
Failure Detection within MPI Jobs: Periodic
Outperforms Sporadic

Kishor Kharbas1, Donghoon Kim1, Kamal KC1, Torsten Hoefler2, Frank Mueller1

1Dept. of Computer Science, North Carolina State University, Raleigh, NC 27695-7534
2NCSA, University of Illinois at Urbana-Champaign, Urbana,IL 61801

Abstract. Reliability is one of the challenges faced by exascale computing. Com-
ponents are poised to fail during large-scale executions given current mean time
between failure (MTBF) projections. To cope with failures,resilience methods
have been proposed as explicit or transparent techniques. For the latter tech-
niques, this paper studies the challenge of fault detection.
This work contributes generic fault detection capabilities at the MPI level and be-
yond. A first approach utilizes a periodic liveness check while a second method
promotes sporadic checks upon communication activities. The contributions of
this paper are two-fold: (a) We provide generic interposingof MPI applications
for fault detection. (b) We experimentally compare periodic and sporadic meth-
ods for liveness checking. We show that the sporadic approach, even though it
imposes lower bandwidth requirements and utilizes lower frequency checking,
results inequal or worseapplication performance than a periodic liveness test
for larger number of nodes. We further show that performing liveness checks in
separation from MPI applications results in lower overheadthan interpositioning.
Hence, we promote separate periodic fault detection as the superior approach for
fault detection.

1 Introduction
The current road map to exascale computing faces a number of challenges, one of which
is reliability. Given the number of computing cores, projected to be as large as a million,
with ten of thousands of multi-socket nodes, components arepoised to fail during the
execution of large jobs due to a decreasing mean time betweenfailures (MTBF) [14,19].
When faults become the norm rather than the exception, the underlying system needs
to provide a resilience layer to tolerate faults. Proposed methods for resilience range
from transparent techniques, such as checkpointing and computational redundancy, to
explicit handling, such as in probabilistic or fault-awarecomputing. The latter approach
requires significant algorithmic changes and is thus best suited for encapsulation into
numerical libraries [6]. This paper focuses on the former techniques. It builds on re-
cently developed techniques such as checkpointing (with restarts or rollbacks) or re-
dundant computing in high-performance computing [1, 3, 5, 12, 22] or API extensions
for checkpointing [6, 13]. A common challenge of transparent resiliency lies in the de-
tection of faults, which is the focus of this paper.

Previous work suggested guidelines on the theoretical methodology for designing
fault detection services. However, a practical implementation still poses a challenge in
terms of completeness and accuracy because of the diversityof parallel system environ-
ments in terms of both hardware and software, which exposes anumber of complica-
tions due to potentially unreliable failure detectors [4].

The fault model of this work is that components are subject tofail-stop behavior.
In other words, components either work correctly or do not work at all. Transient or
byzantine failures are not considered. A component is an entire compute node or a
network connection / link between any two nodes. In such a framework, we base fault
detection on timeout monitoring between endpoints. The focus of our work is to study
the impact of timeout monitoring on application behavior such as to perturb application
performance as little as possible.

Contributions: In this paper, we implement a fault detector (FD) to detect failures
of an MPI application. An FD can be included at various layersof the software stack.
First, we choose the MPI communication layer to implement the FD. We detect MPI
communication failures and, at the same time, also utilize the MPI layer as a means
to implement detection. This approach has the advantage that it does not require any
failure detection support from the underlying software/hardware platform. Second, we
implement a separate FD as stand-alone processes across nodes.

In this framework, we observe the effect of a failure, such aslack of response for
communication between any two nodes due to node or network failures. We do not per-
form root cause analysis, which is orthogonal to our work. Weassume that the system
model provides temporal guarantees on communication bounds (sometimes also com-
bined with computation bounds) called “partially synchronous” [18]. The FD utilizes a
time-out based detection scheme, namely, a ping-pong basedimplementation with the
following properties:

– Transparency: The FD can be embedded in MPI applications without any additional
modification or side-by-side to MPI applications. For the former, the FD runs in-
dependently with a unique communicator different from an application program.
When MPI applications call MPIInit, the FD module is activated for each MPI
task (on each node) as an independent thread through the MPI profiling interposing
layer.

– Portability: MPI applications can be compiled without the FD. Applications only
need to be re-linked with the profiling layer of MPI and the FT module. It is not
necessary for MPI applications to change in their environment, design or source
code. The FD works for arbitrary MPI implementations and hasbeen tested with
MPICH, Open MPI, and the LAM/MPI-family.

– Scalability: The FD operates in two modes. It can be configured to send a check
message sporadically whenever the application has invokeda communication rou-
tine. An alternative setting performs periodic checks at configurable intervals.
The rationale behind sporadic and periodic liveness probing is that the former can

be designed as low-cost background control messages that are only triggered when an
application is causally dependent on other nodes. The latter, in contrast, can be designed
independent of any communication pattern but requires constant out-of-band checking
but is agnostic of application communication behavior.

The experimental results show that the FD satisfies the abovethree properties. The
results further indicate that the sporadic approach imposes lower bandwidth require-
ments of the network for control messages and results in a lower frequency of control
messages per se. Nonetheless, the periodic FD configurationis shown to result inequal
or betterapplication performance overall compared to a sporadic liveness test for larger
number of nodes, which is a non-obvious result and one of our contributions. We also

observe that separation of the FD results in lower overheadsas opposed to integra-
tion into the MPI applications. Our resulting implementation can easily be combined
with reactive checkpoint/restart frameworks to trigger restarts after components have
failed [3,5,8–11,15,17,20–24].

2 Design
In principle, an FD can be designed using a variety of communication overlays to mon-
itor liveness. A traditional heartbeat algorithm imposes high communication overhead
in an all-to-all communication pattern with a message complexity Θ(n2) and a time
complexity ofΩ(n). This overhead can be high, and a single node does not need to
inquire about liveness of all other nodes in an MPI application.

A tree-based liveness check results inΘ(n) messages with aΩ(log(n)) time com-
plexity where the root node has a collective view of livenessproperties. However, mid-
level failures of the tree easily result in graph partitioning so that entire subtrees may
be considered dysfunctional due to the topological mappingof the overlay tree onto a
physical network structure (e.g., a multi-dimensional torus).

We have designed two principle types of failure detection mechanisms. First, we
support a sporadic (or on-demand) FD. Second, we have devised a periodic, ring-based
FD. The periodic FD can be integrated into MPI applications or may function as a
stand-alone liveness test separate from MPI applications.These approaches differ in
their liveness probing periods and their network overlay structure.

2.1 Failure Detector Types
Periodic Ring-Based Failure Detection In this approach, starting from initialization
of the MPI environment, we form a ring-based network overlaystructure wherein thei-
th node probes the(i + 1)-th node in the ring (see Figure 1(b)). Thus, each node probes
its neighbor in the ring irrespective of whether there is anyactive application commu-
nication between the two nodes or not. The probing is performed until the application
terminates.

This structure results inΘ(n) messages for liveness checking and imposesO(1)
time (assuming synchronous checking) or up toO(n) time (for asynchronous checking
that has to propagate around the ring), yet liveness properties are only known about
immediate neighbors. For MPI applications, we argue that local knowledge is sufficient
to trigger reactive fault tolerance at a higher level.

`�

��

��

��

��

�� ��

����	
�������
���������
���������������

(a) Sporadic Fault Detection.

`�

��

��

��

��

�� ��

����	
�������
���������
������������
��� �

(b) Periodic Fault Detection.

Fig. 1. Fault Detection Techniques.

Sporadic/On-demand Failure Detection In this approach, a nodep probes a nodeq
only if p andq are engaged in an application-level point-to-point message exchange. If
p needs to wait beyond a timeout interval forq to resume its work, a control message
from p to q is issued (see Figure 1(a)). This happens when nodep makes a blocking
MPI call, such as MPIRecv() or MPIWait(). Similarly, if the application is engaged
in collective communication, such as MPIBcast(), and the MPI call does not return
within a timeout interval, a ring-based liveness check is triggered. If the liveness test is
successful but the application-level MPI call has not been completed, the liveness check
is periodically repeated.

This method of liveness check imposesO(1) message and time overhead, and life-
less properties are only known to immediate neighbors. The control message overhead
of this approach may be zero when responses to application messages are received prior
to timeout expiration. In such a setting, the overhead is localized to a node and amounts
to request queuing and request cancellation (in the best case).

3 Implementation

Our implementation assumes that there are reliable upper bounds on processing speeds
and message transmission times. If a node fails to respond within a time-out interval, the
node is assumed to have failed under this model (fail-stop model). The implementation
builds on this assumption when a node starts probing anothernode. Node pairs are de-
termined by a causal dependency implied from the application communication pattern
(for sporadic point-to-point communication) or through network overlays (for sporadic
collectives and all periodic liveness checks). Probing is implemented via ping-pong
messages monitoring round trip time (RTT) timeouts. Probing for failure detection can
be parametrized as follows: (a) INTER-PROBE: This intervaldetermines the frequency
of probing, i.e., the time between successive probes by a node. Longer values may cause
late detection of failure while shorter intervals allow forearly detection but increase the
overhead imposed by control messages. (b) TIME-OUT: This interval determines the
granularity of failure detection but also impacts the correctness of the approach. If the
interval is chosen too small, a slow response may lead to false positives (detection of
failure even though the node is functional). Conversely, a large interval may delay de-
tection of failures. Determination of a “good” timeout interval is non-trivial, even if we
assume an upper bound on network and processing delay (see above).

We have used the MPI profiling layer to implement one version of the FD mod-
ule. Wrappers have been written for MPI functions. These wrappers take appropriate
FD actions before and after calling the PMPI versions of the corresponding commu-
nication function. When the application calls MPIInit(), a duplicate communicator,
DUP MPI COMM WORLD, is created, which is subsequently used to send control
messages for failure detection. The software stack of the FDin conjunction with an
application is depicted in Figure 2. Application-level MPIcalls (depicted as Fortran
calls) trigger a language-neutral wrapper before calling the interposed MPI function.
In the PMPI wrapper, the native MPI function is called (prefixed with PMPI). The
fault detector governs back-channel exchanges of control message over the duplicated
communicator. Another version of the FD implements periodic checks as stand-alone
processes separate from an MPI application.

Í����������

�

��
�������

�

�����

�

��
������

�

�	���
	��������
�

��
��������

 !"�#�����

$

�

����
�

 !"�#������

��
�%��
��&

������
��	�

! !"�#�����

'��������������%��&

������
�
���	

���#�������

��
������

������	
%��

%	���	������'���&

�����()"*+�

$

$

���,���
�����

��
������

'�()"*+

�����(-.�

'�(-.��

��%��%��

����%��
��&�

$

������
��	���

$

$
'��������������%��&

$

�

$

Fig. 2. Interaction of Application and Fault Detection Software Stacks

The fault detector is implemented as a pair of threads, namely sender and receiver
threads. We require MPI to support multi-threading, i.e., MPI Init thread() should sup-
port MPI THREAD MULTIPLE to ensure thread support. The sender thread triggers
an ALIVE message (ping) or waits for an acknowledgment (ACK)message (pong) up
to a given timeout. The receiver thread receives ALIVE queries over the new communi-
cator from the sender thread and responds with an ACK message. The failure detection
module maintains a queue of events in sorted order of event times. An event could be
“sending out a new probe to some node i” or “end of timeout interval for a probe sent
to some node i”. Upon such an event, the sender thread is activated and performs the
respective action.

4 Performance Evaluation
We measured the overhead incurred by the FD module for the setof NAS parallel
benchmarks (NPB V3.3) with input classes C and D [2]. Using gettimeofday(), wall-
clock times of applications were measured between MPIInit() and MPI Finalize() calls
with and without failure detector interpositioning or backgrounding. Tests were per-
formed by running each configuration five times and computingthe average overhead
for different inter-probe intervals and number of processes.

4.1 Experimental Platform

Experiments were conducted on a 128 node cluster with Infiniband QDR. Each node is
a 2-way shared-memory multiprocessor with two octo-core AMD Opteron 6128 pro-
cessors (16 cores per nodes). Each node runs CentOS 5.5 Linuxx86 64. We used Open
MPI 1.5.1 for evaluating the performance of the FD.

4.2 Benchmark Results

Figures 3 and 4 depict the relative overheads of fault detection for 128 processes (over
64 nodes) with periodic and sporadic fault detection, respectively. (Due to space limita-
tions, results for fewer nodes are omitted in Figures but arestill discussed.) Overheads
of the FD approach for fault tolerance with inter-probe frequencies of 1-10 second (“FD
1sec” to “FD 10 sec”) are plotted relative to application execution without fault toler-
ance (“No FD”), i.e., in the absence of the FD module (normalized to 100%).

We first observe that both the sporadic and periodic FD have overheads ranging
from less than 1% to 21% averaging around 10%. We further observe that periodic ei-
ther matches or outperforms by 2-6% the sporadic approach. This trend is also visible

10
7.

4

11
5.

3

10
4.

7

11
0.

8

10
0.

0

10
4.

4

11
0.

3

11
5.

6

10
4.

7

11
2.

7

99
.9

10
4.

6

11
1.

0

11
6.

1

10
5.

6

11
2.

9

10
0.

1

10
6.

2

11
1.

1

11
7.

0

10
5.

2

11
2.

4

10
0.

0

10
5.

2

95
97
99

101
103
105
107
109
111
113
115
117
119
121
123
125

LU CG FT MG EP IS
E

xe
cu

tio
n

tim
e

no
rm

al
iz

ed
 to

 N
o-

FD No FD FD - 10s FD - 5s FT - 3s FT - 1s

Fig. 3. Overhead of Periodic Fault Detection for 128 Processes

11
4.

0

11
5.

0

10
6.

7

11
1.

1

10
0.

1

10
8.

0

11
6.

3

12
1.

2

10
4.

9

11
3.

7

10
0.

1

10
8.

7

11
5.

6 11
8.

2

10
6.

3 10
9.

9

10
0.

1

10
6.

4

11
5.

1 11
7.

8

10
5.

1

10
9.

6

10
0.

0

10
7.

4

95
97
99

101
103
105
107
109
111
113
115
117
119
121
123
125

LU CG FT MG EP IS

E
xe

cu
tio

n
ti

m
e

no
rm

al
iz

ed
 to

 N
o-

F
D No FD FD - 10s FD - 5s FT - 3s FT - 1s

Fig. 4. Overhead of Sporadic Fault Detection for 128 Processes

for smaller number of tasks (although less pronounced) and can be explained as fol-
lows: As overall communication is increasing, timeouts in the sporadic mode happen
more frequently, in particular for collectives where communication results in contention
(e.g., for all-to-all collectives). Sporadic control messages only add to this application-
induced contention. In contrast, the periodic approach hasthe advantage that control
messages are evenly likely to occur across the entire application duration. This proba-
bilistic spread frequently results in control messages being issued during computation,
i.e., when the network interconnect is not utilized at all. This trend increases with strong
scaling (larger number of nodes).

We further conducted experiments with periodic liveness checking as a background
activity in separate processes across nodes that an MPI application is running on. The
results (omitted due to space) show absolutely no overhead for NPB codes over 128
processes except for IS with an overhead of 4.5%. We also varied the number of MPI
tasks per node and found these results to remain consistent up to 15 tasks per node.
Only at 16 tasks per node did overheads spike to up to 28-60% depending on the NPB
code. This shows that as long as a spare core is available for background activity, the
impact of out-of-band communication on application performance is minimal. In HPC,
applications tend to utilize only a subset of cores for high-end multi-core nodes as in
our case, which ensures that communication does not become abottleneck [16].

Besides these Infiniband experiments, we investigated the impact of our FD ap-
proaches under Gigabit Ethernet (result omitted). We foundthat the performance of
NPB codes is significantly higher for Ethernet as execution becomes constrained by
network contention given the lower bandwidth available. Hence, the overhead of FD
was overshadowed by contention of application messages anddid not result in a notice-
able overall impact. However, we consider such a high contention scenario not realistic
for well-balanced, tuned HPC codes.

Overall, the results show that periodic failure detection performs better than spo-
radic for communication intensive codes and that separation of the FD from MPI appli-
cations reduces their perturbation.

5 Related Work
Chandra and Toueg classify eight classes of failure detectors by specifying complete-
ness and accuracy properties [4]. They further show how to reduce the eight failure
detectors to four and discuss how to solve the consensus problem for each class. This
paper has influenced other contemporary work as it raises theproblem of false posi-
tives for asynchronous systems. In our work, we focus on single-point failure detection.
Consensus is an orthogonal problem, and we simply assume that a stabilization af-
ter multi-component failures eventually allows reactive fault tolerance, such as restarts
from a checkpoint, to occur in a synchronous manner. Sastry et al. discuss the impact of
celerating environments due to heterogeneous systems where absolute speeds (execu-
tion progress) could increase or decrease [18]. Bichronal timers with the composition
of action clocks and real-time clocks are able to cope with celerating environments. Our
work, in contrast, only relies on the clock of a local node. Genaud and Rottanapoka im-
plemented a fault detector in a P2P-MPI environment utilizing a heartbeat approach [7].
They address failure information sharing, reason about a consensus phase and acknowl-
edge overheads of fault detection due to their periodic heartbeat approach. Our work, in
contrast, results in much lower message and time complexity. Consensus is orthogonal
to our work, as discussed before.

6 Conclusion
In summary, our work contributes generic capabilities for fault detection / liveness mon-
itoring of nodes and network links both at the MPI level and stand alone. We designed
and implemented two approaches to this end. The first approach utilizes a periodic live-
ness test and utilizes a ring-based network overlay for control messages. The second
method promotes sporadic checks upon communication activities and relies on point-to-
point control messages along the same communication paths utilized by the application,
yet falls back to the ring-based overlay for collectives. Weprovide a generic interposing
of MPI applications to realize fault detection for both cases plus a stand-alone version
for the periodic case. Experimental results indicate that while the sporadic fault detec-
tor saves on network bandwidth by generating probes only when an MPI call is made,
its messages are increasingly contending with applicationmessages as the number of
nodes increases. In contrast, periodic fault detection statistically avoids network con-
tention as the number of processors increases. Overall, theresults show that periodic
failure detection performs better than sporadic for communication intensive codes and
that separation of the FD from MPI applications reduces their perturbation.

References
1. A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic mpi programs on clusters of

workstations. InProc. of the 8th IEEE Intl. Symp. on High Perf. Distr. Comp., 1999.
2. D. H. Bailey et al. The NAS Parallel Benchmarks.The International Journal of Supercom-

puter Applications, 5(3):63–73, Fall 1991.
3. G. Bosilca, A. Boutellier, and F. Cappello. MPICH-V: Toward a scalable fault tolerant MPI

for volatile nodes. InSupercomputing, Nov. 2002.

4. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43:225–267, March 1996.

5. J. Duell. The design and implementation of berkeley lab’slinux checkpoint/restart. Tr,
Lawrence Berkeley National Laboratory, 2000.

6. G. E. Fagg and J. J. Dongarra. FT-MPI: Fault Tolerant MPI, supporting dynamic applications
in a dynamic world. InEuro PVM/MPI Meeting, volume 1908, pages 346–353, 2000.

7. S. Genaud and C. Rattanapoka. Evaluation of replication and fault detection in p2p-mpi. In
Intl. Par. and Distrib. Proc. Symp., 2009.

8. R. Gioiosa, J. C. Sancho, S. Jiang, and F. Petrini. Transparent, incremental checkpointing
at kernel level: a foundation for fault tolerance for parallel computers. InSupercomputing,
2005.

9. J. Heo, S. Yi, Y. Cho, J. Hong, and S. Y. Shin. Space-efficient page-level incremental check-
pointing. In SAC ’05: Proceedings of the 2005 ACM symposium on Applied computing,
pages 1558–1562, New York, NY, USA, 2005. ACM.

10. S.-T. Hsu and R.-C. Chang. Continuous checkpointing: joining the checkpointing with vir-
tual memory paging.Softw. Pract. Exper., 27(9):1103–1120, 1997.

11. J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine. The design and implementation
of checkpoint/restart process fault tolerance for Open MPI. In 12th IEEE Workshop on
Dependable Parallel, Distributed and Network-Centric Systems, 03 2007.

12. H. Jitsumoto, T. Endo, and S. Matsuoka. Abaris: An adaptable fault detection/recovery
component framework for mpis. InIntl. Par. and Distrib. Proc. Symp., 2007.

13. A. Moody, G. Bronevetsky, K. Mohror, and B. de Supinski. Design, modeling, and evaluation
of a scalable multi-level checkpointing system. InSupercomputing, Nov. 2010.

14. I. Philp. Software failures and the road to a petaflop machine. InHPCRI: 1st Workshop on
High Performance Computing Reliability Issues. IEEE Computer Society, 2005.

15. J. Ruscio, M. Heffner, and S. Varadarajan. Dejavu: Transparent user-level checkpointing,
migration, and recovery for distributed systems. InIntl. Par. and Distrib. Proc. Symp., 2007.

16. J. Sancho, D. Kerbyson, and M. Lang. Characterizing the impact of using spare-cores on
application performance. InEuro-Par Conference, pages 74–85, Sept. 2010.

17. S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Duell, P. Hargrove, and E. Roman.
The LAM/MPI checkpoint/restart framework: System-initiated checkpointing. InProceed-
ings, LACSI Symposium, Oct. 2003.

18. S. Sastry, S. M. Pike, and J. L. Welch. Crash fault detection in celerating environments. In
Intl. Par. and Distrib. Proc. Symp., 2009.

19. B. Schroeder and G. Gibson. A large-scale study of failures in high-performance computing
systems. InProceedings of the 2006 International Conference on Dependable Systems and
Networks (DSN-2006), Philadelphia, PA, June 2006.

20. G. Stellner. CoCheck: checkpointing and process migration for MPI. In IEEE, editor,Pro-
ceedings of IPPS ’96. The 10th International Parallel Processing Symposium: Honolulu, HI,
USA, 15–19 April 1996, pages 526–531, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1996. IEEE Computer Society Press.

21. J. Varma, C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. Scalable, fault-tolerant mem-
bership for MPI tasks on hpc systems. InInternational Conference on Supercomputing,
pages 219–228, June 2006.

22. C. Wang, F. Mueller, C. Engelmann, and S. Scott. A job pause service under
LAM/MPI+BLCR for transparent fault tolerance. InIntl. Par. and Distrib. Proc. Symp.,
Apr. 2007.

23. C. Wang, F. Mueller, C. Engelmann, and S. Scott. Proactive process-level live migration in
hpc environments. InSupercomputing, 2008.

24. S. Yi, J. Heo, Y. Cho, and J. Hong. Adaptive page-level incremental checkpointing based on
expected recovery time. InSAC ’06: Proceedings of the 2006 ACM symposium on Applied
computing, pages 1472–1476, New York, NY, USA, 2006. ACM.

7 Appendix

1
0
7
.8

1
0
4

.5

1
1
3
.7

1
0
6
.8

9
9
.8

1
0

1
.8

1
0
6
.6

1
0
4
.8

1
1
0
.5

1
0
3
.9

1
0
0

9
9
.5

1
0
5

1
0
5
.4

1
1
2

1
0
7

9
9
.7

1
0
2
.2

1
0
6
.6

1
0
4
.8

1
0
9
.5

1
0
6
.4

9
9
.8

9
9
.6

100

105

110

115

120

f
r
u

n
n

in
g
 b

en
ch

m
a
k

r
+

fa
il

u
re

 d
et

e
ct

io
n

 o
v
e
r

p
la

in
 r

u
n

 o
f

b
e
n

c
h

m
a

rk

Nprocs=16 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

1
0
7
.8

1
0
4

.5

1
1
3
.7

1
0
6
.8

9
9
.8

1
0

1
.8

1
0
6
.6

1
0
4
.8

1
1
0
.5

1
0
3
.9

1
0
0

9
9
.5

1
0
5

1
0
5
.4

1
1
2

1
0
7

9
9
.7

1
0
2
.2

1
0
6
.6

1
0
4
.8

1
0
9
.5

1
0
6
.4

9
9
.8

9
9
.6

90

95

100

105

110

115

120

LU CG FT MG EP IS

O
v

eh
ea

d
 o

f
r
u

n
n

in
g
 b

en
ch

m
a
k

r
+

fa
il

u
re

 d
et

e
ct

io
n

 o
v
e
r

p
la

in
 r

u
n

 o
f

b
e
n

c
h

m
a

rk

Nprocs=16 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

Fig. 5. Overhead of Periodic Fault Detection for 16 Processes

1
1
1
.9

1
0
4
.6 1
0

6
.4

1
0

5
.4

9
9

.6
6

1
0
0

.9

1
1

3
.4

1
0
4

1
0
6

.9

1
0
5

.2

1
0

0

1
0
2

1
1
0

.7

1
0
5
.3

1
0
5

.2

1
0
9
.1

9
9

.8

1
0
3
.2

1
0

9
.1

8

1
0

4
.2

5

1
0
9
.1

7

1
0

1
.5

9

9
9
.8

6 1
0

1
.9

100

105

110

115

120

h
ea

d
 o

f
ru

n
n

in
g
 b

en
ch

m
a
k

r
+

fa
il

u
re

ec
ti

o
n

 o
v
er

 p
la

in
 r

u
n

 o
f

b
en

ch
m

a
rk

Nprocs=16 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

1
1
1
.9

1
0
4
.6 1
0

6
.4

1
0

5
.4

9
9

.6
6

1
0
0

.9

1
1

3
.4

1
0
4

1
0
6

.9

1
0
5

.2

1
0

0

1
0
2

1
1
0

.7

1
0
5
.3

1
0
5

.2

1
0
9
.1

9
9

.8

1
0
3
.2

1
0

9
.1

8

1
0

4
.2

5

1
0
9
.1

7

1
0

1
.5

9

9
9
.8

6 1
0

1
.9

90

95

100

105

110

115

120

LU CG FT MG EP IS

O
v

eh
ea

d
 o

f
ru

n
n

in
g
 b

en
ch

m
a
k

r
+

fa
il

u
re

d
et

ec
ti

o
n

 o
v
er

 p
la

in
 r

u
n

 o
f

b
en

ch
m

a
rk

Nprocs=16 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

Fig. 6. Overhead of Sporadic Fault Detection for 16 Processes

1
0
2
.4

1
0

9
.3

1
0
5
.1

1
0
4
.3

9
9

.8

1
0

0
.51

0
2
.4

1
0
8
.1

1
0
4
.0

1
0
3
.7

1
0
0
.4

1
0

4
.6

1
0
2
.7

1
0
5
.1

1
0
4
.4

1
0
0
.9

9
9
.8 1
0

0
.6

1
0
0
.3

1
1
1
.1

9
8
.4

1
0
1

.0

1
0
0
.8

1
0
0
.8

100

105

110

115

120

h
ea

d
 o

f
ru

n
n

in
g
 b

en
ch

m
a
k

r
+

fa
il

u
re

ec
ti

o
n

 o
v
er

 p
la

in
 r

u
n

 o
f

b
en

ch
m

a
rk

Nprocs=32 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

1
0
2
.4

1
0

9
.3

1
0
5
.1

1
0
4
.3

9
9

.8

1
0

0
.51

0
2
.4

1
0
8
.1

1
0
4
.0

1
0
3
.7

1
0
0
.4

1
0

4
.6

1
0
2
.7

1
0
5
.1

1
0
4
.4

1
0
0
.9

9
9
.8 1
0

0
.6

1
0
0
.3

1
1
1
.1

9
8
.4

1
0
1

.0

1
0
0
.8

1
0
0
.8

90

95

100

105

110

115

120

LU CG FT MG EP IS

O
v
eh

ea
d

 o
f

ru
n

n
in

g
 b

en
ch

m
a
k

r
+

fa
il

u
re

d
et

ec
ti

o
n

 o
v
er

 p
la

in
 r

u
n

 o
f

b
en

ch
m

a
rk

Nprocs=32 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

Fig. 7. Overhead of Periodic Fault Detection for 32 Processes

1
0
2

.3

1
0

6
.7

1
0

1
.0 1
0
2

.3

1
0
0

.3

1
0
2

.7

1
0
2

.9

1
0

8
.8

1
0

2
.0

1
0
5

.1

9
9

.8

1
0

5
.2

1
0

0
.7

1
0

3
.1

1
0

0
.9

1
0

1
.5

9
9

.9 1
0

1
.0

1
0

1
.9

1
0

8
.2

1
0
1

.7

1
0

4
.8

9
9
.9

1
0

6
.6

100

105

110

115

120

ea
d

 o
f

ru
n

n
in

g
 b

en
ch

m
a

k
r

+
fa

il
u

re

ct
io

n
 o

v
e
r

p
la

in
 r

u
n

 o
f

b
e
n

ch
m

a
r
k

Nprocs=32 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

1
0
2

.3

1
0

6
.7

1
0

1
.0 1
0
2

.3

1
0
0

.3

1
0
2

.7

1
0
2

.9

1
0

8
.8

1
0

2
.0

1
0
5

.1

9
9

.8

1
0

5
.2

1
0

0
.7

1
0

3
.1

1
0

0
.9

1
0

1
.5

9
9

.9 1
0

1
.0

1
0

1
.9

1
0

8
.2

1
0
1

.7

1
0

4
.8

9
9
.9

1
0

6
.6

90

95

100

105

110

115

120

LU CG FT MG EP IS

O
v
e
h

ea
d

 o
f

ru
n

n
in

g
 b

en
ch

m
a

k
r

+
fa

il
u

re

d
et

ec
ti

o
n

 o
v
e
r

p
la

in
 r

u
n

 o
f

b
e
n

ch
m

a
r
k

Nprocs=32 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

Fig. 8. Overhead of Sporadic Fault Detection for 32 Processes

1
0
2
.4

1
0
9
.3

1
0
5
.1

1
0
4
.3

9
9
.8

1
0

0
.51

0
2
.4

1
0
8
.1

1
0
4
.0

1
0
3
.7

1
0
0
.4

1
0
4
.6

1
0
2
.7

1
0
5
.1

1
0
4
.4

1
0
0
.9

9
9
.8 1
0
0
.6

1
0
0
.3

1
1
1
.1

9
8
.4

1
0
1
.0

1
0
0
.8

1
0
0
.8

100

105

110

115

120

h
ea

d
 o

f
ru

n
n

in
g
 b

en
ch

m
a
k

r
+

fa
il

u
re

ec
ti

o
n

 o
v
e
r

p
la

in
 r

u
n

 o
f

b
e
n

c
h

m
a
rk

Nprocs=64 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

1
0
2
.4

1
0
9
.3

1
0
5
.1

1
0
4
.3

9
9
.8

1
0

0
.51

0
2
.4

1
0
8
.1

1
0
4
.0

1
0
3
.7

1
0
0
.4

1
0
4
.6

1
0
2
.7

1
0
5
.1

1
0
4
.4

1
0
0
.9

9
9
.8 1
0
0
.6

1
0
0
.3

1
1
1
.1

9
8
.4

1
0
1
.0

1
0
0
.8

1
0
0
.8

90

95

100

105

110

115

120

LU CG FT MG EP IS

O
v

eh
ea

d
 o

f
ru

n
n

in
g
 b

en
ch

m
a
k

r
+

fa
il

u
re

d
et

ec
ti

o
n

 o
v
e
r

p
la

in
 r

u
n

 o
f

b
e
n

c
h

m
a
rk

Nprocs=64 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

Fig. 9. Overhead of Periodic Fault Detection for 64 Processes

1
0

2
.3

1
0

6
.7

1
0

1
.0

1
0

2
.3

1
0

0
.3

1
0

2
.7

1
0

2
.9

1
0

8
.8

1
0

2
.0

1
0

5
.1

9
9

.8

1
0
5

.2

1
0

0
.7

1
0

3
.1

1
0

0
.9

1
0

1
.5

9
9

.9 1
0
1

.0

1
0

1
.9

1
0

8
.2

1
0

1
.7

1
0
4

.8

9
9

.9

1
0

6
.6

100

105

110

115

120

e
a
d

 o
f

ru
n

n
in

g
 b

en
ch

m
a
k

r
+

fa
il

u
re

ti
o
n

 o
v
er

 p
la

in
 r

u
n

 o
f

b
e
n

ch
m

a
r
k

Nprocs=64 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

1
0

2
.3

1
0

6
.7

1
0

1
.0

1
0

2
.3

1
0

0
.3

1
0

2
.7

1
0

2
.9

1
0

8
.8

1
0

2
.0

1
0

5
.1

9
9

.8

1
0
5

.2

1
0

0
.7

1
0

3
.1

1
0

0
.9

1
0

1
.5

9
9

.9 1
0
1

.0

1
0

1
.9

1
0

8
.2

1
0

1
.7

1
0
4

.8

9
9

.9

1
0

6
.6

90

95

100

105

110

115

120

LU CG FT MG EP IS

O
v
eh

e
a
d

 o
f

ru
n

n
in

g
 b

en
ch

m
a
k

r
+

fa
il

u
re

d
e
te

ct
io

n
 o

v
er

 p
la

in
 r

u
n

 o
f

b
e
n

ch
m

a
r
k

Nprocs=64 Class=C

No FD FD - 10 sec FD - 5 sec FD - 3 sec FD - 1 sec

Fig. 10.Overhead of Sporadic Fault Detection for 64 Processes

99.93 99.7
99.25

99.9 100.1

104.5

95

97

99

101

103

105

107

109

LU 128 CG 128 FT 128 MG 128 EP 128 IS 128

Without probing 15 procs/node

With Probing 15 procs/node+1 probing process over IB

Fig. 11. Overhead of Failure detection as a seperate process using IB(directly over IB, without
TCP)- 15 MPI process/node

101.9

99.5 99.4
100.3 100.3

104.5

95

97

99

101

103

105

107

109

LU 128 CG 128 FT 128 MG 128 EP 128 IS 128

Without probing 15 procs/node

With Probing 15 procs/node+1 probing process over ethernet

Fig. 12. Overhead of Failure detection as a seperate process using ETH (TCP over ETH) - 15
MPI process/node

Fig. 13.Overhead of Failure detection as a seperate process using ETH (directly over IB, without
TCP)- 16 MPI process/node

Fig. 14.Overhead of integrated periodic Failure detection for 128 processes (4 * 32 nodes) using
ETH

Fig. 15.Overhead of integrated sporadic Failure detection for 128 processes (4 * 32 nodes) using
ETH

