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Abstract

Large-scale parallel computing is relying increasingly
on clusters with thousands of processors. At such large
counts of compute nodes, faults are becoming common
place. Current techniques to tolerate faults focus on reac-
tive schemes to recover from faults and generally rely on a
checkpoint/restart mechanism. Yet, in today’s systems, node
failures can often be anticipated by detecting a deteriorat-
ing health status.

Instead of a reactive scheme for fault tolerance (FT), we
are promoting a proactive one where processes automati-
cally migrate from “unhealthy” nodes to healthy ones. Our
approach relies on operating system virtualization tech-
niques exemplified by Xen. This paper contributes an auto-
matic and transparent mechanism for proactive FT for ar-
bitrary MPI applications. It leverages virtualization tech-
niques combined with health monitoring and load-based
migration. We exploit Xen’s live migration mechanism for a
guest operating system (OS) to migrate an MPI task from a
health-deteriorating node to a healthy one without stopping
the MPI task during most of the migration. Our proactive
FT daemon orchestrates the tasks of health monitoring, load
determination and initiation of guest OS migration. Experi-
mental results demonstrate that live migration hides migra-
tion costs and limits the overhead to only a few seconds.
Furthermore, migration overhead is shown to be indepen-
dent of the number of nodes in our experiments indicating
the potential for scalability of our approach. Overall, our
enhancements make proactive FT a valuable asset for long-
running MPI application, particularly as a complementary
scheme to reactive FT using full checkpoint/restart schemes.
In the context ofOS virtualization, we believe that this is the
first comprehensive study of proactive fault tolerance where
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live migration is actually triggered by health monitoring.

1 Introduction

High-end parallel computing is relying increasingly on
large clusters with thousands of processors. At such
large counts of compute nodes, faults are becoming com-
mon place. For example, today’s fastest system, Blue-
Gene/L (BG/L) at Livermore National Laboratory with
65,536 nodes, was experiencing faults at the level of a dual-
processor compute card at a rate of 48 hours during initial
deployment [18]. When one node fails, a 1024-processor
midplane had to be temporarily shut down to replace the
card. A study by Los Alamos National Laboratory esti-
mates the mean time between failure (MTBF), extrapolat-
ing from current system performance [25], to be 1.25 hours
on a petaflop machine.

Current techniques to tolerate faults focus on reactive
schemes where fault recovery commonly relies on a check-
point/restart (C/R) mechanism. However, the Los Alamos
study [25] also estimates the checkpointing overhead based
on current techniques to prolong a 100 hour job (without
failure) by an additional 151 hours in petaflop systems.

Yet, in today’s systems, node failures can often be antic-
ipated by detecting a deteriorating health status using mon-
itoring of fans, temperatures and disk error logs. Recent
work focuses on capturing the availability of large-scale
clusters using combinatorial and Markov models, which
are then compared to availability statistics for large-scale
DOE clusters [31, 27]. Health data collected on these ma-
chines is used in a reactive manner to determine a check-
point interval that trades off checkpoint cost against restart
cost, even though many faults could have been anticipated.
Hence, instead of a reactive scheme for fault tolerance (FT),
we are promoting a proactive one that migrates processes
away from “unhealthy” nodes to healthy ones. Such an ap-
proach has the advantage that checkpoint frequencies can
be reduced as sudden, unexpected faults should become
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the exception. The feasibility of health monitoring at vari-
ous levels has recently been demonstrated for temperature-
aware monitoring,e.g., by using ACPI [2], and more gener-
ically, by critical-event prediction [28]. Particularly in
systems with thousands of processor, such as BG/L, fault
handling becomes imperative, yet approaches range from
application-level and runtime-level to the level of operating
system (OS) schedulers [8, 9, 10, 23]. These and other ap-
proaches are discussed in more detail in the related work.
They differ from our approach in that we exploit OS-level
virtualization combined with health monitoring and live mi-
gration.

We have designed and implemented an automatic and
transparent mechanism for proactive FT of arbitrary MPI
applications over Xen [5]. A novel proactive FT daemon
orchestrates the tasks of health monitoring, load determina-
tion and initiation of guest OS migration. To this extent,
we exploit the intelligent performance monitoring interface
(IPMI) for health inquiries to determine if thresholds are
violated, in which case migration should commence. Mi-
gration targets are determined based on load averages re-
ported by Ganglia. Xen supportslive migration of a guest
OS between nodes of a cluster,i.e., MPI applications con-
tinue to execute during much of the migration process [11].
In a number of experiments, our approach has shown that
live migration can hide migration costs such that the overall
overhead is constrained to only a few seconds. We further
show migration overhead to be independent of the number
of nodes in a system. Hence, live migration provides a scal-
able solution to realize FT. Our work shows that proactive
FT complements reactive schemes for long-running MPI
jobs. Specifically, should a node fail without prior health
indication or while proactive migration is in progress, our
scheme reverts to reactive FT by restarting from the last
checkpoint. Yet, as proactive FT has the potential to pro-
long the mean-time-to-failure, reactive schemes can lower
their checkpoint frequency in response, which implies that
proactive FT can lower the cost of reactive FT. In the context
of OS virtualization, we believe that this is the first compre-
hensive study of proactive fault tolerance where live migra-
tion is actually triggered by health monitoring.

The paper is structures as follows. Section 2 presents
the design and implementation of our health monitoring and
migration system with its different components. Section 3
describes the experimental setup. Section 4 discusses ex-
perimental results for a set of benchmarks. Section 5 con-
trasts this work to prior research. Section 6 summarizes the
contributions.

2 System Design and Implementation

A proactive fault tolerance system, as the name implies,
should provide at least two functions — proactive decision
making and load balancing (which in turn provides fault tol-

erance). An overview of the system components and their
interaction is depicted in Figure 1. Next, we describe how
each of these components of our system.

2.1 Fault Tolerance over Xen

To provide an effective fault tolerance system, we need
a mechanism that gracefully aids the relocation of an MPI
task, thereby enabling it to run on a different physical
node with minimum possible overhead. More importantly,
the MPI task should not be stopped while migration is in
progress. Xen provides exactly this capability. Xen is a
para-virtualized environment that requires the hosted vir-
tual machine to be adapted to run on the Xen virtual ma-
chine monitor (VMM). Applications, however, need not be
modified. On top of the VMM runs a privileged/host vir-
tual machine with additional capabilities exceeding thoseof
other virtual machines. We can start other underprivileged
guest virtual machines on that host VM using the command
line interface. Most significantly, Xen provideslive migra-
tion, which enables the guest VM to be transferred from one
physical node to another [11]. Xen’s mechanism exploits
the pre-migration methodology where all state is transferred
prior to target activation. Migration preserves the state of all
the processes on the guest, which effectively allows the VM
to continue execution without interruption. Migration can
be initiated by specifying the name of guest VM and the
IP of the destination physical node hosted by the VM. Live
migration occurs as a sequence of phases:

1. When the migration command is initiated, the host VM
inquires if the target has sufficient resources and re-
serves them as needed in a so-called pre-migration and
reservation step.

2. Next, the host VM starts sending the pages of the guest
VM to the destination node in a first iteration of the
so-called pre-copy step. During the transfer, the guest
VM is still running. Hence, it will modify data in pages
that were already send. Using page protection, a write
to already sent pages will initially result in a trap. The
trap handler then changes the page protection such that
subsequent writes will no longer trap. Furthermore,
the “dirty” page is logged so that it can later be identi-
fied.

3. The host VM now starts sending these logged pages it-
eratively in chunks during subsequent iterations on the
pre-copy step. Repeated page differences are sent till
a heuristic indicates that this diff process is no longer
beneficial, For example, the ratio of modified pages to
previously sent pages (in the last iteration) can be used
as a termination condition. At some point, the rate of
modified pages to transfer will stabilize (or nearly do
so), which causes a transition to the next step. The
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portion of the working set that is subject to write ac-
cesses is also termed in writable working set (WSS)
[11], which gives an indication of the efficiency of this
step. An additional optimization also avoids copying
modified pages if they are frequently changed.

4. Next, the guest VM is actually stopped, and the last
batch of modified pages is sent to the destination where
the guest VM restarts after updating all pages, which
comprises the so-called stop and copy, commitment
and activation steps.

The actual downtime due to the last phase has been re-
ported to be as low as 60 ms [11]. Keeping an active ap-
plication running on the guest VM will potentially result
in a high rate of page modifications. We observed a max-
imum actual downtime of two seconds for some experi-
ments, which shows that HPC codes may have higher rates
of page modifications. The overall overhead contributed to
the total wall-clock time of the application on the migrating
guest VM can be attributed to this actual downtime plus the
overhead associated with the active page-difference opera-
tion during migration. Experiments show that this overhead
is negligible compared to that of the total wall-clock time
for HPC codes.

Figure 1. Overall setup of the components

2.2 Heath monitoring with OpenIPMI

Any system that claims to be proactive must effectively
predict an event before it occurs. As the events to be pre-
dicted are node failures in our case, a health monitoring
mechanisms is needed. To this extent, we employ the In-
telligent Platform Management Interface (IPMI). IPMI is
an increasingly common management/monitoring interface
that provides a standardized message-based mechanism to
to monitor and manage hardware, a task performed in the

past by software with proprietary interfaces.1 The Base-
board Management Controller (BMC) is equipped with sen-
sors to monitor different properties. For example, sensors
provide data on temperature, fan speed, and voltage. IPMI
provides a portable interface for reading these sensors to
obtain data for health monitoring.

OpenIPMI provides an open-source higher-level abstrac-
tion from the raw IPMI message-response system. We use
the OpenIPMI API to communicate with the Baseboard
Management Controller of the backplane and to retrieve
sensor readings. Based on the readings obtained, we can
evaluate the health of the system. We have implemented a
system with periodic sampling of the BMC to obtain read-
ings of different properties. OpenIPMI also provides an
event-based mechanism allowing one to specify an event
(e.g., a sensor reading exceeding a threshold value) and reg-
ister a notification request. When the specified event actu-
ally occurs, notification is triggered by activating an asyn-
chronous handler. This event-based mechanism might of-
fload some overhead from the application side since the
BMC takes care of notifying back when an event occurs.
Unfortunately, OpenIPMI did not provide stable event no-
tification at the time of writing. Hence, we had to resort to
the more costly periodic sampling alternative.

2.3 Load Balancing with Ganglia

When a node failure is predicted due to deteriorating
health, as indicated by the sensor readings, we need to se-
lect a target node to migrate the virtual machine to. We
utilize Ganglia, a widely used scalable distributed monitor-
ing system for HPC systems, to select the target node in the
following manner. All nodes in the cluster run a daemon
that monitors local resource (e.g., CPU usage) and sends
multicast packets with the monitored data. All nodes listen
to such messages and update their local view in response.
Thus, all nodes have an approximate view of the entire clus-
ter.

By default, Ganglia measures the CPU usage, memory
usage and network usage among others. Ganglia provides
extensibility in that application-specific metrics can also be
added to the data dissemination system. We need to know
whether a physical node runs a virtual machine or not. Such
information can be added to the existing Ganglia infrastruc-
ture. Ganglia provides a command line interface, gmetric,
to this respect. An attribute specified through the gmetric
tool indicates whether the guest VM is running or not on a
physical node. Once added, we obtain a global view (of all
nodes) available at each individual node. Our implementa-
tion selects the target node for migration as the one which
does not run a guest virtual machine and has the lowest load

1Alternatives to IPMI exist, such as lmsensor, but they tend to be
system-specific (x86 Linux) and may be less powerful. Also, disk mon-
itoring can be realized portably with SMART.
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based on CPU usage. We can further extend this function-
ality to check if the selected target node has enough un-
used memory to handle the incoming virtual machine. Even
though the Xen migration mechanism claims to check the
availability of sufficient memory on the target machine be-
fore migration, we encountered instances where migration
was initiated and the guest VM crashed on the target due to
insufficient memory. Furthermore, operating an OS at the
memory limit is known to adversely affect performance.

2.4 PFT Daemon Design

Before explaining the design of the Proactive Fault Tol-
erance PFT daemon (PFTd), let us explain the way each
node in the cluster is set up (see Figure 1). First, Xen Vir-
tual Machine Monitor (VMM) is installed. On top of the
VM runs a privileged/host virtual machine. In addition, a
guest virtual machine runs on top of the Xen VMM. The
privileged virtual machine hosts, among others, a daemon
for Ganglia, which aids in selecting the target node for mi-
gration. The guest virtual machines form a multi-purpose
daemon (MPD) ring [7] on which the MPI application can
run (using MPICH-2). Other MPI runtime systems would
be handled equally transparently by Xen for the migration
mechanism.

Figure 2. Proactive Fault Tolerance Daemon

Next, the design of the proactive fault tolerance daemon
(PFTd) is detailed. In the above setup, each node runs an
instance of the PFTd on the privileged VM, which serves
as the primary driver of the system. The PFTd gathers de-

tails, interprets them and makes decisions based on the data
gathered. The PFTd provides primarily three components:
Health monitoring, decision making and load balancing (see
Figure 2). After initialization, the PFTd monitors the health
state and checks for threshold violations. Once a violationis
detected, Ganglia is contacted to determine the target node
for migration before actual migration is initiated.

Initially, when PFTd starts up, it reads a configuration
file containing a list of parameters to be monitored. In addi-
tion to a parameter name, the lower and upper thresholds for
that particular parameter can also be specified. For exam-
ple, since we have dual processor machines, we specify the
safe temperature range for two CPUs and the valid speed
range for system fans. Next, PFTd initializes the OpenIPMI
library and sets up a connection for the specified network
destination (determined by the type of interface,e.g., as
LAN, remote hostname and authentication parameters, such
as userid and password). A connection to the BMC becomes
available after successful authentication. A domain needs
to be created (using the domain API) so that various enti-
ties (fans, processors, etc.) are attached to it. The sensors
monitor these entities.

OpenIPMI, as we discussed earlier, provides an event-
driven system interface, which is somewhat involved, as
seen next. We need to register a handler for an event with
the system. Whenever the event occurs, that particular han-
dler will be invoked. While creating a domain, a handler
is registered, which will be invoked whenever a connection
changes state. The connection change handler will be called
once a connection is successfully set up. Within the con-
nection change handler, a handler is registered for an entity
state change. This second handler will be invoked when a
new entities are added. (Upon program start, it discovers
entities one by one and adds them to the system.) Inside
the entity change handler, a third handler is registered for
catching state changes of sensor readings. It is within the
sensor change handler that PFTd discovers various sensors
available from the BMC and records their internal sensor
identification numbers for future reference. Next, the list
of requested sensors is validated against the list of those
available to report discrepancies. At this point, PFTd reg-
isters a final handler for reading actual values from sensors
by specifying the identification numbers of the sensors indi-
cated in configuration file. Once these values are available,
this handler will be called and PFTd obtains the readings on
a periodic basis.

After this lengthy one-time initialization, the PFTd goes
into a health monitoring mode by communicating with the
BMC. It then starts monitoring the healthvia periodic sam-
pling of values from the given set of sensors before compar-
ing it with the threshold values. In case any of the thresholds
are exceeded, control is transferred to the load balancing
module of the PFTd. Next, a target node is selected to mi-
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grate the guest VM to. The PFTd then contacts Ganglia to
obtain the least loaded node. After target node is identified,
the PFTd issues a migration command, which initiates live
migration of the guest node from the “unhealthy” node to
the identified target node. After the migration is complete,
PFTd can raise an alarm to inform the administrator about
the change and also log the sensor values which caused the
disruption for further investigation.

3 Experimental Framework

Experiments were conducted on a 16 node cluster. The
nodes are equipped with two AMD Opteron-265 processors
(each dual core) and 2 GB of memory interconnected by a 1
Gbps Ethernet switch. The Xen 3.0.2-3 Hypervisor/Virtual
Machine Monitor is installed on all the nodes. The nodes
run a para-virtualized Linux 2.6.16 kernel as a privileged
virtual machine on top of the Xen hypervisor. The guest
virtual machines are configured to run the same version of
the Linux kernel as that of the privileged one. They are con-
strained within 1 GB of main memory. The disk image for
the guest VMs is maintained on a centralized server. These
guest VMs can be diskless-booted on the Xen hypervisor
using PXE-like netboot via NFS. Hence, each node in the
cluster runs a privileged VM and a guest VM. The guest
VMs form an MPICH-2 MPD ring on which MPI jobs run.
The Proactive Fault Tolerance Daemon (PFTd) runs on the
privileged VM and monitors the health of the node using
OpenIPMI. The privileged VMs also runs Ganglia’s gmond
daemon. The PFTd will inquire with gmond to determine
a target node in case the health of a node deteriorates. The
target node is selected based on resource usage considera-
tions (currently only process load). As the selection criteria
are extensible, we plan to consult additional metrics in the
future (most significantly, the amount of available memory
given the demand for memory by Xen guests). In the event
of health deterioration being detected, the PFTd will mi-
grate the guest VM onto the identified target node.

We have conducted experiments by running several
benchmarks on the MPD ring over guest VMs. Health
deterioration on a node is simulated by running a supple-
mentary daemon on the privileged daemon, which migrates
the guest VM between the original node and a target node.
The supplementary daemon synchronizes migration control
with the MPI task running on the guest VM by utilizing the
shared file system (NFS in our case) to indicate progress
/ completion. To assess the performance of our system, we
measure the wall-clock time for a benchmark with and with-
out migration. In addition, the overhead during live migra-
tion can be attributed to two parts: (1) overhead incurred
due to diff operations on the pages and (2) the actual time
for which the guest VM is stopped. To measure the latter,
the Xen user tools controlling so-called “managed” migra-
tion [11] are instrumented to record the timings and, hence,

the actual downtime for the VM is measured.
Results were obtained for the NAS parallel benchmarks

(NPB) version 3.2.1. The NPB suite was run on top of the
experimental framework described in the previous section.
Out of the NPB suite, we obtained results for the BT, CG,
EP, LU and SP benchmarks. Class B and Class C data in-
puts were selected for runs on 4, 8 or 9 (depending on input
requirements) and 16 nodes. Other benchmarks in the suite
were not suitable,e.g., IS executes for too short a period to
properly gauge the effect of immanent node failures while
MG required more than 1 GB of memory (the guest mem-
ory watermark) for a class C run.

4 Experimental Results
As a base metric for comparison, all the benchmarks

were run without migration to assess a base wall-clock time
(averaged over 10 runs per benchmark). Also, the results
obtained with migration are verified for correctness. The
benchmarks completed without error in every instance af-
ter migration. The experiments are organized here in three
areas. One focuses on the overheads associated with node
failures. (We use the term failure in the following inter-
changeably with immanent failure due to health monitor-
ing.) The second one assesses the scalability of the solution.
The third measures the total migration time.

We also conducted a series of experiments to measure the
overhead associated with single/double node failures and to
observe the behavior of task and problem scaling on migra-
tion. The results obtained are explained in detail below.

4.1 Overhead for Single-Node Failure
The first set of experiments aims at estimating the over-

head incurred in one migration (equivalent to one immanent
node failure).

����
������
�������
����

���	
��
��
�������
������������ ���������

Figure 3. NPB Class C with 4 nodes

Using our supplementary PFT daemon, running on the
privileged VM, migration is initiated and the wallclock time
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is recorded for the guest VM including the corresponding
MPD ring process on the guest. As depicted in the Figure
3, the wall-clock time for execution with migration exceeds
than that of the base run by 1-4% depending on the applica-
tion. This overhead can be attributes to the migration over-
head. The NPB codes BT and SP ran the longest for Class
C at 16-17 minutes for 4 nodes. Projecting these results to
even longer running applications, the overhead of migration
can become almost insignificant considering current mean-
time-to-failure (MTTF) rates.

4.2 Overhead for Double-Node Failure

In a second set of experiments, we assessed the overhead
of two migrations (equivalent to two simultaneous node
failures) in terms of wall-clock time. Again, we observe a
relatively small overhead of 4-8% over the base wall-clock
time, as depicted in the Figure 4. Even though the proba-
bility of a second failure of a node decreases exponentially
(statistically speaking) when a node had already failed, our
results show that even multi-node failures can be handled
without much overhead, provided there are enough spare
nodes that serve as migration targets.
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Figure 4. NPB Class B over 4 nodes

4.3 Effect of Problem Scaling

We ran the NPB suite with class B and C inputs on the
same number of nodes (4 nodes) to study the effect of mi-
gration on scaling the task size per node. Since we are con-
cerned only about the overhead in addition to the base wall-
clock execution time for the benchmarks, we plot only the
absolute overhead encountered due to migration. Also, we
distinguish the overhead in terms of actual downtime of the
virtual machine and other overheads (due to the page differ-
ence operation, cache warm-up at the destination, etc.), as
discussed in the design section. Figure 5 shows that in all
cases (except for CG), as the task size increases from Class
B to Class C, we observe an increase in overhead.
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Figure 5. Migration Overhead for 4 Nodes

This behavior is somewhat expected. Problem scaling
leads to an increased amount of modified pages while mi-
gration is in progress. This, in turn, increases the overhead
of repeated transfers of modified pages. We also observe
an anomaly in CG that may be due to a number of rea-
sons. The exact overhead associated with an application
entirely depends on the moment the migration is initiated.
If migration coincides with a global synchronization point
(a collective, such as a barrier), we expect the overhead to
be smaller compared than that of a migration initiated dur-
ing a computation-dominated region.

4.4 Effect of Task Scaling

We next examined the behavior of the migration by
increasing the number of nodes involved in computation.
Since our focus is on the overhead, we have depicted only
the overhead observed in all the cases. We ran benchmarks
with Class C inputs on varying number of nodes (4, 8/9 and
16). The results are shown in the Figure 6. As in task scal-
ing, we distinguish actual downtime from other overheads.
When increasing the number of nodes from 4 to 8, the over-
head of BT, EP and LU actually decreases. Conversely, the
remaining codes show increasing overhead. From 8 to 16
nodes, the overhead also increases for all benchmarks ex-
cept for SP. This can be attributed to additional communi-
cation overhead combined with smaller data sets per nodes.
This communication overhead adversely affects the time re-
quired for migration. The 16-node overhead for BT and LU
at 60 and 50 seconds, respectively, is only explained in part
by additional communication overhead. In fact, measure-
ments show that only 32 and 15 seconds for BT and LU are
accounted for by migration duration exhibited by the Xen
migration directive. Some of the remaining cost may be due
to activation on the target node, cache warm-up and TLB
misses, a direction that is currently under investigation.
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Figure 6. Migration Overhead, Class C Inputs

4.5 Scalability (Total Execution Time)

Since these experiments were conducted on 4, 8/9 and
16 nodes, the results provide initial insight to the scalability
of the design. Figure 7 depicts the speedup on 8/9 and 16
nodes with respect to the wall-clock time on 4 nodes. The
figure also shows the relative speedup observed with and
without migration. The lightly colored region of the bars
represent the normalized execution time of the benchmarks
with one node failure. The aggregate value of the lightly
and the dark-colored portions of the bars represent the ex-
ecution time normalized to the equivalent runtime without
node failures. Hence, the dark-colored regions of the bars
represent the loss in speedup due to migration. As we see
from the figure, the speedup with migration is close to that
achieved without migration.
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Figure 7. NPB Class C with 4, 8/9, 16 nodes

4.6 Cache Warm-up Time

The reported overhead includes cache-warm at the mi-
gration target. We tried to quantify the cache warm-up ef-

fect due to starting the guest VM and then filling the caches
with the application’s working set. The Opteron processors
have 64KB split I+D 2-way associative L1 caches and two
16-way associative 1MB L2 caches, one per core. We de-
signed a microbenchmark to determine the warm-up over-
head for the size of the entire L2 cache. Our experiments
indicate an approximate cost of 1.6 ms for a complete refill
of the L2 cache. Compared to the actual downtime depicted
in Figure 5, this warm-up effect is relatively minor com-
pared to the overall restart cost.

4.7 Total Migration Time

We already discussed the overhead incurred due to the
migration activity in detail. We now give an insight into the
amount of time it takes on the host VM to complete the mi-
gration process. On average, 13-14 seconds are required for
relocating a guest virtual machine with 1 GB of RAM that
does not execute any applications. Hence, all the migration
commands have to be initiated prior to actual failure by at
least this minimum bound.

We also obtained detailed timing information during the
experiments to determine the time required to complete the
migration command for the above benchmarks. Migration
duration ranged between 14-40 seconds. This overhead in-
cludes a minimum of 13 seconds to transfer a 1 GB inactive
guest VM. Figure 8 shows the time taken from initiating
migration to actual completion on 4 nodes for the NPB with
Class B and C inputs. Due to the increased number of mod-
ified pages from class B to class C, the time taken for mi-
gration increases for BT and SP. For CG, EP and LU, in
contrast, little variation is observed.
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Figure 8. Migration Duration for 4 Nodes

Figure 9 shows the migration duration for different num-
bers of nodes for NPB with Class C inputs. For the input-
sensitive code BT and SP, we observe a decreasing dura-
tion as the number of nodes increases. Other codes experi-
ence nearly constant migration overhead independent of the
number of nodes. This again asserts the scalability of the
solution.
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Figure 9. Migration Duration for 4/8/16 Nodes

The actual migration duration largely depends on the ap-
plication and the network bandwidth. Migration duration
is a relevant metric for proactive FT. The health monitor-
ing system needs to indicate deteriorating health through a
violated threshold prior to the actual failure of a node. Mi-
gration duration provides the metric to bound the minimum
alert distance required prior to failure to ensure successful
migration completion. Future work is needed in the area
of observing the amount of time given between a detected
health deterioration and the actual failure in practice. We
are not aware of any work to this extent.

5 Related Work

A number of systems have been developed that com-
bine FT with the message passing implementing MPI,
ranging from automatic methods (checkpoint-based or log-
based) [32, 29, 6] to non-automated approaches [3, 14].
Checkpoint-based methods commonly rely on a combina-
tion of OS support to checkpoint a process image (e.g., via
Berkeley Labs Checkpoint Restart (BLCR) Linux module
[13]) combined with a coordinated checkpoint negotiation
using collective communication among MPI tasks. Log-
based methods generally rely on logging messages and pos-
sibly their temporal ordering, where the latter is required
for asynchronous approaches. Non-automatic approaches
generally involve explicit invocation of checkpoint routines.
Different layers have been utilized to implement these ap-
proaches ranging from separate frameworks over the API
level to the communication layer or a combination of the
two. While higher-level layers are perceived to impose less
overhead, lower-level layers encompass a larger amount
of state,e.g., open file handles. Virtualization techniques,
however, have not been widely used in HPC to tolerate
faults, even though they capture even more state (includ-
ing the entire IP layer). This paper takes this approach
and shows that overheads are quite manageable, even in the
presence of faults, making virtualization-based FT in HPC

a realistic option.

Virtualization as a technique to tolerate faults in HPC
has been studied before showing that MPI applications run
over a Xen virtualization layer [5] result in virtually no over-
heads [17]. To make virtualization competitive for message-
passing environments, OS bypassing is required for the net-
working layer [22, 21]. This paper leverages Xen as an ab-
straction to the network layer to provide FT for MPI jobs.
It does not exploit OS bypass for networking as it is not an
integrated component of Xen. Yet, it does not preclude such
extensions without changes to our work in the future. Our
FT support leverages the Xen live migration mechanism
that, in addition to disk-based checkpointing (and restart-
ing) of an entire guest OS, allows a guest OS to be relocated
on another machine [11]. During the lion’s share of the mi-
gration’s duration, the guest OS remains operational while
first an initial system snapshot and then a smaller amounts
of state (modified since the last snapshot) are transferred.
Finally the guest OS is frozen and final changes are commu-
nicated before the new target node is activating the migrated
guest OS. This guest OS still uses the same IP number (due
to automatic updates of routes at the Xen host level) and
is not even aware of its relocation (other than a short lapse
of inactivity). We exploit live migration for proactive FT
to move MPI tasks from unstable (or unhealthy) nodes to
stable (healthy) ones. While the FT extensions to MPI cited
above focus on reactive FT, our approach emphasizes proac-
tive FT as a complementary method (at lower cost). Instead
of costly recovery after actual failures, proactive FT antici-
pates faults and migrates MPI tasks onto healthy nodes.

Proactive FT is a scheme to move computation away
from resources in anticipation of imminent faults. Past work
has shown the feasibility of proactive FT [23]. More recent
work promotes FT in Adaptive MPI using a combination of
(a) object virtualization techniques to migrate tasks and (b)
causal message logging within the MPI runtime system of
Charm++ applications [8, 9, 10]. Causal message logging is
due to Elnozahyet al. [?]. Our work focuses on assessing
the overhead of Xen-based proactive FT for MPI jobs. It
contributes an integrated approach to combine health-based
monitoring with OpenIPMI [1] to predict node failures and
proactively migrate MPI jobs to healthy nodes. In contrast
to the Charm++ approach, it is coarser grained as FT is pro-
vided at the level of the entire OS, thereby encapsulating
one or more MPI tasks and also capturing OS resources
used by applications, which are beyond the MPI runtime
layer.

FT support at different different levels has different
merits due to associated costs. Process-level migration
[26, 33, 19, 4, 12, 13] may be slightly less expensive than
virtualization support. Yet, the former may only be applica-
ble to HPC codes if certain resources do not need to be cap-
tured that virtualization covers — at the cost of increased
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memory utilization due to host and guest OS consumption
for virtualization. A system could well support different FT
options to let the application choose which one best fits it’s
code and cost constraints.

While integrated with Xen’s live migration, our solution
is, in it’s methodology, equally applicable to other virtual-
ization techniques, such as live migration strategies imple-
mented in VMWare’s VMotion or NomadBIOS [15], a solu-
tion closely related to Xen’s live migration, which is imple-
mented over the L4 microkernel [16]. Even non-live migra-
tion strategies under virtualization [30, 20, 34, 24] couldbe
integrated but would be less effective due to their stop-and-
copy semantics. Demand-based migration [35], however, is
unsuitable in a proactive environment as it does not tightly
bound the migration duration.

6 Conclusion

Node failures on contemporary computers can often be
anticipated by monitoring health and detecting a deterio-
rating status. To exploit anticipatory failures, we are pro-
moting proactive fault tolerance (FT). Instead of a reactive
scheme proactive FT system, processes automatically mi-
grate from “unhealthy” nodes to healthy ones. This is in
contrast to a reactive scheme where recovery occurs in re-
sponse to already occurred failures.

We have contributed an automatic and transparent mech-
anism for proactive FT for arbitrary MPI applications.
Combining virtualization techniques with health monitor-
ing and load-based migration, we assess the viability of
proactive FT for contemporary HPC clusters. Xen’s live mi-
gration allows a guest OS to be relocated to another node,
including running tasks of an MPI job. We exploit this fea-
ture when a health-deteriorating node is identified, which
allows computation to proceed on a healthy node, thereby
avoiding a complete restart necessitated by node failures.
The live migration mechanism allows execution of the MPI
task to progress while being relocated, which reduces the
migration overhead for HPC codes with large memory foot-
prints that have to be transferred over the network. Our
proactive FT daemon orchestrates the tasks of health moni-
toring, load determination and initiation of guest OS migra-
tion. Experimental results confirm that live migration hides
the costs of relocating the guest OS with its MPI task. The
actual overhead varies between one and sixteen seconds for
the NBP codes. We also observe migration overhead to be
scalable (independent of the number of nodes) in our test
bed. Our work shows that proactive FT complements re-
active schemes for long-running MPI jobs. As proactive
FT has the potential to prolong the mean-time-to-failure,
reactive schemes can lower their checkpoint frequency in
response.
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