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Abstract

Past work on studying cache coherence in shared-
memory symmetric multiprocessors (SMPs) concentrates on
studying aggregate events, often from an architecture point
of view. However, this approach provides insufficient infor-
mation about the exact sources of inefficiencies in paral-
lel applications. For SMPs in contemporary clusters, ap-
plication performance is impacted by the pattern of shared
memory usage, and it becomes essential to understand co-
herence behavior in terms of the application program con-
structs — such as data structures and source code lines.

The technical contributions of this work are as follows.
We introduce ccSIM, a cache-coherent memory simulator
fed by data traces obtained through on-the-fly dynamic
binary rewriting of OpenMP benchmarks executing on a
Power3 SMP node. We explore the degrees of freedom in
interleaving data traces from the different processors and
assess the simulation accuracy by comparing with hard-
ware performance counters. The novelty of ccSIM lies in
its ability to relate coherence traffic — specifically coher-
ence misses as well as their progenitor invalidations — to
data structures and to their reference locations in the source
program, thereby facilitating the detection of inefficiencies.
Our experiments demonstrate that (a) cache coherence traf-
fic is simulated accurately for SPMD programming styles
as its invalidation traffic closely matches the corresponding
hardware performance counters, (b) we derive detailed co-
herence information indicating the location of invalidations
in the application code, i.e, source line and data structures
and (c) we illustrate opportunities for optimizations from
these details. By exploiting these unique features of ccSim,
we were able to identify and locate opportunities for pro-
gram transformations, including interactions with OpenMP
constructs, resulting in both significantly decreased coher-
ence misses and savings of up to 73% in wall-clock execu-
tion time for several real-world benchmarks.

1. Introduction

Prior work on cache coherence concentrates on two ar-
eas: simulation and performance tuning. Many architec-
tural and system simulators support different coherence
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models in their implementation (e.g., [6], [13], [26], [24],
[2], [7]), and they operate at different abstraction levels
ranging from cycle-accuracy over instruction-level to the
operating system interface. On the performance tuning end,
work mostly concentrates on program analysis to derive op-
timized code (e.g., [15], [27]). Recent processor support for
performance counters opens new opportunities to study the
effect of applications on architectures with the potential to
complement them with per-reference statistics obtained by
simulation.

In this paper, we concentrate on cache coherence simu-
lation without cycle accuracy or even instruction-level sim-
ulation. We constrain ourselves to an SPMD programming
paradigm on dedicated SMPs. Specifically, we assume the
absence of workload sharing, i.e., only one application runs
on a node, and we enforce a one-to-one mapping between
threads and processors. These assumptions are common for
high-performance scientific computing [29], [30].

We make the following contributions in the paper. We
have designed and implemented ccSIM, a cache-coherent
simulator. We demonstrate good correlation between cc-
SIM results and hardware performance counters for a 4-way
Power3 SMP node on a variety of OpenMP benchmarks.
We obtain address traces per processor through dynamic bi-
nary rewriting. We demonstrate that ccSIM obtains detailed
information indicating causes of invalidations and relates
these events to their program location and data structures.
This enables us to detect coherence bottlenecks and allows
us to infer opportunities for optimizations.

The paper is structured as follows. We introduce the in-
strumentation framework METRIC that is utilized to ob-
tain data traces. We then provide details on the design and
implementation of ccSIM, the cache coherence simulator.
Next, we describe the experimental methodology followed
by simulation results as well as performance counter mea-
surements. From these results, we derive opportunities for
code transformations and assess their benefits. We conclude
with related work and a summary of our contributions.

2. Framework Overview

Figure 1 depicts our simulation framework. Simulation
of coherence traffic is based on two software components,
a binary instrumentation tool to extract data traces from ac-
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Fig. 1. Overview of Framework

tual application executions and a cache simulator that con-
sumes these traces to simulate coherence traffic.

The instrumentation tool uses dynamic binary rewriting
to instrument a running application. Memory accesses are
instrumented to emit address reference information, includ-
ing the relation of a reference to its source line in the pro-
gram [20]. This information is compressed on-the-fly to
conserve space before it is written to storage. Notice that the
instrumentation does not affect the trace data, i.e., we col-
lect the original trace addresses (even though performance
is perturbed by the instrumentation). Later comparisons
with performance counters are based on the uninstrumented
application to ensure that the same work is being performed
and instrumentation is excluded in the measurements.

The trace of each thread comprises the input to a unipro-
cessor cache hierarchy. Each cache hierarchy (correspond-
ing to a separate processor) emits coherence messages on
a shared bus according to the selected coherence protocol.
Events, such as invalidation messages and cache misses, are
being logged in the simulator and associated with source
data structures as well as instruction locations in source files
as they occur. This allows the generation of detailed statis-
tics on a per-reference base with regard to invalidations, re-
sulting misses and data subsequently evicted from cache.

3. Instrumentation and Trace Generation

Cache simulation for SMPs is based on address traces
collected by METRIC, our framework for dynamic binary
instrumentation of memory references [20]. METRIC in-
serts probes through a control program into an executing
application to generate highly compressed address traces.

The process of dynamic binary rewriting operates as fol-
lows. A control program instruments the target OpenMP
application executable using our customized extensions of
the DynInst binary rewriting API [4]. These customizations,
part of the METRIC framework, have been further extended
to capture traces of OpenMP threads for this work. For
each OpenMP thread, the memory access points (i.e., the
loads and stores) are instrumented to capture the applica-
tion access trace. To reduce the overhead on target execu-
tion, METRIC can trade off simulation accuracy for tracing

speed by instrumenting only floating point or integer ac-
cesses. It also allows certain accesses such as local stack
accesses to be ignored, since they often do not perceptibly
affect the overall access metrics of the target program.

Once the instrumentation is complete, the target is al-
lowed to continue. The trace logging of the access stream
of each OpenMP thread proceeds in parallel without inter-
action with other OpenMP threads, thus increasing the trac-
ing speed. For each thread, the instrumentation code calls
handler functions in a shared library. The handler functions
compress the generated trace online and write the com-
pressed trace to stable storage.

For each thread, the accesses generated are compressed
using the compression primitives described in our previ-
ous work [20]. Each compression primitive has a unique
sequence id field, which is globally unique for that
thread, and anchors the compression primitive in the overall
access stream for that thread. OpenMP supports SMP paral-
lelism via compiler directives (#pragma omp or !$OMP).
We instrument the compiler-generated functions imple-
menting these directives.

4. ccSIM: A Multi-Processor Cache Simulator

The compressed access trace generated from the instru-
mented OpenMP application is used for incremental multi-
processor memory hierarchy simulation. We have designed
and implemented a memory access simulator for cache co-
herent shared-memory multiprocessor systems. The unipro-
cessor components were derived from MHSim [23].

The ccSIM tool feeds each trace file into a driver object,
each of which corresponds to a separate processor (see Fig-
ure 1). Such a trace contains entries corresponding to the
sequence of events during its execution, e.g, data references
as well as OpenMP directives. Each driver feeds an instance
of a uniprocessor cache hierarchy. During the simulation,
fine-grained statistics on cache metrics and coherence traf-
fic are maintained on a per-reference and per-data structure
basis. These statistics provide important feedback about the
application behavior and performance. The causes of bottle-
necks on the SMP architecture of interest can be determined
from the information obtained.



4.1 Interleaving of Reference Streams

During application execution, the actual interleaving of
data references is non-deterministic between synchroniza-
tion points. However, at synchronization points, such as
barriers, threads are guaranteed to eventually reach a certain
point of execution within the program. We study the effect
of different reference interleavings by supporting two sim-
ulation modes. Recall that each OpenMP thread is assumed
to be executing on a separate processor. Hence, every driver
object maps to a unique processor on an SMP node.

ccSIM implements the semantics of OpenMP constructs
that affect the execution order of threads at synchronization
points, i.e., barriers, critical sections, atomic
sections and accesses protected by explicit mutex locks
(omp get lock, omp set lock). Entry and exit events
for these constructs are recorded in the trace for each thread.

We refer to the program code between two synchroniza-
tion points in an SPMD model as a region. At the start of a
region, the simulator can operate in one of two modes.
Interleaved Mode: The simulator processes one data refer-

ence from each trace (corresponding to a thread or pro-
cessor) before processing the second reference for each
trace etc. Effectively, the simulator enforces a fine-
grained interleaving in a round-robin fashion on a per-
reference base in this mode.

Piped Mode: The simulator processes all data references
from one trace up to the next synchronization point be-
fore processing data references from the second trace
etc., effectively enforcing a coarse-grained interleaving
at the level of regions.
A comparison of results from the interleaved and piped

modes reflects the extent to which program latency is
affected by the non-deterministic order of execution of
OpenMP threads and may provide extremes (bounds) on
metrics for coherence traffic.

Example: Figure 2 shows the trace events and simula-
tor actions for a simple OpenMP program with two active
OpenMP threads. A and B are shared arrays of size N, and i
is a local variable. Static loop scheduling is assumed for the
OpenMP for loop. The entry into the parallel OpenMP
region is logged as a trace event and causes the simula-
tor to activate two driver objects. Accesses generated by
each OpenMP thread to the A and B arrays are logged sep-
arately. The drivers may simulate these accesses in paral-
lel, as shown for the interleaved mode. When an OpenMP
thread exits from the implicit barrier at the end of the for
loop, a barrier exit event is logged for that thread.
Detection of a barrier event causes drivers to synchronize.
Another synchronization takes place when the parallel
end event is processed. After an OpenMP parallel region, a
serial phase starts, and only one driver (corresponding to the
master thread) will remain active. All others remain unused
till the start of the next parallel phase.
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Fig. 3. Classification of Invalidations
For each thread, the address of the memory access is

mapped to the unique machine instruction location that gen-
erated that access. The access address is also mapped to
the language-level data structure to which it belongs. These
mappings allow us to tag cache access and coherence statis-
tics with higher level abstractions, such as line numbers and
source code data structure identifiers.

4.2 Studying Invalidations and Misses

A key metric for the identification of memory perfor-
mance bottlenecks in a multiprocessor system is the number
of invalidations to lines in the lowermost level of cache of
each processor. This is a major source of coherence traffic,
potentially causing the shared bus to be a bottleneck in a
symmetric multiprocessor architecture. More significantly,
these invalidations could lead to coherence misses, thus in-
creasing memory latency. It is these invalidation misses that
we focus on in our experiments since an increasing num-
ber of invalidations leading to coherence misses can greatly
hamper performance.

Since the main motivation in reducing the invalidate traf-
fic is to decrease the number of coherence misses, it is
imperative to distinguish between coherence misses and
uniprocessor misses in a processor. Invalidations to cache
lines can further be classified as true-sharing invalidations
and false-sharing invalidations in each level of cache. True-
sharing invalidations arise from accesses to the same shared
memory location by more than one processor, with at least
one access being a write access. False-sharing invalidations
are caused due to accesses to different memory locations
that map to the same cache line on more than one proces-
sor. This level of classification gives a better view of the
causes of the invalidations, which helps in determining the
applicability of various techniques for optimizations.

With respect to OpenMP parallel programs, another level
of classification can be introduced, which is instrumental
in determining the feasibility of using certain optimization
techniques to reduce the coherence traffic. This involves
determining whether the invalidations to cache lines oc-
cur due to references across synchronization points or be-
tween synchronization points in a parallel program (Figure
3). References across processors leading to true sharing in-
validations within a region can be distinguished as follows:

� References not protected by locks: These typically oc-
cur in the single-writer, single/multiple-reader scenario
where one processor writes to a common location and
one or more processors read from it.

� References protected by locks: These typically occur
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Fig. 2. Illustration: Trace Events and Simulator Actions

in the multiple-writer, single/multiple-reader scenario
where multiple processors write and read from a com-
mon location.
In addition to these metrics, the simulator also generates

per-processor statistics for hits, misses, temporal and spatial
locality, and eviction-related information.

For each of the above-mentioned metrics, aggregate num-
bers for the application help in an overall analysis of the ob-
served performance. A further breakdown of these statistics
for each reference or for each data structure in the program
provides deeper insight into the behavior of the application.
Statistics are computed for each of the globally shared data
structures in order to provide information at a greater level
of detail and to determine the exact causes of inefficiencies
in the memory hierarchy. This enables us to pinpoint the
data structures contributing to latency caused by coherence
misses. A detailed analysis of the compiled metrics helps
in determining the particular choice of optimization tech-
niques for a benchmark.

5. Experiments

First, we present the OpenMP benchmarks used for ex-
periments with ccSIM. Next, we discuss ccSIM comparison
with hardware performance counters. We then use ccSIM
to characterize the shared memory usage of representative
OpenMP benchmarks and show how ccSIM statistics are
useful in detecting and isolating coherence bottlenecks.

Benchmarks: We selected 7 OpenMP benchmarks for
our experiments. Out of these - IS, MG, CG, FT, SP and BT
are from the NAS OpenMP benchmark suite [14]. NBF is
a part of GROMOS[12]. A brief description of each bench-
mark is given below.
1. IS: A large integer sort used in “particle method” codes.
2. MG: A V-cycle MultiGrid method to compute the solu-

tion of the 3-D scalar Poisson equation.
3. CG: A Conjugate Gradient method to compute an ap-

proximation to the smallest eigenvalue of a large, sparse,
unstructured matrix.

4. FT: An implementation of a 3-D Fast Fourier Transform
(FFT)-based spectral method.

5. SP: A simulated CFD application with scalar pentago-
nal bands of linear equations that are solved sequentially
along each dimension.

6. BT: A simulated CFD application with block tridiago-
nal systems of 5x5 blocks solved sequentially along each
dimension.

7. NBF (Non-Bonded Force Kernel): A molecular dy-
namics simulation computing non-bonded forces due to
molecular interactions.

Comparison with Hardware Counters: Next, we val-
idate ccSIM against measurements from hardware perfor-
mance counters. From a developer’s perspective, the num-
ber of coherence misses is the most important facet of the
shared memory access pattern of an application. However,
there are no hardware counters capable of measuring coher-
ence misses on our target platform. Instead, we compare
the number of invalidations for ccSIM against the actual
number of invalidations measured by the hardware coun-
ters. The total number of invalidations is an upper bound on
the number of coherence misses for the application. Reduc-
ing invalidations will also lower the number of coherence
misses, thereby improving application performance.

Hardware Environment: The hardware counter mea-
surements were carried out on a single 8-way node
of a 4-way Power3 SMP node. The hardware coun-
ters were accessed through the proprietary Hardware
Performance Monitor (HPM) API. The system has
a 64 KB 128-way associative L1 cache with round-robin
replacement and an 8 MB 4-way associative L2 cache. All
experiments were carried out with 4 active OpenMP threads
bound to distinct processors. The IBM OpenMP compilers,
xlc r and xlf r, were used to compile the benchmarks at the
default optimization level O2 with following flags settings:
-qarch=auto, -qsmp=omp, -qnosave.

HPM measurements: The Power3 hardware imple-
ments the MESI coherence protocol within an SMP node.
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HPM events were used to measure the number of L2 cache
invalidations with E � I, S � I and M � I transitions, respec-
tively. The OpenMP runtime system also contributes to the
number of invalidations measured. Since we are interested
only in the invalidations of the application, we need to re-
move these invalidations from the measured numbers.

To assess the side-effect of the OpenMP runtime system
on invalidations, we measured invalidations for OpenMP
runtime constructs with empty bodies in a set of mi-
crobenchmarks. For example, the overhead in terms of in-
validations for a barrier construct was determined. The mi-
crobenchmarks were subsequently used to adjust raw HPM
data obtained from application runs by removing the extrap-
olated effect of OpenMP runtime invalidations for � itera-
tions. For example, we removed the effect of ��������� times
the overhead for a single barrier if the benchmark contained
100 barriers. We refer to these measurements as the raw
HPM metrics and the OpenMP-adjusted HPM metrics.

Table I shows the raw and OpenMP-adjusted HPM mea-
sured invalidations for the L2 cache. The invalidations were
measured for each processor separately using the HPM
events discussed above and summed up to get the total in-
validations shown in the table. Each HPM measurement is
the mean of 5 samples.

TABLE I. Total L2 invalidations with HPM
Benchmark HPM(raw) HPM(OpenMP-adjusted)

IS 165246 162964
MG 24631 13629
CG 134964 100488
FT 326595 325257
SP 282269 258923
BT 185317 157384

NBF 474121 135926

Comparison with ccSIM: ccSIM was configured with the
MESI coherence protocol and with the cache parameters of
the hardware platform (4-way Power3 SMP node). Both L1
and L2 caches were simulated. Table II compares total L2
invalidations for HPM and the two ccSIM modes - piped
and interleaved.

The results indicate a good correlation between ccSIM
and HPM for most benchmarks. The absolute error be-
tween ccSIM and HPM is less than 17% for all benchmarks
and less than 7% for most. Moreover, for the NAS bench-
marks, both interleaved and piped modes result in closely
matching numbers of invalidations. This indicates that for
these benchmarks, fine-grained round-robin simulation is
not necessary to achieve a high level of simulation accu-
racy. NBF stands out as an anomalous case with signif-
icant difference between the interleaved and piped modes
of simulation. ccSIM allows us to categorize invalida-
tions into true and false sharing invalidations as well as
to distinguish between across-region and in-region inval-

idations, as explained in Section 4.2. The cause of the
discrepancy becomes apparent when we examine the in-
region true-sharing critical invalidations shown in Figure
4. Metrics are plotted in a log scale. The number of
true-share invalidations occurring within a region is much
higher (at least an order of magnitude) in the interleaved
simulation mode. The interleaved simulation mode in-
volves fine-grained round-robin simulation, which leads to
“ping-ponging” of shared data across processors. Ping-
ponging does not take place with the piped mode of sim-
ulation, leading to a very small number of invalidations to
be recorded. A look at the per-reference ccSIM statistics in-
deed shows that the most significant invalidation source is a
data access point inside an OpenMP critical construct.
This demonstrates the necessity of interleaved simulations
for codes containing critical sections to closely resemble the
interleaving of references during actual execution. Next, let
us consider the detailed results for two benchmarks and gen-
eral trends for the benchmark suite.

Fig. 4. NBF: Interleaved and Piped

6. Characterization of Benchmarks

Our simulation results are not only accurate with respect
to actual executions, we also obtain detailed classifications
indicating the cause of invalidations as well as the corre-
sponding location in the program. Due to space limitations,
we discuss only MG and NBF. The former is representative
in large for any of the first six benchmarks while the latter
has a unique coherence footprint, which indicates room for
optimizations subsequently discussed.

6.1 MG and General Trends

Figures 5(a) to 5(e) represent the behavior of this bench-
mark observed by ccSIM. Figure 5(a) shows that coherence
misses are rare in L1 while they constitute 55–63% of to-
tal misses in the second level of cache. The size of the L1
cache causes uniprocessor misses to completely dominate
the misses occurring in this level. The total misses and co-
herence misses are almost uniform across processors, which
is common for SPMD programming styles. Small variations



TABLE II. HPM vs. ccSIM
Benchmark IS MG CG FT BT SP NBF

HPM 162964 13629 100487 325257 157384 258922 135926
ccSIM-Intl 163073 13174 117117 302630 157503 268334 137498

ccSIM-Pipe 159913 12355 116318 302607 157480 268334 14629
% Error(Interleaved vs. HPM) -0.06 3.3 -16.5 6.9 -0.07 -3.6 -1.15

are typically due to imbalanced sharing of data across shar-
ing boundaries, such as in stencil problems and grid-based
calculations. Inner processors have more neighbors result-
ing in larger number of invalidations. Hence, the number
of invalidations depicted in Figure 5(b) is higher in proces-
sors two and three since this metric amplifies these vari-
ations. Detailed access simulation by ccSIM also allows
us to distinguish the cause of invalidations as true-sharing
and false-sharing invalidations, shown in Figure 5(b). Inter-
estingly, a significant fraction of the total invalidations are
false-sharing invalidations. Within these classes, we can
further determine whether invalidations resulted from two
references crossing a synchronization point (across multi-
ple regions) or not (within a synchronization region), de-
picted in Figure 5(c). True-sharing invalidations mainly
arise from references occurring across regions. A majority
of the false-sharing invalidations also occur across region
boundaries. We can further classify in-region invalidations
into two classes: Those due to references within a critical
section (while holding a lock) and those outside of critical
sections (without holding a lock). Figure 5(d) indicates that
only an insignificant number of in-region true-sharing inval-
idations occur, and these invalidations are due to accesses
without locks. (While this metric is not indicative for MG,
it is significant for NBF discussed in the following and de-
picted for symmetry.) Finally, not all invalidations may lead
to subsequent misses, but ccSIM allows us to determine if
an invalidate is followed by a miss, as depicted in Figure
5(e). The percentage of invalidations leading to misses is
significant (around 50–70%) in the L1 cache and very high
(approximately 95%) in the L2 cache.

For the other benchmarks, with the exception of NBF,
we observe similar trends in the ratio between total misses
and coherence misses and the ratio between L1 and L2
misses. We find that a significant fraction of invalidations
are false-sharing invalidations, a majority of which cross re-
gion boundaries. Most true-sharing invalidations also cross
region boundaries. Finally, a large portion of invalidations,
particularly in L2, will subsequently result in a coherence
miss. Hence, the results discussed for MG are representa-
tive for the other benchmarks as well – with the exception
of NBF discussed in the following.

6.2 NBF: Non-Bonded Force Kernel

Figures 6(a) to 6(e) represent the results obtained from
ccSIM by simulated execution of this benchmark. NBF
contains a critical section with updates of shared data inside

a parallel region. From figure 6(a), we observe that a signif-
icant percentage of misses in L1 and L2 caches are coher-
ence misses. Almost all invalidations are true-sharing inval-
idations in both the L1 and L2 caches, except for processor
4 (Figure 6(b)) where false-sharing invalidations dominate.
This is an artifact of the order of access scheduling in the
fine-grained round-robin ccSIM simulation. As we shall see
in the next section, almost all invalidations occur in a loop
updating a global shared array, executed by every proces-
sor. Since the processors are ordered by their logical ids,
the array element written to by processor-1 is different from
the element accessed by processor-4 in the last iteration, but
they are adjacent in the L1/L2 cache line. This causes the
resulting invalidation (since processor-1 is writing) to be
classified as a false-sharing invalidation for processor-4’s
caches. In an execution with non-deterministic ordering,
these false sharing invalidations will still occur but will be
distributed evenly over the caches of all processors. Fig-
ure 6(c) shows that almost all of the true-sharing invali-
dations take place within regions. Locks protect the ref-
erences that cause true-sharing invalidations within regions
(see Figure 6(d)). This observation is central to the oppor-
tunities for optimizations discussed in the next section. An
important characteristic is the percentage of invalidations
resulting in coherence misses, shown in Figure 6(e). We
see that more than 95% of the invalidations subsequently
caused a coherence miss. The coherence results obtained
for NBF indicate opportunities for optimizations with re-
spect to in-region true-sharing with locks (critical sections),
but only more detailed simulation can provide conclusive
information to determine beneficial transformations, as dis-
cussed in the following.

7. Opportunities for Transformations

In this section, we demonstrate how ccSIM can be used
to detect and isolate coherence traffic bottlenecks, and we
derive opportunities for transformations leading to reduced
coherence traffic and, thereby, potential performance gains.

7.1 NBF: Non-Bonded Force Kernel

We first discuss the NBF kernel described in the previous
section. A full access trace was obtained for the OpenMP
NBF kernel. The OpenMP environment was set to four
threads and static scheduling (OMP NUM THREADS = 4,
OMP SCHEDULE STATIC).

Analysis: Consider the results for NBF again. Figure
6(a) shows the breakdown of misses for L1 and L2 caches
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Fig. 5. Results for MG
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Fig. 6. Results for NBF



TABLE III. NBF: Comparison of per-reference statistics for each optimization strategy
Invalidations

Line Ref Optimization Misses Miss % Coherence True False
No. Strategy Ratio Misses Total In Across In Across

Region Region Region Region

141 f Read Original 32500 0.99 96.87% 32768 32768 0 0 0
Serialized 2050 1.0 50.30% 2048 2048 0 0 0
Round-robin 1790 0.87 42.84% 2048 2048 0 0 0

227 x Read Original 1540 0.997 99.74% 768 1 765 0 2
Serialized 1540 0.997 99.74% 768 1 765 0 2
Round-robin 1540 0.997 99.74% 768 0 766 0 2

217 f Read Original 512 1.0 100% 256 256 0 0 0
Serialized 512 1.0 100% 256 256 0 0 0
Round-robin 512 1.0 100% 256 0 255 0 1

for each processor obtained by ccSIM.
We observe that almost all L2 misses and a significant

number of L1 misses are coherence misses. A coherence
miss is caused when a processor accesses a cache line that
was invalidated due to a write from another processor. How-
ever, a large number of invalidations does not necessarily
imply a large number of coherence misses, since the inval-
idated cache lines may not be referenced by the processor
again before being flushed out of the cache. The breakup of
invalidations in Figure 6(e) shows that a significant number
of invalidations resulted in coherence misses, especially in
the L2 cache. This indicates that minimizing the total num-
ber of invalidations will reduce the magnitude of coherence
misses correspondingly.

We have detected that a coherence bottleneck exists. We
can use the per-reference coherence and cache statistics
generated by ccSIM to determine the cause of the bottle-
neck. Table III shows the per-reference statistics on proces-
sor one for the top three references of the original code and
two optimization strategies (serialized and round-robin) dis-
cussed in the following. Only L2 cache statistics are shown.

We observe that access metrics across all processors are
uniform. The f Read reference on line 141 of the source
code has an exceptionally high miss rate in all processors.
Moreover, more than 96% of the misses for this reference
are coherence misses. The invalidation data shows that
the large number of in-region invalidations are the primary
cause for these misses. The relation of this reference to the
source code indicates that line 141 is of interest:
#pragma omp parallel
...
for (i = 0; i < natoms; i++) {
#pragma omp critical

141: [i] = f[i] + flocal[i];
}

The for loop updates the global shared array f with val-
ues from the local private copy flocal for each OpenMP
thread. The large number of invalidations attributed to the
f Read reference is due to the ping-ponging of the shared
f array between processors as all of them try to update the
global f array simultaneously.

Optimizing Transformations: Using ccSIM’s per-
reference statistics, we isolated the coherence bottleneck to

the updates of the shared global array f. We shall discuss
two ways of reducing the number of coherence misses. One
method eliminates the ping-ponging of the f array by seri-
alizing the updates to the array f since they require mutu-
ally exclusive writes. This is achieved by moving the criti-
cal section to encompass the entire for loop instead of the
single update. The modified code is shown below.

#pragma omp parallel
...
#pragma omp critical
for(i = 0; i < natoms; i++) {

f[i] = f[i] + flocal[i];
}

Moving the critical statement outside the loop also
reduces the number of times that the mutual exclusion re-
gion must be entered and exited, decreasing the execution
overhead.

Although reducing the number of coherence misses, this
method does not exploit the potential for parallel updates to
separate parts of the f array by different threads. Hence,
we consider an alternate transformation. We can exploit
parallelism by partitioning the array f into a number of seg-
ments. Each thread updates a distinct segment until all seg-
ments are updated. We call this scheme the round-robin up-
date scheme. The modified code is shown below as pseudo-
code.
i=0;
for each thread {

1. segment_number = i + thread_id;
2. update segment
3. synchronize w/ other threads (barrier)
4. i = (i+1) MOD max_segments

}//run till all segments are updated

Results: Table III compares the L2 coherence misses and
invalidations for the two optimization strategies. Statistics
are depicted only for processor-1 and are similar for the
other processors. We observe that both strategies lead to a
significant decrease in the volume of coherence misses for
the f Read reference. Table V shows the wall-clock exe-
cution time for (a) the routine that updates the shared array
f, (b) the remainder and (c) the entire program. We ob-
serve that the transformations cause a significant improve-
ment in wall-clock execution time. Table VI shows the total
L2 invalidations for each approach measured with HPM. It



TABLE IV. IRS: Per-Reference Statistics
Invalidations Optimized

Proc No. Reference Group Coherence True False Optimization Coherence
Misses In Across In Across Strategy Misses

1 1 v1[] Read 8627 4 7517 31 1342 Code Transforms 1980
2 v2[] Read 8568 310 5093 78 3085 for data 1971

3-16 matrix.dbl[] Write 1 2547 25 2325 0 455 segregation 719
17 x[] Read 1803 0 1402 391 2 968
18 timersflag Read 2 3182 1 0 3122 70 Padding 0
19 thread flop[] Read 1789 0 2 1789 0 0
20 clock last Read 3 2165 2166 0 0 0 Remove Sharing 0

2 1 clock last Read 3 5997 5644 353 0 0 0
2-3 timersflag Read 2907 18 0 2908 0 0
4-6 thread flop[] Read 2 2734 0 0 2407 327 0
7 thread wall secs[] Read 1022 0 0 652 371 Padding 0
8 thread cpu secs[] Read 811 0 71 742 0 0

confirms that the actual number of invalidations occurring
in the hardware indeed decreases by an order of magnitude
for the serialized and round-robin schemes over the original
program.

TABLE V. NBF: Wall clock Times (Seconds)
Code Original Serialized Round-robin
Segment
f-Update 4.981 0.003 (99.9%) 0.003 (99.9%)
Other 2.141 2.076 (3%) 2.190 (-2.28%)
Overall 7.122 2.079 (70.8%) 2.193 (69.2%)

TABLE VI. NBF: L2 Invalidations (HPM raw)
Code Original Serialized Round-robin
Segment
f-Update 503654 921 6209
Other 37987 32916 38863
Overall 541641 33837 45072

7.2 IRS: Implicit Radiation Solver

IRS-1.4 is part of the ASCI Purple codes [1]. IRS
can use MPI, OpenMP or a mixture of both for paral-
lelization. We use the pure OpenMP version of IRS for
our study. Existing OpenMP parallelization uses “omp
parallel do” constructs for loop level parallelization.
For the analysis below, we ran IRS for 10 calls to the top-
level xirs function, with a limited data set (NDOMS=10,
ZONES PER SIDE=NDOMS PER SIDE) with 4 OpenMP
threads and static scheduling. This partial data trace is
comparatively small, yet captures essential coherence traf-
fic. Once our optimizations are complete, we compare the
wall-clock time for the recommended full-sized data set for
IRS (zrad.008.seq).

Analysis: Figure 7 shows that for all processors, coher-
ence misses constitute almost the entire volume of L2 cache
misses. Interestingly, the coherence miss magnitudes are
asymmetric with processor-1 experiencing more than twice
the number of coherence misses of any another processor.
Table IV shows the per reference coherence statistics for
processors 1 and 2. Statistics for other processors were sim-
ilar to those for processor-2. References have been collected

into groups with distinct coherence characteristics (Groups
1, 2 and 3). Multiple references are shown with only a sin-
gle representative reference. For example, there are a set of
fourteen references to different arrays in the the matrix
structure, all of which show similar coherence character-
istics; these are represented by a single representative ref-
erence matrix.dbl[] in the table. We observe that the
the set of references with significant coherence behavior are
quite different for processor-1 and processor-2. We shall
now analyze references belonging to each group in detail.

Group 1: These references account for the largest frac-
tion of coherence misses. True sharing across-region inval-
idations are dominant for this group. This indicates that the
data elements accessed by these references move across the
L2 caches of multiple processors. Consider the first two
references (v1[] and v2[]). These references occur in
the icdot function, which is only called at three locations
from the MatrixSolveCG function. All call sites are in
serial code, i.e., they are executed only by the master thread.
Between successive calls, the argument arrays are updated
by other processors in parallel regions:
/* only master */

for (i =0; i � nblk; i++)

dotprev += icdot(r[i], z[i],...); /* Reads r,z */

...

/* parallel updates to r,z */

#pragma omp parallel for

for (i =0; i � nblk; i++) �
setpz1( r[i],...); /* Writes to r */

setpz1(z[i],...); /* Writes to z */�
...

/* only master */

for (i =0; i � nblk; i++)

dotrz += icdot(r[iblk], z[iblk],...); /* Reads r,z */

Thus parts of arrays r and z move between processor-
1 and other processors. We can eliminate this unneces-
sary movement using code transformations for data segre-
gation. In this case, we can parallelize the icdot calls
using OpenMP. This allocates segments of r and z arrays
to specific processors, which eliminates unnecessary data



TABLE VII. SMG: Per-Reference Statistics (Processor-1)
Invalidations Optimized

No. Reference Group Coherence True False Optimization Coherence
Misses In Across In Across Strategy Misses

1 rp[] Read 1 170046 0 0 156585 13387 Code Transforms 256
2 rp[] Read 83509 0 0 80145 3529 for coarse-level 0
3 rp[] Write 43640 0 0 43305 3373 interleaving 0
4 xp[] Write 23193 0 0 22309 1284 2764
5 num threads 2 44362 44929 0 0 0 Remove sharing 0

movement. More significantly, icdot calls now operate
in parallel, which potentially has a much bigger impact on
performance than the elimination of data movement alone.

Similar transformations are carried out for other refer-
ences from Group-1, which we do not further discuss here.

Group 2: In-region false sharing invalidations constitute
almost the entire volume of invalidations for these refer-
ences. The number of coherence misses closely matches
the number of invalidations received. All these references
are related to timer routines used for performance bench-
marking. Most of the coherence misses arise due to parallel
updates to counter arrays indexed by thread id. Since array
elements are contiguous, this leads to false-sharing, causing
ping-ponging of cache lines across processors. We use intra
data-structure padding to align individual array elements at
cache line boundaries, which eliminates coherence misses.

Group 3: This group has a single reference exhibiting
large volumes of true in-region invalidations. These invali-
dations occur inside a omp critical region updating a
shared global clock variable. We eliminate this sharing by
maintaining clock variables for each thread separately.

Results: The coherence misses for each reference after
optimization are shown in the last column of Table IV. We
see that coherences misses for Groups 2 and 3 have been
eliminated (by padding and sharing elimination, respec-
tively) and have decreased significantly for Group 1. Figure
8 shows the wall-clock execution times for the different op-
timization strategies on the recommended OpenMP data set.
The readings were obtained on a non-interactive node with
8 OpenMP threads. DSeg represents code transformations
for data segregation (Group 1 references). DSeg+Crit ad-
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Fig. 8. IRS: Time w/
4 Optimizations

ditionally removes the shared global clock (Group 3 refer-
ence). DSeg+Crit+Padding represents the fully opti-
mized benchmark. We observe that DSeg causes signifi-
cant decrease in wall clock execution time (over 30%), com-
pared to the original program. The performance impact is
due to a combination of reduction in coherence traffic and
the OpenMP parallelization on several serial code sections
required for it.

7.3 SMG2000: Semi-coarsening Grid Solver

SMG2000 is part of the ASCI Purple codes [1]. The
SMG code utilizes the hypre library [10], which can se-
lect between OpenMP and MPI parallelization. We use the
default settings of SMG2000 for our analysis (10 x 10
x 10 grid, cx=cy=cx=1.0). We then compare the
wall-clock execution time for the recommended full-sized
workloads for different optimization strategies.

Analysis: For all processors, the L2 miss rate is quite
high, ranging from 64% to 81%. Figure 9 shows that al-
most all of the L2 misses are coherence misses. The per-
reference statistics for the top 5 references from processor-1
are shown in Table VII. The statistics for other processors
were similar to those of processor-1. As with IRS, we clas-
sify references into groups based on coherence characteris-
tics to facilitate analysis.
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Fig. 9. SMG2000: Breakdown of L2 misses

Group 1: References in this group are all array access
references. All references experience a very large volume
of in-region false-sharing invalidations. This indicates that
multiple processors are updating different data elements on
the same cache line, causing the cache line to ping-pong
between L2 caches of different processors. The cause of
the large volume of invalidations lies in the sub-optimal im-
plementation of loop-level parallelization by the hypre li-
brary function. The function chooses a loop to out of a triply



loop nest. Each loop in the nest iterates over a single coor-
dinate axis. The order of iteration is x,y,z from the inner
to the outer loop. The function always chooses the largest
dimension for parallelization, with the default being the in-
nermost loop (x dimension). This results in fine-grained
interleaving of thread accesses to adjacent array elements,
resulting in large amounts of coherence traffic. To correct
this, we hoist the OpenMP parallelization to the outermost
loop (z dimension) ensuring that threads access data on dif-
ferent cache lines.

Group 2: This group has a single store reference that
exhibits large volumes of true-sharing in-region invali-
dations. The data element referenced is a shared vari-
able which is simultaneously updated by all threads with
the number of runnable OpenMP threads, inside an omp
parallel construct. We eliminate this sharing by replac-
ing the omp parallel construct with separate calls to
omp get max threads() in each thread.

Results: The coherence misses after optimization are
shown in the last column of Table VII. Our optimizations
have eliminated almost all the coherence misses for these
references. We compare the performance impact of our op-
timizations on wall clock execution time for the following
workloads, as recommended by the SMG2000 benchmark-
ing criteria:

1. 35x35x35 grid, OpenMP threads=1
2. 35x35x70 grid, OpenMP threads=2
3. 35x70x70 grid, OpenMP threads=4
4. 70x70x70 grid, OpenMP threads=8

All workloads have processor configuration 1x1x1 (-P
1 1 1), cx=0.1, cy=1.0, cz=10.0. The workloads scale
up the input grid size with increasing number of threads
keeping the overall data processed per processor constant.
Figure 10 compares the wall-clock times for the differ-
ent workloads. Coarsening represents code transfor-
mations for coarse-level interleaving of accesses (Group
1). Coarsening+Sharing Removal additionally re-
moves unnecessary shared data access (Group 2). We ob-
serve that both optimizations have significant impact on ex-
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Fig. 10. SMG: Time for different Workloads

ecution time, with a maximum improvement of 73% for the
4th workload (8 OpenMP threads).

8. Related Work

There are several software-based and hardware-based
approaches for memory performance characterization of
shared memory multiprocessor systems. Gibson et al. pro-
vides a good overview of the trade-offs of each approach
[11]. At one end of the spectrum are complete software
machine simulators. RSim is a simulator for ILP multi-
processors with support for CC-NUMA architectures with
a invalidation-based directory mapped coherence protocol
[13]. SimOS is a complete machine simulator capable
of booting commercial operating systems [26]. However,
these frameworks simulate hardware and architecture state
to a great detail, increasing simulation overhead. This lim-
its the size of the programs and workloads that they can
run. In contrast, ccSIM is an event-based simulator which
simulates only memory hierarchies. Our instrumentation
tool is flexible and allows us to collect partial traces of only
the pertinent memory access. Thus, we can handle a much
larger range of programs and workloads. More importantly,
these simulators provide only bulk statistics intended for
evaluating architecture mechanisms. In contrast, we aim at
providing the application programmer with information on
the shared-memory behavior of the program and correlate
metrics to higher levels of abstraction, such as line numbers
and source code data structures.

Execution-driven simulators are a popular approach for
implementing memory access simulators. Code annotation
tools annotate memory access points. Annotations call han-
dlers, which invoke the memory access simulator. Augmint
[24], Proteus [2] and Tango [7] are examples of this ap-
proach. All these tools use static code annotation, i.e., they
annotate the target code at the source, assembly or object
code level. MemSpy [22] and CProf [18] are cache pro-
filers that aim at detecting memory bottlenecks. CProf re-
lies on post link-time binary editing through EEL [16], [17].
Lebeck and Wood also applied binary editing to substitute
instructions that reference data in memory with function
calls to simulate caches on-the-fly [19]. Other approaches
rely on hardware support, such as watchdogs [5] or statis-
tical sampling with hardware support in ProfileMe [8], to
gather information on data references. Scal-Tool detects
and quantifies scalability bottlenecks in distributed shared
memory architectures, such as the SGI Origin 2000 [28]. It
determines inefficiencies due to cache capacity constraints,
load imbalance and synchronization. Nikolopoulos et al.
discuss OpenMP optimizations for irregular codes based on
memory reference tracing to indicate when page migration
and loop redistribution is beneficial. This results in compa-
rable performance of optimized OpenMP with MPI paral-
lelization, again on the Origin 2000 [25].



None of the above tools allow misses to be related to
source code and data structures. Furthermore, our work
differs in the fundamental approach of rewriting binaries,
which is neither restricted to a special compiler or program-
ming language, nor does it preclude the analysis of library
routines. In addition, execution-driven simulators are often
tied to one architecture due to the requirements of annotat-
ing the code at assembly or object level. DynInst is avail-
able on a number of architectures. Porting our framework
to these platforms only involves changing the memory in-
structions to be instrumented. Another major difference ad-
dresses the overhead of large data traces inherent to all these
approaches. We allow the analysis of partial traces and em-
ploy trace compression to provide compact representations.

The SIGMA (Simulator Infrastructure to Guide Memory
Analysis) [9] system has many similarities with our work.
It uses post-link binary instrumentation and online trace
compression, and allows tagging of metrics to source code
constructs. A toolkit by Marin and Mellor-Crummey uses
statistical sampling of dynamically instrumented data trace
points to predict memory behavior across different architec-
tural platforms [21]. Both of these approaches are limited
to uniprocessor systems while we focus on analyzing co-
herence traffic for SMPs. The latter work does not focus on
transformations, unlike our work.

Recently, most architectures have added hardware coun-
ters, which provide information on the frequency of hard-
ware events, e.g., to count shared memory events. Portable
APIs like PAPI provide a reasonably platform-independent
method of accessing these counters [3]. Hardware counters
impose no runtime overhead, and querying counters is typ-
ically of low overhead. However, they only provide aggre-
gate statistics without any relation to the source code, and
there are only a limited number of counters available. In ad-
dition, there are often restrictions on the type of events that
can be counted simultaneously. It is possible to get higher
levels of information with customized hardware. The Flash-
Point system uses a custom system node controller to mon-
itor coherence events [11]. In general, hardware monitors
are fast but may constrain the number of events that can be
monitored. At this point in time, they lack a wide accep-
tance in practice.

Krishnamurthy and Yelick develop compiler analysis and
optimization techniques for the shared-memory program-
ming paradigm using SplitC as an example [15]. Their
main concern is the hardware-supported coherence model,
namely weak consistency. They are specifically concerned
about writes and invalidations occurring out-of-order. Their
optimizations reflect the constraints of reordering writes in
the presence of locks and barriers with respect to weak
consistency and employ message pipelining (aggregation of
writes) and reduction of communication (two-way to one
way or elimination). Satoh et al. study compiler optimiza-
tions for OpenMP in a distributed shared memory system

based on dataflow techniques to analyze thread interactions
[27]. Optimizations include barrier removal and data priva-
tization to reduce coherence-induced messages. Our work
shares the aim at optimizing shared-memory applications
with these approaches. However, we take a radically differ-
ent approach by analyzing traces to determine if and where
inefficiencies in terms of coherence traffic exist and if there
is room for improvements.

9. Conclusion

In this paper, we introduced ccSIM, a cache-coherent
memory simulator fed by data traces obtained via on-the-
fly dynamic binary rewriting of OpenMP benchmarks exe-
cuting on a Power3 SMP node. We explored the degrees
of freedom in interleaving data traces from the different
processors with respect to simulation accuracy compared to
hardware performance counters. We also provided detailed
coherence information per data reference and relate them to
their data structures and reference locations in the code.

The experiments conducted by us show close matches of
hardware performance counters for coherence events. Fur-
thermore, we demonstrated the feasibility and the benefits
of deriving detailed coherence information indicating the
location of invalidations in the application code. This de-
tailed level of information allowed us to infer opportuni-
ties for optimizations that, without ccSim, could not easily
be obtained and localized. This led to program transfor-
mations resulting in both significantly decreased coherence
traffic and execution time savings.
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