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Abstract

Performance prediction across platforms is increasingly
important in today’s diverse computing environments. As
both programs and their developers face unprecedented
wide choices in execution platforms, cross-machine execu-
tion time prediction with reasonable accuracy equally ben-
efits scheduling decisions of grid jobs as well as scientists
in their research and development planning.

In this paper, we investigate an affordable method
approaching cross-platform performance translation,
based on the notion of relative performance between two
platforms. We argue that relative performance can often be
observed without running a parallel application in full. This
paper shows that it suffices to observe very short partial ex-
ecutions of an application since most parallel codes are it-
erative and behave in a predictable manner after a minimal
startup period. This prediction approach is observation-
based and does not require program modeling, code anal-
ysis, or architectural simulation. Our performance results
(using four real-world parallel simulation codes and a to-
tal of ten parallel machines with eight distinct architectures)
demonstrate that performance prediction derived from par-
tial application executions can yield highly accurate results
at a low cost.

1. Introduction
Users of high-performance computing (HPC) platforms

tend to have access to more and more geographically dis-
tributed computational resources. Unfortunately, both the
resources and the applications in today’s distributed com-
puting environment are highly heterogeneous and of great
complexity. This makes it difficult to determine the resource
usage of a specific application on a wide range of execution
platforms. That information is essential in HPC users’ de-
cision making when they need to choose a system to obtain
access to (or to own) for running their programs, especially
for long production executions. For example, it would be
helpful to provide scientists with performance estimations
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of their applications on several large clusters before they de-
cide which cluster to apply for allocations on, and further,
how many service units to request on that cluster. Overly in-
accurate estimations often cause users to run out of service
allocation in the middle of their grant or leave a lot of ser-
vice units unused when the grant expires, affecting their fu-
ture allocation application.

The same information is also instrumental in helping a
grid resource scheduler to efficiently schedule user jobs. A
“meta-scheduler” would like to know how long a job will
run on each participating site to improve global load bal-
ance and overall job throughput. When the job is sched-
uled to run at a specific grid-participating site, the local job
scheduling system there also needs the job’s estimated max-
imum execution time, which is used as a parameter in their
scheduling algorithms [22, 27]. Overly inaccurate estima-
tions here may result in excessive wait times in queues or in
forced premature job termination (cancellation) during exe-
cution.

For many parallel applications, computational resource
usage on a given execution platform is correlated to their ex-
ecution time on this platform. In this paper, we study cross-
platform execution time prediction for efficient and accurate
resource usage estimation as an affordable utility for HPC
users and grid schedulers.

There have been numerous studies on parallel programs’
performance prediction and many of them can work on mul-
tiple platforms (see Section 4). These prior efforts have
mostly focused on performance modeling or program sim-
ulation. However, the size, diversity, and extensibility of
today’s HPC environments pose new challenges that tra-
ditional performance prediction approaches were not de-
signed to address.

First, it is increasingly difficult to obtain knowledge re-
garding both the applications and the execution platforms.
This makes it very challenging for traditional performance
prediction to become a general service, rather than a case-
by-case effort for code optimization. The application de-
velopers should not be required to have detailed knowl-
edge about all hardware platforms available. Meanwhile, a
job scheduler should not be required to have application-
specific knowledge. Second, most traditional performance
prediction approaches are too expensive for everyday re-
source usage estimation. For fairly accurate results, the
cost of predictions may far exceed the applications’ ex-



ecution time. Such approaches normally require both ap-
plication analysis and system parameter benchmarking, or
architecture-specific simulator development.

In contrast, our main approach is observation-based
performance prediction, where we enable very short “test
drives” of the applications on multiple candidate platforms
to quickly derive the execution time of much longer runs.
The results of these test drives can be stored in a database
for reusing in future predictions.

One of the key innovations of our work is its reliance
on the novel concepts of relative performance and partial
execution. We observe that HPC users often have one or
more reference computers to develop and test applications.
Consequently, our work investigates inter-platform perfor-
mance translation.

More specifically, this paper aims to answer the follow-
ing questions through our empirical study:

• Can we predict the overall execution time of a large-
scale application on a target system using the combi-
nation of its known performance on a reference system
and the relative performance between the two systems
derived from a very short run of the application?

• How early in this application’s execution can we
reasonably capture its cross-platform relative perfor-
mance?

• Will this early observation produce valid predictions
for applications with data sizes or complexity that dy-
namically change as the computation progresses?

• Can we extrapolate the relative performance knowl-
edge collected from partial executions to predict the
application’s execution time in computing a different
problem size or using a different number of proces-
sors?

• Will the choice of a reference system be significant?
I.e., when an application has known performance data
on multiple systems, will we produce similar predic-
tions when using different machines as the reference
system?

Our results from four production-scale parallel simula-
tion codes on ten different large parallel computers show
very promising prediction accuracy and low prediction
overhead: in most cases, with a short execution that takes
1% or less of the total execution time, we obtain an over-
all execution time prediction accuracy of 97% or higher.

The rest of the paper is organized as follows. Section
2 describes our prediction methods and performance trans-
lation algorithms. Section 3 presents experimental results.
Section 4 summarizes related work and Section 5 concludes
the paper.

2. Methodology and System Design
Scientific applications generally have computationally

intensive kernels. The performance of such applications
is often constrained by the floating point resources avail-
able, memory bandwidth, and the characteristics of inter-
processor communication, via either shared memory or
message passing. Due to these constraints, performance pre-
diction is often challenging. At the same time, scientific ap-
plications are characterized by their regularity in the course
of executions, specifically with regard to array reference
patterns (at the micro level) and alternating phases of com-
putation and communication or I/O (at the macro level). It
is this regularity that we exploit for our observation-based
performance prediction, in contrast to traditional model- or
simulation-based predictions.

The repetitive nature of scientific applications at the
macro level is generally a property of the computational
model that is based on the notion of convergence in dif-
ferent mathematical approximation methods. Many, if not
most, parallel applications are timestep-based. In such ap-
plications, a timestep is one step of computation followed
by inter-processor communication to update data. Timestep
computation is repeated until the results converge (e.g.,
when the simulation object reaches a stable state), or the
computation has completed a given number of timesteps.

Traditional model-based or simulation-based approaches
to performance prediction generally consider the entire exe-
cution of an application and study the interplay between the
program and the architecture in a case-by-case manner. For
an observation-based approach, executing the entire appli-
cation takes too long to be acceptable. Instead, our approach
utilizes partial execution for a limited number of timesteps
to capture the relative performance across platforms for an
application. We argue that due to the highly repetitive na-
ture of scientific codes, the relative performance observed
in this short partial execution is likely to sustain through the
entire run. When used in conjunct with known full execu-
tion time of a particular application on a reference platform,
this result can then be utilized to perform cross-platform ex-
ecution time predictions in a very cost-effective way.
2.1. Partial Execution

We have devised an API in support of partial execution
for arbitrary applications on clusters. While the design was
inspired by the properties of timesteps, the API can also
be used in the absence of explicit timesteps — as long as
the activities between two consecutive calls closely repre-
sent repetitive phases in the application’s execution. In the
rest of the paper, we use the term “timestep” when refer-
ring to these periodic phases. The API for partial execution
is as follows:
• init timestep(): This is an optional call to time-stamp

the beginning of an execution. For applications with
large start-up overhead, e.g., due to reading large data



sets from secondary storage, this call should be used to
separate initialization overhead from subsequent regu-
lar timesteps.

• begin timestep(): This call identifies the beginning of
a timestep and allows counters for metrics to be reset
between timesteps.

• end timestep(maxsteps, rampsteps): This call indicates
the end of a timestep and implements the logging of
metrics pertinent to the timestep work. The first pa-
rameter indicates the total number of timesteps before
partial execution prematurely terminates the program’s
execution. The second parameter indicates the number
of ramp-up timesteps that should be ignored in the log-
ging activity.

In practice, initialization is a one-time overhead typically
with negligible cost to long-running applications, so the
initialization call can often be omitted. If the ramp-up pa-
rameter is not specified, our implementation uses a default
value of 1, assuming the ramp up is finished by the sec-
ond timestep. Excluding the first timestep allows caches to
warm up before timing results enter the performance model.
It also allows us to omit the initialization API call since ini-
tialization overhead is incurred prior to any timings.

Partial execution utilizing this API allows one to ob-
tain metrics on a per-timestep basis and limits the num-
ber of timesteps an application executes. Once this num-
ber is exceeded, the application will be terminated prema-
turely. Hence, the objective of partial execution is not to ob-
tain numerical results from scientific codes but to quickly
and cheaply capture their rudimentary execution behavior.

The metrics obtained during partial execution can then
be utilized to predict the performance of an application run
across different platforms, as detailed below.
2.2. Cross-Platform Performance Prediction

Our approach of observation-based performance pre-
diction is based on two sets of data, one from the refer-
ence platform, where we have more performance knowl-
edge about the application in question (denoted as A), and
one from the target platform, where we want to predict the
full execution time.

We assume that Tref , the full execution time of A on
the reference platform, or num steps, the total number of
timesteps in the full execution, is available. This is reason-
able considering that there is at least one “base platform”
where the code is developed or tested, and researchers typ-
ically keep track of the overall statistics for long-running
jobs. In addition, we perform the same partial executions
of A on the reference platform as we do on the target plat-
form (see below).

On the target platform, we carry out a set of partial ex-
ecutions of A for a limited number of timesteps. Both the
number of partial executions and the number of timesteps

per partial execution can be small, as will be demonstrated
in the experimental section. The objective of the approach
is to inflict minimal time overhead for any executions on
both platforms so that performance predictions can be pro-
vided quickly. This is especially important when scientists
need to select their preferred target from a large set of can-
didate platforms (based on relative performance, i.e., ma-
chine M1 is x times faster than machine M2). With known
execution times on the reference platform, one can further
estimate the absolute performance to supply tight, yet rel-
atively safe bounds on wall-clock time for their submitted
jobs, long before having observed a complete run on the tar-
get platform, which can takes hours or days.

Base Model: Our predictions are based on the average per-
timestep execution time for a set of repeated partial exe-
cutions on the target platform to obtain the overhead per
timestep tstep and the initialization tinit. The per-timestep
averages from multiple runs are then averaged once more
over the first n timesteps, e.g., up to the number of timesteps
within the partial execution. We call this “prediction using
cumulative averages” (or running averages). The observed
relative performance Rtar ref between the target and the
reference platform can then be calculated using the result-
ing average per-timestep overhead tavg step :

Rtar ref =
ttar avg step

tref avg step

Equipped with the above observed relative performance
and known execution time Tref on the reference platform,
we can estimate absolute performance of A on the target
platform Ttar est as:

Ttar est = ttar init + Rtar ref × (Tref − tref init)

If Tref is not available but the total number of timesteps,
num steps, is known, we can estimate Ttar est as:

Ttar est = ttar init + ttar avg step × num steps

The accuracy of the above estimation can be assessed by
comparing Ttar est, the predicted absolute performance of
A, with Ttar, the measured performance on the target plat-
form:

accuracy =
Ttar est

Ttar

Note that a full execution on the target platform for this met-
ric is only required to assess the model. However, when this
prediction technique is applied to a grid job scheduler, one
of our target use cases, such full execution time may be ob-
tained at no additional cost from the batch job accounting
system. Such “free” information can be conveniently fed
back to the prediction model for its self-evaluation and self-
adaptation.



Obviously, when the initialization time tinit is very small
in the overall execution time, the prediction accuracy ap-
proximates the observed relative performance during the
short partial executions against the overall relative perfor-
mance calculated from actual full executions on both plat-
forms.

Filter Model: The base model of cumulative averages suf-
fices for simple applications and platforms without run-
time/OS intervention that affects execution time. To further
generalize the model to compensate for fluctuations in exe-
cution time, a “filter model” is introduced next. The objec-
tive of the filter model is to handle two types of commonly
known fluctuations. First, initial fluctuations may occur for
multiple timesteps, and not just for initialization code prior
to the first timestep. Such fluctuations may be due to warm-
up effects of resources, such as caches, but they can also
originate from runtime/OS intervention, such as code and/or
data migration to better utilize the resources of a given plat-
form. Second, periodic fluctuations are common for addi-
tional work performed every k-th timestep, such as check-
pointing and I/O for visualization.

The filter model proposed in the following captures both
initial and periodic fluctuations. During a partial execution,
our API will perform online processing of collected per-
timestep timing data. It calculates the ratio between each
current timestep with the previous k timesteps and considers
the current fluctuation significant if this ratio differs from 1
by a threshold δ or more. Both k and δ are tunable. In prac-
tice, we have found that k = 5 and δ = 0.05 allow us to
identify both one-time anomalies and periodic I/O activi-
ties.

Sliding Window Filter Model: We address recurring I/O
activities in our prediction by utilizing a sliding window
of averages instead of cumulative averages. Intuitively, this
method uses the average of timestep times collected in a
contiguous window of size w. Therefore, to ensure that we
include the correct proportion of computation and periodic
activities, such as I/O, we need to use a window size that
equals the observed period k. The difference between the
sliding window vs. the cumulative models materializes af-
ter w timesteps. In the presence of I/O, the cumulative ap-
proach would be subject to periodic fluctuation while the
sliding window provides stability.

With the filter and sliding window models, one of the
challenges is to distinguish between random anomalies and
periodic fluctuations. We apply heuristics (a) to compare
partial execution times from multiple platforms (it is more
likely an anomaly if it only occurs on one system) and (b) to
detect recurring spikes/dips (it is more likely an anomaly if
it only occurs once, especially close to the beginning of ex-
ecution). If we detect such a one-time anomaly during par-
tial executions, we treat it as a part of the one-time initial-

ization cost and apply our prediction algorithm accordingly
as described earlier in this section.

Because this prediction is observation-based, as long as
A is executed in the same way across platforms, prediction
accuracy will not be affected by various system characteris-
tics, such as different
• processor families, generations and clock frequencies,
• bus interconnects (for shared-memory systems),
• communication interconnects (for networked clusters),
• memory and cache configurations,
• connections from compute nodes to shared disks, and
• system software, such as operating systems and I/O li-

braries.
Our experiments in Section 3 demonstrate the above. In ad-
dition, Section 3 presents irregularities in timestep execu-
tion times due to system-dependent anomalies or recurring
I/O activities, as well as our enhanced prediction models to
handle these situations.

Of course, one major objective of our performance pre-
diction scheme is always to minimize the overhead for par-
tial executions. The question is, e.g., can we estimate the
performance on the target platform using 64 processors
with the relative performance observed in partial runs us-
ing 8 processors only? The cheaper and more reusable the
partial executions are, the higher we can expect the accep-
tance of our approach to be by end users.
3. Performance Results

In this section, we present prediction accuracy and other
results with our proposed approach using partial execution
and the notion of relative performance. Some of the experi-
ments were conducted using the partial execution APIs de-
scribed in Section 2.1, while others were obtained from sci-
entists who benchmarked per-timestep execution time for
their applications. In the second case, we took the first n

timesteps to simulate partial executions.
3.1. Experiment Platforms

Our application performance data are collected from ten
different parallel computers with eight distinct types of par-
allel architectures. Table 1 summarizes their technical con-
figurations.
3.2. Base Model and Relative Performance

We evaluated our partial execution method with two
benchmarks from the DOE ASCI Purple suite [32], a set
of novel applications comprising large-scale parallel codes
with inputs resulting in hours of execution. This suite also
comprises a mixture of scientific domains, types of meshes,
and computation/communication models.

The two applications we successfully ported and tested
on four platforms (Datastar-690, Datastar-655, Henry2, and
Ram) are Sphot, a 2-D Monte Carlo photon transport code,
and sPPM, a 3-D gas dynamics code. For both of them, we
chose a problem size that results in hours of execution on



Name Location Architecture CPU No. nodes Procs/node Mem/node OS Shared FS
Datastar-690 SDSC IBM SP4 1.7GHz Power4 8 32 128GB AIX GPFS
Datastar-655 SDSC IBM SP4 1.5GHz Power4 176 8 16GB AIX GPFS

Henry2 NCSU IBM Blade Center 2.8/3.0GHz Xeon 100 2 4GB Linux NFS
Ram ORNL SGI Altix 1.5GHz Itanium2 256 1 8GB Linux XFS

Turing UIUC Apple Xserver 2GHz G5 640 2 4GB Mac OS NFS
Frost LLNL IBM SP3 375MHz Power3 64 16 16GB AIX GPFS

Cheetah ORNL IBM SP4 1.3GHz Power4 27 32 32/64/128GB AIX GPFS
Phoenix ORNL Cray X1 vector 512 1 2TB global UNICOS/mp StorNext
Seaborg NERSC IBM SP3 375MHz Power3 380 16 16/32/64GB AIX GPFS

TeraGrid NCSA Cluster 1.3/1.5GHz Itanium2 887 2 4/12GB Linux GPFS/NFS

Table 1.
the above platforms using 8 processors. These systems all
yield fairly small performance variances, and our predic-
tion results are based on 1-2 full executions and 2-5 partial
executions.
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Figure 1. Sphot prediction accuracy using
Datastar-690 as the reference platform

Figure 1 shows the prediction results for Sphot, using
Datastar-690 as the reference platform and the other three
systems as target platforms. For each platform, we portray
two prediction methods: Steps, where the relative perfor-
mance used in the ith prediction point is based on the pair
of execution time values from timestep i on the reference
and target platforms, and cumulative, where the relative per-
formance is based on the cumulative average of execution
times from timestep 1 to i on both platforms.

In general, Figure 1 demonstrates that our prediction us-
ing partial execution yields very accurate results: for all
three target systems, the prediction error is within 1.5%.
In addition, it demonstrates the following: (1) High accu-
racy can be reached at a very early stage of execution. Even
with the first timestep, when initialization and warm-up ef-
fects should perturb results on all three target platforms, the
prediction accuracy is higher than 98%. Within 5 timesteps,
the accuracy on all systems stabilizes at even higher accu-
racy. (2) Partial executions can deliver accurate predictions
at a very low cost. In this full execution, Sphot executes

thousands of timesteps. On the most time-consuming plat-
form (in this case Ram), the full execution took more than
11 hours while our partial execution of 25 timesteps only
took 6 minutes. Moreover, as mentioned earlier our predic-
tion model is accurate even with fewer timesteps as input.
Therefore, a partial execution’s cost can be bounded by a
small maximum wall time for a job. Even when this partial
execution itself is terminated prematurely, our model still
generates reasonable observation-based predictions. (3) The
“cumulative” method works better than the “steps” method
by smoothing out small irregularities in per-timestep exe-
cution times. (4) With such uniformly high accuracy, it ap-
pears that the selection of a reference platform is not impor-
tant, at least for this code.
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Figure 2. Normalized per-timestep execution
time (right axis) and prediction accuracy (left
axis) for sPPM

3.3. Filter Model and Initialization Overhead
For sPPM, our filter model is required to obtain accurate

predictions. The simple, cumulative model did not suffice
for one particular platform, namely RAM. Figure 2 depicts
the per-timestep time of the simulation, which increases sig-
nificantly during the first few timesteps and then drops back
before stabilizing after 20 timesteps. This kind of behav-
ior is not observed on Datastar-690, as shown in the same
figure, or on any other platform. We suspect that on this
NUMA machine, the operating system has been enhanced



to perform page placement based on memory access pat-
terns. As such, pages are moved to the node of most fre-
quently accesses to inflict lower latencies while less fre-
quent accesses my result in longer latencies when being re-
solved by remote memory accesses.

Our filter model can detect and compensate for this one-
time overhead, as explained in Section 2.1. Figure 2 shows
the difference in prediction accuracy with and without this
“ramp filter”. With the non-discriminative cumulative av-
erage method, the prediction error can reach 80%, and the
effect of misleading relative performance lingers for many
timesteps after the anomaly disappears. In contrast, with the
improved prediction, the first 23 timesteps will not produce
prediction results as they are classified as unstable. Right
after that, the prediction instantly yields a consistently high
accuracy of over 99%.
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Figure 3. sPPM prediction accuracy using
Datastar-690 as the reference platform

Figure 3 depicts the prediction accuracy for sPPM on
all three target timesteps. Ram data points represent the
first timesteps after the relative performance stabilizes us-
ing the filter model. sPPM has far more expensive timesteps
than Sphot, with each timestep taking around 3 minutes and
full runs taking almost 10 hours on Datastar-690 and 655.
Therefore, we run only 10 timesteps in our partial execu-
tions. Again, the accuracy is remarkably high, at above 98%
just after the first timestep.

Comparing the relative performance for Sphot and sPPM
also reveals interesting facts. For Sphot, Ram is by far the
worst platform, where each timestep takes more than 3.5
times as long as on Datastar-690. For sPPM, however, it is
by far the best platform, where each timestep takes slightly
more than 1/6 of the time on Datastar-690. This dramatic
contrast is likely due to the different communication and
computation patterns of the two codes. For example, sPPM
uses frequent large messages, which may benefit from Al-
tix’s distributed shared memory architecture. Such phenom-
ena suggest that relative performance across platforms can
vary dramatically from application to application (in this

case, a 20+ times difference). In addition, system parame-
ters, such as the CPU frequency, do not offer significant in-
formation: Ram and Datastar-690 happen to have the same
CPU frequency.
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Figure 4. sPPM with high I/O frequency on
Ram and Henry2. The top figure shows
normalized per-timestep times and the bot-
tom one shows ratios between each current
timestep time to the average of previous 5.

3.4. Sliding Window and Periodic I/O
Next, we consider predictions for executions with peri-

odic I/O activities. Such periodic I/O is very common in
scientific codes for outputting intermediate results (a) for
visualization and analysis and (b) for checkpointing cur-
rent states to enable efficient restart if the execution is ter-
minated unexpectedly. To save I/O time, most applications
choose to periodically generate output every k computa-
tional timesteps. Between Sphot and sPPM, the latter pro-
vides an easier interface to adjust this I/O frequency. The
runs shown above used a default low I/O frequency. Fig-
ure 4 depicts sPPM results from runs with a much higher
I/O frequency (m = 10).
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Figure 5. sPPM (with high I/O frequency) pre-
diction results from Ram to Henry2, using the
accumulative model and the sliding window
model respectively



655 Conf. 8×1 4×2 2×4 1×8
Accuracy 1.002 0.991 1.012 1.004

Table 2. Accuracy in predictions for Datastar-
655 runs using different (number-of-
processors-per-node × number-of-nodes)
combinations. The total number of proces-
sors is fixed at 8.

655 Conf. 2×1 4×1 8×1 8×2 8×4
Accuracy 0.988 0.993 1.002 0.978 0.981

Table 3. Accuracy in predictions for Datastar-
655 runs using different (number-of-
processors-per-node × number-of-nodes)
combinations. The total number of proces-
sors varies from 2 to 32.

Figure 4 and Figure 5 depicts the I/O effect when the
performance of sPPM is predicted from Ram to Henry2.
This experiment serves a second purpose, namely to show
that our ramp filter is valid on a reference platform as well.
From the per-timestep timing curves shown in Figure 4, I/O
“spikes” can be clearly identified after the execution stabi-
lizes. On Henry2, where computation is faster than on Ram,
I/O is significantly slower. Using our filter model that cal-
culates the ratio of each current timestep versus the average
of the previous 5 steps, we can successfully identify these
I/O spikes as recurring behavior. We can also capture k, the
aforementioned periodic I/O frequency in terms of number
of timesteps.

We address recurring I/O activities with the sliding win-
dow model, as discussed in Section 2.2. Figure 5 shows the
prediction results (after the initial noise is filtered out on
the reference system). For the first 10 timesteps, the slid-
ing window is growing, so the two models perfectly over-
lap. After that, however, the cumulative algorithm shows a
periodic fluctuation in accuracy while the sliding window
algorithm is more stable.

We believe that the sliding window model will show
more significant advantage if I/O is more frequent and of
larger costs. If, however, I/O is sparse and of low cost, it
may safely be disregarded by our identification algorithm at
all. This is not a big issue though, as the I/O effect would
not have a large impact on the overall prediction accuracy
in the first place.

Finally, we study different processor/node configurations
on the reference and target platforms. As mentioned ear-
lier, our partial execution uses the same number of proces-
sors and the same problem size as in the full execution.
However, with today’s large SMP nodes, a practical con-
figuration may not easily be reproduced on another plat-
form. We subsequently assess the prediction accuracy with
the cumulative average method from Datastar-690 (with 32-

processor nodes) to Datastar-655 (with 8-processor nodes).
On Datastar-690, we ran all experiments on one node. In

the first group of tests, we fixed the number of processors at
8 and varied the number of nodes on Datastar-655 (1, 2, 4,
and 8). In the second group of tests, we increased the total
number of processors from 2 to 32, where we always tried
to minimize the number of nodes to use on Datastar-655.
As demonstrated by Table 2 and Table 3, the prediction ac-
curacy remains high in both cases, with no significant vari-
ance caused by the different processor/node configurations.
3.5. Application with Varying Timestep Overhead

GENx is a multi-component rocket simulation code de-
veloped at the University of Illinois [8]. The performance
data we obtained are from model-validation runs simulating
lab-scale rockets. We chose this particular simulation since
it has an interesting property: the number of particles in its
fluid dynamics code increases as time goes on. Therefore,
unlike any other codes demonstrated in this paper, this per-
timestep execution time grows gradually, reaching a factor
of 1.8 at the final point (1550 timesteps in total). We use this
code to determine if our model provides reasonable predic-
tion in this situation.
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Figure 6. Per-timestep relative performance
(right axis) and prediction accuracy with ac-
cumulative average (left axis). There is one
data point for each of the first 100 timesteps,
and one for every 50 timesteps thereafter.

Figure 6 depicts timing and prediction results from two
60-processor runs, which took more than 5 hours on the ref-
erence platform (Turing) and 15 hours on the target plat-
form (Frost). It shows that as the simulation progresses, the
relative performance between the target and reference plat-
forms gradually increases as well, i.e., the costs per timestep
grows faster on Frost than on Turing. However, this in-
crease in relative performance (around 24%) is fairly small
compared to the increase in per-timestep time (around 45%
on Turing and 80% on Frost). A partial execution of 10
timesteps (costing 1.5 minutes on Turing and 4 minutes on
Frost) would have yielded a prediction accuracy of 91.6%.
Overall, the worst accuracy produced by a partial execution
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Figure 7. Gyro B1-std relative performance to
Cheetah, using different number of proces-
sors

of the first n timesteps (n = 1, 2, ...1550) is around 85%.
We still consider partial execution capable of delivering rea-
sonable prediction accuracy for this type of codes with dy-
namic complexity.
3.6. Extension: Application using Varying Num-

ber of Nodes and Inputs
GYRO [11] is a code for the numerical simulation of

tokamak micro-turbulence solving time-dependent, nonlin-
ear gyrokinetic-Maxwell equations. We obtained a large set
of Gyro benchmarking results from ORNL and NCSU re-
searchers who conducted Gyro runs with 3 problem in-
puts (B1-std, B2-cy, and B3-gtc) on 5 platforms (Chee-
tah, Ram, Phoenix, Seaborg, and Teragrid) using a vari-
ety of processor numbers. Unlike the GENx simulation dis-
cussed above, these Gyro runs produce extremely stable
per-timestep time, and our prediction easily achieves very
high accuracy. Again, the choice of the reference system
among the five platforms does not appear to affect the pre-
diction accuracy.

Instead of reporting the accuracy test results, we lever-
age the abundance of experimental configurations in this
case to explore the possibility of reusing the relative per-
formance data collected from a pair of partial executions to
make predictions for runs using different number of proces-
sors or different input data.

Phoenix Ram Seaborg Teragrid
# Pred. 11 6 5 7

Avg. Error 12.1% 25.5% 16.7% 25.8%

Table 4. Average errors caused by apply-
ing the relative performance observed in 16-
processor runs to runs using other number
of processors

Figure 7 depicts the relative performance of four tar-
get platforms against Cheetah using various number of pro-
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Figure 8. Gyro relative performance to Chee-
tah, using 64 processors and different input
problems

cessors (a multiple of 16, limited by hardware availabil-
ity/configuration on each platform) to compute B1-std. We
see that the level of consistency across different numbers of
processors varies from platform to platform. Since using a
small number of processors is likely to be cheaper (faster
to get a job scheduled), we applied the relative performance
observed in the run using the fewest processors (16) for each
platform when predicting the overall execution time for the
other process numbers. Table 4 shows the average predic-
tion error, which varies between 12% and 26%.

Phoenix Ram Seaborg Teragrid
Avg. Error 37.9% 17.0% 5.6% 23.2%

Table 5. Average errors caused by applying
the relative performance observed in B1-std
to B2-cy and B3-gtc

Figure 8 plots the relative performance across different
problems, and Table 5 shows the average prediction error
when we use the relative performance from computing the
smallest input problem to predict for the other two prob-
lems. This would also reduce the costs of partial executions.
E.g., B3-gtc takes up to 3 times longer than B1-std. Here,
the average error varies between 5% and 38%. Note that this
group of Gyro results is not completely fair to our predic-
tion method, as these several input problems not only bring
different amount of computation, but also different compu-
tation components to a certain degree.

The above results clearly indicate the trade-off between
partial execution overhead and prediction accuracy. In gen-
eral, the curves in Figure 7 and Figure 8 are smooth, sug-
gesting interpolation may be helpful to mend the gaps be-
tween a set of incomplete partial benchmarking results. De-
pending on the desired level of accuracy, our observation-
based prediction approach may demand new partial execu-
tions for best accuracy or it may utilize existing application-



specific data to give a quick “ball-park” estimate.

4. Related Work
Grid Job Scheduling: There has been an increasing in-
terest and efforts on grid scheduling (also called meta-
scheduling) [14, 26, 29, 24], mostly built upon local job
schedulers for executing jobs on distributed computing re-
sources. It is recognized that job execution time is an im-
portant resource specification item to be translated across
machines. However, existing or under-development grid
schedulers either do not offer execution time translation,
thereby implying that users are responsible for specifying
a “safe” maximum wall time value across machines, or
they adopt simplified translation methods, such as stretch-
ing the execution time with the CPU frequency ratio be-
tween two machines [24], which is known to be very in-
accurate. Other work on cross-platform performance pre-
diction (e.g., Prophesy [30]) was mostly based on model-
ing computational kernels instead of complex applications
with diverse tasks. Our work can form a building block for
future grid schedulers by offering affordable job execution
time predictions for diverse applications and platforms.
Parallel Program Performance Prediction: There have
been numerous previous studies of performance prediction
for parallel programs. Many of these studies are built upon
performance modeling techniques (e.g., [1, 7, 10, 15, 21,
28, 31]) requiring either in-depth knowledge of the applica-
tions to build analytical models (e.g., [2, 18, 25, 33, 34]) or
special compiler/instrumentation tools to infer such knowl-
edge from parallel codes (e.g., [4, 6, 12, 21]). With care-
ful modeling of applications and platforms, many of these
previous studies achieved high prediction accuracy. How-
ever, detailed modeling often compromises the portabil-
ity of prediction tools. E.g., some existing approaches are
application-specific [2, 16] or language-specific [6, 12]. In
addition, a number of prediction techniques are based on
simulations (e.g., [3, 4]) where simulators are used to mea-
sure the execution time of applications.

Most of the work mentioned above targeted perfor-
mance prediction for the purpose of performance opti-
mization. In contrast, our method targets performance pre-
diction as a means for making resource usage estima-
tion to help application owners in their research planning
and daily use of diverse computing resources. In such
cases, users may not be able or willing to afford tradi-
tional performance prediction techniques, which require a
fair amount of work due to model building or instrumen-
tation plus simulation. Especially today’s multi-component
codes, such as the rocket simulation discussed in this pa-
per, comprise modules from many application domains
with diverse computational models/algorithms making an-
alytical modeling very hard. Also, they often use exter-
nal libraries (MPI, BLAS, PETSc, NetCDF, just to name a
few), and/or multiple languages (e.g., mixed C/Fortran/C++

programming). This greatly decreases the feasibility and
effectiveness of both analytical and compiler-aided per-
formance modeling. Finally, given the large number of
application-platform combinations in future grid environ-
ments, simulation-based prediction can consume exces-
sive system resources themselves. In contrast, we de-
velop observation-based performance prediction, which
does not require in-depth knowledge of parallel codes or
systems. This makes our approach application-independent,
language-independent, and platform-independent.

Further, many multi-platform performance modeling ef-
forts (e.g., [3, 4, 5, 15, 20, 21]) evaluated their approaches
with data collected at multiple supercomputers. However,
data from each machine are processed individually, so are
predictions and evaluations performed. Our approach, in-
stead, combines benchmarking results from multiple plat-
forms for cross-platform prediction.

Several recent studies addressed performance prediction
in heterogeneous grid environments [13]. A few projects ad-
dressed relative performance [16] and performance porta-
bility [17, 23]. However, we are not aware of work on per-
formance prediction based on relative performance.

Finally, the repetitive behavior of applications has been
exploited in speeding up run times on architecture simu-
lators [19] and predicting performance metrics based on
history information [9]. Such studies exploit repetition at
“instruction block” level while we exploit larger-scale and
more explicit behavior repetition in high performance sci-
entific codes, based on the iterative nature many of them
possess.

5. Conclusion
In this paper, we demonstrated the benefit of a black-box

style, observation-based performance prediction approach
built on the notion of relative performance and utilizing af-
fordable, short partial application executions. We believe
the merits of this approach lie in its simplicity, portability,
and cost-effectiveness, making it ideal for performance pre-
diction as a general service to HPC users and grid sched-
ulers.

In addition, we consider a major contribution of this
paper to be reporting relative performance measurements
and prediction results from multiple production-scale real-
world codes on a total of ten large parallel computers.
In most cases, we obtained prediction accuracy probably
higher than required by our target customers. We acknowl-
edge that these results may not fully generalize from the
group of applications currently available to us to arbitrary
code. Our model may not exhaustively capture uncommon
application behavior. We plan to study more applications,
build a relative performance database,and potentially inves-
tigate patterns in relative performance across platforms and
applications.
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