias stored in the exponent bits, and we
want this bit pattern to be 1023 or slightly smaller. We
now demonstrate the calculation of α:

1) Maximum scaling: select the largest bias, which
is the largest magnitude, bmax, and then the cor-
rection should be

α = 2(1023−bmax).

2) Average scaling: compute the average of all biases
in A and b, bavg, and then the correction should
be

α = 2(1023−bavg).



Algorithm 2: Pseudocode for a flip tolerant, scaled
Jacobi Method.
// Use the jacobi method to solve the
// linear system Ax = b
Input: N ×N matrix A
Input: N × 1 vector b
Input: N × 1 vector x(0) initial guess or zero
// Compute scaling factor

1 α := compute_scaling_factor(A,b);
// Scale A and b

2 A := αA;
3 b := αb;

// Loop until convergence
4 for m = 0 to Convergence do
5 for i = 0 to N do

6 x
(m+1)
i := 1

aii

bi − N∑
j=1
j 6=i

aijx
(m)
j

;

7 end

8 r :=
∣∣∣∣b−Ax(m+1)

∣∣∣∣
2

||b||2
;

// Check for Inf or NaN
9 if r is NaN or Inf then

// Restart or Halt with error message
10 break;
11

// Compare against stopping criteria
12 if r < Stopping Criteria then

// The Jacobi method has converged
13 break;
14
15 end

We now present the results of injecting a bit flip into
the Jacobi algorithm and show how scaling can impact
the number of iterations for Jacobi to converge to the
correct solution. We first generate a random system
of equations that satisfies the convergence criteria for
Jacobi (Diagonal Dominance). Solving this system using
the Jacobi method, we find that Jacobi converges after
96 iterations. We then solve the same system and flip
the 61-st bit (an exponent bit) and observe the number
of iterations required to converge. Figure 6 shows the
result of Jacobi solving this random system 96 times,
where we inject the bit flip on different iterations up
to iteration 96, which is when Jacobi converges given
no bit flips. The x-axis indicates the iteration where
the bit was flipped, and the y-axis plots the iteration
count. We repeat this experiment again using average
scaling and max scaling. The results are depicted in
Figures 7 and 8, respectively. One can immediately
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Figure 6. Jacobi without scaling, bit flip in the exponent.
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tell that scaling can drastically impact the number of
iterations. It is also evident that the choice of the scaling
algorithm is critical. If the bit flip happens to an item
that has near maximum magnitude, then max scaling
works well, but it is not guaranteed to work. In the case
that the flip occurs in a value larger than the average,
then average scaling does not offer a benefit. We feel that
exploiting scaling deserves more investigation but leave
this to future work as it is likely that a correct scaling
strategy depends on the problem or class of problems
being solved.

Also of interest is that, in the case of max scaling, the
bit flip accelerated convergence when flipped on the 30th
iteration. We believe this occurrence can be explained
— and possibly exploited — by merging our scaling



requirement with the theory backing the Successive Over
Relaxation (SOR) method, which we leave as future
work.

E. Reliability and Complexity Analysis
It should be noted that on Line 1 of Algorithm 2, we

violate our assumption that A and b are read-only inside
of the algorithm. This means that if a bit flip impacted
the scaling or scaling factor calculation, then this bit
flip would not be transient, and we could potentially
converge to the wrong solution, since we would solve the
wrong linear system Â or b̂. Because of this, we must
expend additional resources to ensure that when A and
b are written to, the values stored in these structures
is correct. To guarantee that the values are correct,
we need to redundantly compute lines 1–3. In general,
the computational cost of computing α requires at least
Ω(N2 +N), since all values in the N×N matrix A must
be inspected and all N values in b must be inspected.
Likewise, the cost of actually scaling A requires Θ(N2)
computation, and scaling b requires Θ(N) computation.
If we assume that Jacobi is solved using the point-wise
algorithm presented in Algorithms 1 and 2, i.e., the
iteration matrix G is not explicitly formed, then the
Jacobi method requires Θ(N2) calculations per iteration.
To ensure that both A and b are written correctly,

assume we compute each twice, and that we perform the
arithmetic in the same order, e.g., the results should be
identical. In the event of a discrepancy we compute an
additional third tie breaker to resolve the correct value.
This task could also be accomplished by using recovery
blocks (containment domains) [37, 38]. Computing the
scaling factor will take Θ(N2 + N), and applying the
scaling will take Θ(N2) for A and Θ(N) for b.
The overhead for computing the scaling factor and

applying the scaling is easily amortized. Recognizing
that computing α with no redundancy is asymptoti-
cally equivalent to computing an iteration of Jacobi,
then computing the scaling factor k redundant times
is equivalent to adding k iterations. Similarly, scaling
both A and b is equivalent to running one iteration,
so computing these structures k redundant times is
equivalent to adding k additional iterations. In summary,
the scaling algorithm using redundant computation is
equivalent to adding 2k iterations, where k is the degree
of redundancy. Clearly, in the case of triple redundancy,
6 additional iterations are minute in comparison to the
total number of iterations.

F. Conclusion and Extension to other Iterative Solvers
Theorem 1 was constructed intentionally to be generic.

It proves that any iterative method that can be written
as Eq. (17) will converge given a single bit flip in
arithmetic. For example, if we split the matrix into its

strict upper and lower triangles, A = −L + D−U, and
let G = (D− L)−1U and f = (D− L)−1b, then we
obtain the Gauss-Seidel method, which will also converge
given a bit flip in arithmetic. The general form presented
in Eq. (17) defines a class of methods called stationary
iterative methods. These types of methods are often
used in various ways, for instance as preconditioners for
other iterative methods or as smoothers in Multigrid
methods. We did not present sampling results for the
Jacobi and other stationary iterative methods because
we have proven analytically that these methods will
always converge.

VIII. Conclusion and Future Work
This work contributes an analysis of how a silent bit

flip in floating point arithmetic impacts the elemen-
tary linear algebra constructs of dot products, present
a rigorous analytic model and verify it using Monte
Carlo sampling. A unique property of the IEEE-754
floating point specification is uncovered, namely that
the bias used to store the exponent may be exploited
to minimize the impact of a bit flip in the exponent.
The result is subsequently extended from dot products
to the composition of a basic iterative method consisting
of a mat-vec operation.

In composing the Jacobi method, a rigorous proof was
presented showing that stationary iterative methods will
converge in spite of a single bit flip in arithmetic. It
was further shown how to harden these methods such
that they can tolerate bit flips producing non-numeric
entries. Furthermore, a sample algorithm was developed
that combines the results of this work to construct a
version of Jacobi tolerating a silent bit flip in arithmetic,
and, in some circumstances, converging to the correct
solution in roughly the same number of iterations than
without bit flips.

References
[1] B. Schroeder, E. Pinheiro, and W.-D. Weber, “Dram

errors in the wild: a large-scale field study,” in SIG-
METRICS Conference on Measurement and Modeling
ofComputer Systems, 2009, pp. 193–204.

[2] E. Pinheiro, W.-D. Weber, and L. A. Barroso, “Failure
trends in a large disk drive population,” in USENIX
Conference on File and Storage Technologies, 2007.

[3] J. Duell, “The design and implementation of berkeley
lab’s linux checkpoint/restart,” Lawrence Berkeley Na-
tional Laboratory, TR, 2000.

[4] C. Wang, F. Mueller, C. Engelmann, and S. Scott, “A
job pause service under LAM/MPI+BLCR for trans-
parent fault tolerance,” in International Parallel and
Distributed Processing Symposium, Apr. 2007.

[5] ——, “Proactive process-level live migration in hpc en-
vironments,” in Supercomputing, 2008.



[6] A. Moody, G. Bronevetsky, K. Mohror, and B. de Supin-
ski, “Design, modeling, and evaluation of a scalable
multi-level checkpointing system,” in Supercomputing,
Nov. 2010.

[7] I. Philp, “Software failures and the road to a petaflop
machine,” in Workshop on High Performance Computing
Reliability Issues. IEEE Computer Society, 2005.

[8] R. Riesen, K. Ferreira, D. D. Silva, P. Lemarinier,
D. Arnold, and P. G. Bridges, “Alleviating scalability
issues of checkpointing protocols,” in Supercomputing,
Nov. 2012.

[9] T. Z. Islam, K. Mohror, S. Bagchi, A. Moody, B. R.
de Supinski, and R. Eigenmann, “Mcrengine - a scalable
checkpointing system using data-aware aggregation and
compression,” in Supercomputing, Nov. 2012.

[10] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R.
de Supinski, N. Maruyama, and S. Matsuoka, “Design
and modeling of a non-blocking checkpointing system,”
in Supercomputing, Nov. 2012.

[11] K. Ferreira, J. Stearley, J. H. L. III, R. Oldfield,
K. Pedretti, R. Brightwell, R. Riesen, P. Bridges, and
D. Arnold, “Evaluating the viability of process replica-
tion reliability for exascale systems,” in Supercomputing,
nov 2011.

[12] J. Elliot, K. Kharbas, D. Fiala, F. Mueller, C. Engel-
mann, and K. Ferreira, “Combining partial redundancy
and checkpointing for HPC,” in International Confer-
ence on Distributed Computing Systems, 2012.

[13] V. Sridharan and D. Liberty, “A study of dram failures
in the field,” in Supercomputing, Nov. 2012.

[14] A. Geist, “What is the monster in the closet?” Aug.
2011, invited Talk at Workshop on Architectures I:
Exascale and Beyond: Gaps in Research, Gaps in our
Thinking.

[15] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cos-
mic rays don’t strike twice: understanding the nature of
dram errors and the implications for system design,” in
Architectural Support for Programming Languages and
Operating Systems, 2012, pp. 111–122.

[16] E. N. M. E. et al., “System resilience at extreme
scale,” DARPA, Tech. Rep., 2008. [Online]. Available:
http://institutes.lanl.gov/resilience/docs/IBM Mootaz
White Paper System Resilience.pdf

[17] P. Kogge and et al., “ExaScale computing
study: Technology challenges in achieving exascale
systems,” DARPA IPTO, Tech. Rep., 2008. [Online].
Available: http://users.ece.gatech.edu/ mrichard/-
ExascaleComputingStudyReports/exascale_final-
_report_100208.pdf

[18] F. Cappello and et al., “Toward exascale
resilience,” UIUC / INRIA Joint Laboratory
on PetaScale Computing, Tech. Rep. TR-
JLPC-09-01, Jun. 2009. [Online]. Available:
http://institutes.lanl.gov/resilience/docs/Toward Exas-
cale Resilience.pdf

[19] V. Howle and P. Hough, “The effects of soft errors on
krylov methods,” Feb. 2012, invited Talk. SIAM Parallel
Processing.

[20] V. Howle, P. Hough, M. Heroux, and E. Durant, “Soft
errors in linear solvers as integrated components of a
simulation,” Apr. 2010, invited Talk.

[21] M. Shantharam, S. Srinivasmurthy, and P. Raghavan,
“Characterizing the impact of soft errors on iterative
methods in scientific computing,” in International Con-
ference on Supercomputing, 2011, pp. 152–161.

[22] G. Bronevetsky and B. de Supinski, “Soft error vulner-
ability of iterative linear algebra methods,” in Interna-
tional Conference on Supercomputing, 2008, pp. 155–164.

[23] J. Sloan, R. Kumar, G. Bronevetsky, and T. Kolev,
“Algorithmic approaches to low overhead fault detection
for sparse linear algebra,” Dependable Systems and Net-
works, 2012.

[24] K. Malkowski, P. Raghavan, and M. Kandemir, “An-
alyzing the soft error resilience of linear solvers on
multicore multiprocessors,” in International Symposium
on Parallel Distributed Processing, Apr. 2010, pp. 1 –12.

[25] M. Hoemmen and M. A. Heroux, “Fault-
tolerant iterative methods via selective
reliability,” http://www.sandia.gov/ mah-
erou/docs/FTGMRES.pdf.

[26] D. Li, J. Vetter, and W. Yu, “Classifying soft error vul-
nerabilities in extreme-scale scientific applications using
a binary instrumentation tool,” in Supercomputing, Nov.
2012.

[27] K.-H. Huang and J. A. Abraham, “Algorithm-based
fault tolerance for matrix operations,” IEEE Transac-
tions on Computers, vol. C-33, no. 6, pp. 518–528, 1984.

[28] P. Du, A. Bouteiller, G. Bosilca, T. Herault, and J. Don-
garra, “Algorithm-based fault tolerance for dense matrix
factorizations,” SIGPLAN Not., vol. 47, no. 8, pp. 225–
234, Feb. 2012.

[29] C. J. Anfinson and F. T. Luk, “Linear algebraic model
of algorithm-based fault tolerance,” IEEE Transactions
on Computers, vol. 37, no. 12, pp. 1599–1604, 1988.

[30] A. Al-Yamani, N. Oh, and E. J. McCluskey, “Perfor-
mance evaluation of checksum-based abft,” in Sympo-
sium on Defect and Fault Tolerance in VLSI Systems
(DFT 2001), Oct. 2001, pp. 461–466.

[31] P. Banerjee, J. T. Rahmeh, C. Stunkel, V. S. Nair,
K. Roy, V. Balasubramanian, and J. A. Abraham,
“Algorithm-based fault tolerance on a hypercube multi-
processor,” Computers, IEEE Transactions on, vol. 39,
no. 9, pp. 1132–1145, 1990.

[32] Y. Kim, J. S. Plank, and J. J. Dongarra, “Fault tolerant
matrix operations using checksum and reverse compu-
tation,” in Symposium on the Frontiers of Massively
Parallel Computing, Oct. 1996, pp. 70–77.



[33] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen,
“High performance linpack benchmark: A fault toler-
ant implementation without checkpointing,” in Inter-
national Conference on Supercomputing, May 2011, pp.
162–171.

[34] Z. Chen, “Extending algorithm-based fault tolerance to
tolerate fail-stop failures in high performance distributed
environments,” in International Parallel and Distributed
Processing Symposium, Apr. 2008.

[35] ——, “Algorithm-based recovery for iterative meth-
ods without checkpointing,” in Symposium on High-
Performance Parallel and Distributed Computing, Jun.
2011, pp. 73–84.

[36] O. Axelsson, Iterative solution methods. Cambridge
University Press, 1994.

[37] B. Randell, “System structure for software fault toler-
ance,” SIGPLAN Not., vol. 10, no. 6, pp. 437–449, Apr.
1975.

[38] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. Kim, D. H.
Yoon, L. Kaplan, and M. Erez, “Containment domains:
A scalable, efficient, and flexible resiliency scheme for
exascale systems,” in Supercomputing, Nov. 2012.


